1
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Ionov ID, Pushinskaya II, Gorev NP, Shpilevaya LA, Frenkel DD, Severtsev NN. Activation of pallidal H 2 receptors induces catalepsy in Wistar rats: A regulatory role of CRF 1 receptors. Behav Brain Res 2022; 428:113881. [PMID: 35390433 DOI: 10.1016/j.bbr.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
An increased concentration of histamine was found in the globus pallidus of parkinsonian patients. The role of this abnormality in the development of parkinsonism is unclear. We examined cataleptogenic activity of histamine injected into the globus pallidus (GP); also, the role of H2 receptors in histamine effect was evaluated. Given a possible role of the GP in integration and processing of stress signals, we tested the involvement of CRF1 receptors in the regulation of histamine effect. The experiments were conducted with male Wistar rats, catalepsy was assessed using bar test. The entopeduncular nucleus (EPN) was used as a neuroanatomical control. Intrapallidal injections of histamine (1.0 and 10.0 µg) produced clear cataleptic response whereas intra-EPN injections were ineffective. Histamine-induced catalepsy was dose-dependently attenuated by H2 receptor antagonist ranitidine and CRF1 receptor antagonist NBI 35965. The results suggest the involvement of pallidal H2 and CRF1 receptors in the development of catalepsy in rats. These findings may provide novel insight into the mechanism of parkinsonian-like disorders. In light of the presented data, H2 and CRF1 receptors might be potential targets for therapy of parkinsonism.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
3
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
5
|
Tingley D, Buzsáki G. Routing of Hippocampal Ripples to Subcortical Structures via the Lateral Septum. Neuron 2020; 105:138-149.e5. [PMID: 31784288 PMCID: PMC6952543 DOI: 10.1016/j.neuron.2019.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023]
Abstract
The mnemonic functions of hippocampal sharp wave ripples (SPW-Rs) have been studied extensively. Because hippocampal outputs affect not only cortical but also subcortical targets, we examined the impact of SPW-Rs on the firing patterns of lateral septal (LS) neurons in behaving rats. A large fraction of SPW-Rs were temporally locked to high-frequency oscillations (HFOs) (120-180 Hz) in LS, with strongest coupling during non-rapid eye movement (NREM) sleep, followed by waking immobility. However, coherence and spike-local field potential (LFP) coupling between the two structures were low, suggesting that HFOs are generated locally within the LS GABAergic population. This hypothesis was supported by optogenetic induction of HFOs in LS. Spiking of LS neurons was largely independent of the sequential order of spiking in SPW-Rs but instead correlated with the magnitude of excitatory synchrony of the hippocampal output. Thus, LS is strongly activated by SPW-Rs and may convey hippocampal population events to its hypothalamic and brainstem targets.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Soliani A, Kubota SM, Corrêa MF, Cerutti SM, Fernandes JPS. Differential contribution of H3R antagonism by LINS01 compounds on memory, anxiety-like behaviour and spontaneous locomotor activity in healthy rats. Behav Brain Res 2020; 377:112230. [DOI: 10.1016/j.bbr.2019.112230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
|
7
|
Lindskog M. Histamine Receptors in the Cross-Talk between Periphery and Brain. Int J Neuropsychopharmacol 2017; 20:400-402. [PMID: 28340169 PMCID: PMC5417051 DOI: 10.1093/ijnp/pyx018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/14/2017] [Indexed: 12/04/2022] Open
Affiliation(s)
- Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Stockholm, Sweden
| |
Collapse
|
8
|
Olivo D, Caba M, Gonzalez-Lima F, Rodríguez-Landa JF, Corona-Morales AA. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior. Behav Brain Res 2016; 316:261-270. [PMID: 27618763 DOI: 10.1016/j.bbr.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity.
Collapse
Affiliation(s)
- Diana Olivo
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico.
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico.
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Juan F Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico.
| | - Aleph A Corona-Morales
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Médicos y odontólogos s/n, Col. Unidad del Bosque, 91010, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|
9
|
Yeung M, Treit D, Dickson CT. Ventral hippocampal histamine increases the frequency of evoked theta rhythm but produces anxiolytic-like effects in the elevated plus maze. Neuropharmacology 2015; 106:146-55. [PMID: 26400409 DOI: 10.1016/j.neuropharm.2015.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
The neurobiological underpinnings of anxiety are of paramount importance to the development of effective therapeutic treatments. To date, there is considerable pharmacological evidence suggesting that the suppression of hippocampal theta frequency is a robust and predictive assay of anxiolytic drug action. Recently, this idea has been challenged using histamine (2-(4-imidazolyl)ethanamine), an endogenous neurotransmitter involved in a number of brain and behavioral functions. Here, we systematically evaluate the effects of dorsal and ventral hippocampal histamine infusions on evoked theta frequency and behavioral anxiety. Given the complex pharmacological profile of histamine and its receptors in the hippocampus, we reasoned that local intra-hippocampal infusions would be a powerful test of the theta suppression model. While dorsal hippocampal infusions of histamine produced neither significant changes in anxious-like behavior in the elevated plus maze nor changes of evoked theta, ventral infusions of histamine produced potent behavioral anxiolysis which corresponded to an increase, and not a decrease, in evoked theta frequency. As a positive neurophysiological control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta following both dorsal and ventral hippocampal infusions. Our results further challenge the hippocampal theta frequency suppression model as a measure of anxiolytic drug action. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Dallas Treit
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; Neuroscience, 4-4142 Katz Group Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, P-217 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; Neuroscience, 4-4142 Katz Group Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Physiology, 7-55 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
10
|
Ollmann T, Péczely L, László K, Kovács A, Gálosi R, Kertes E, Kállai V, Zagorácz O, Karádi Z, Lénárd L. Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behav Brain Res 2015; 294:208-14. [PMID: 26296669 DOI: 10.1016/j.bbr.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. NT is involved in reward and memory processes, drug addiction and also in the regulation of anxiety. The ventral pallidum (VP) receives neurotensinergic innervation from the ventral striatopallidal pathway originating from the nucleus accumbens. Positive reinforcing effects of NT in the VP had been shown recently, however the possible effects of NT on anxiety have not been examined yet. In our present experiments, the effects of NT on anxiety were investigated in the VP. In male Wistar rats bilateral microinjections of 100 ng or 250 ng NT were delivered in the volume of 0.4 μl into the VP, and elevated plus maze (EPM) test was performed. In another groups of animals, 35 ng NT-receptor 1 (NTR1) antagonist SR 48,692 was applied by itself, or microinjected 15 min before 100 ng NT treatment. Open field test (OPF) was also conducted. The 100 ng dose of NT had anxiolytic effect, but the 250 ng NT did not influence anxiety. The antagonist pretreatment inhibited the effect of NT, while the antagonist itself had no effect. In the OPF test there was no difference among the groups. Our present results show that microinjection of NT into the VP induces anxiolytic effect, which is specific to the NTR1 receptors because it can be eliminated by a specific NTR1 antagonist. It is also substantiated that neither the NT, nor the NTR1 antagonist in the VP influences locomotor activity.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary.
| |
Collapse
|
11
|
Peyrière H, Diot C, Eiden C, Petit P. [Abuse Liability of Quetiapine (Xeroquel®)]. Therapie 2015; 78:therapie150048. [PMID: 26242499 DOI: 10.2515/therapie/2015048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE In recent years, there have been several reports in the literature concerning the misuse and abuse of quetiapine. The aim of this study was to review the data reported to the French Network of the Addictovigilance Centers as well as the published data. METHODS Epidemiological data from the studies of French network addictovigilance centers (spontaneous notifications, suspicious presciptions suggesting possible abuse [ ordonnances suspectes indicateur d'abus possibles, OSIAP], observatory of illegal psychotropic substances or delivered substances diverted from their medicinal use survey [observation des produits psychotropes illicites ou détournées de leur utilisation médicamenteuse, OPPIDUM], deaths related to medication and substance abuse survey [décès en relation avec l'abus de médicaments et de substances, DRAMES]) were analyzed between 2011 and 2014. All cases of abuse and dependence with quetiapine in PubMed were reviewed using the MeSH terms "quetiapine," "substances abuse," and "dependence", until October 2014. RESULTS The analysis of the literature has identified 21 cases of abuse related to quetiapine, mainly in men (85.7%), with a history of substance abuse (76%). The main route of administration was oral but other routes were also reported (intravenous, intranasal). The main reason for abuse was sedation and anxiolytic. Other characteristics of quetiapine abuse include amplification or even simulation of psychotic symptoms to obtain quetiapine, an increased dose and the existence of street names. The French addictovigilance network reported few cases of abuse with quetiapine. DISCUSSION-CONCLUSION The pharmacological mechanism of abuse of quetiapine is not fully understood. However, several arguments are in favor of the abuse liability of quetiapine. Despite the recent availability of quetiapine in France, there have been some isolated signals of abuse. Therefore, it seems important to inform prescribers on the risk of misuse of quetiapine and also of some other antipsychotics.
Collapse
|
12
|
Femenía T, Magara S, DuPont CM, Lindskog M. Hippocampal-Dependent Antidepressant Action of the H3 Receptor Antagonist Clobenpropit in a Rat Model of Depression. Int J Neuropsychopharmacol 2015; 18:pyv032. [PMID: 25762718 PMCID: PMC4576519 DOI: 10.1093/ijnp/pyv032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histamine is a modulatory neurotransmitter regulating neuronal activity. Antidepressant drugs target modulatory neurotransmitters, thus ultimately regulating glutamatergic transmission and plasticity. Histamine H3 receptor (H3R) antagonists have both pro-cognitive and antidepressant effects; however, the mechanism by which they modulate glutamate transmission is not clear. We measured the effects of the H3R antagonist clobenpropit in the Flinders Sensitive Line (FSL), a rat model of depression with impaired memory and altered glutamatergic transmission. METHODS Behavioral tests included the forced swim test, memory tasks (passive avoidance, novel object recognition tests), and anxiety-related paradigms (novelty suppressed feeding, social interaction, light/dark box tests). Hippocampal protein levels were detected by Western blot. Hippocampal plasticity was studied by in slice field recording of CA3-CA1 long-term synaptic potentiation (LTP), and glutamatergic transmission by whole-cell patch clamp recording of excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons. RESULTS Clobenpropit, administered systemically or directly into the hippocampus, decreased immobility during the forced swim test; systemic injections reversed memory deficits and increased hippocampal GluN2A protein levels. FSL rats displayed anxiety-related behaviors not affected by clobenpropit treatment. Clobenpropit enhanced hippocampal plasticity, but did not affect EPSCs. H1R and H2R antagonists prevented the clobenpropit-induced increase in LTP and, injected locally into the hippocampus, blocked clobenpropit's effect in the forced swim test. CONCLUSIONS Clobenpropit's antidepressant effects and the enhanced synaptic plasticity require hippocampal H1R and H2R activation, suggesting that clobenpropit acts through disinhibition of histamine release. Clobenpropit reverses memory deficits and increases hippocampal GluN2A expression without modifying anxiety-related phenotypes or EPSCs in CA1 pyramidal neurons.
Collapse
Affiliation(s)
| | | | | | - Maria Lindskog
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (Drs Femenía, Magara, and Lindskog, and Ms DuPont).
| |
Collapse
|
13
|
Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015; 9:8. [PMID: 25741246 PMCID: PMC4327307 DOI: 10.3389/fnsys.2015.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Collapse
Affiliation(s)
- Kevin R Urstadt
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - B Glenn Stanley
- Departments of Psychology and Cell Biology and Neuroscience, University of California - Riverside Riverside, CA, USA
| |
Collapse
|
14
|
Chee SSA, Menard JL, Dringenberg HC. Behavioral anxiolysis without reduction of hippocampal theta frequency after histamine application in the lateral septum of rats. Hippocampus 2014; 24:615-27. [DOI: 10.1002/hipo.22244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- San-San A. Chee
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Janet L. Menard
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario K7L 3N6 Canada
- Department of Psychology; Queen's University; Kingston Ontario K7L 3N6 Canada
| | - Hans C. Dringenberg
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario K7L 3N6 Canada
- Department of Psychology; Queen's University; Kingston Ontario K7L 3N6 Canada
| |
Collapse
|