1
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 03/28/2024]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
2
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
3
|
Strang C, Muth F. Judgement bias may be explained by shifts in stimulus response curves. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221322. [PMID: 37035286 PMCID: PMC10073905 DOI: 10.1098/rsos.221322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Judgement bias, or 'optimism' and 'pessimism', has been demonstrated across many taxa, yet the cognitive mechanisms underlying this behaviour remain unclear. In an optimism paradigm, animals are trained to an association, and, if given a positive experience, behave more favourably towards 'ambiguous' stimuli. We tested whether this effect could be explained by changes to stimulus response gradients by giving bees a task where their response was tested across a wider gradient of stimuli than typically tested. In line with previous work, we found that bees given a positive experience demonstrated judgement bias, being more likely to visit ambiguous stimuli. However, bees were also less likely to visit a stimulus on the other side of the rewarded stimulus (S+), and as such had a shifted stimulus response curve, showing a diminished peak shift response. In two follow-up experiments we tested the hypothesis that our manipulation altered bees' stimulus response curves via changes to the peak shift response by reducing peak shift in controls. We found that, in support of our hypothesis, elimination of peak shift also eliminated differences between treatments. Our results point towards a cognitive explanation of 'optimistic' behaviour in non-human animals and offer a new paradigm for considering emotion-like states.
Collapse
Affiliation(s)
- Caroline Strang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- School of Behavioural and Social Sciences, Brescia University College, London, Ontario, Canada N6G 1H2
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Bricarello PA, Longo C, da Rocha RA, Hötzel MJ. Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants. Pathogens 2023; 12:pathogens12040531. [PMID: 37111417 PMCID: PMC10145647 DOI: 10.3390/pathogens12040531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Grazing systems have great potential to promote animal welfare by allowing animals to express natural behaviours, but they also present risks to the animals. Diseases caused by gastrointestinal nematodes are some of the most important causes of poor ruminant health and welfare in grazing systems and cause important economic losses. Reduced growth, health, reproduction and fitness, and negative affective states that indicate suffering are some of the negative effects on welfare in animals infected by gastrointestinal nematode parasitism. Conventional forms of control are based on anthelmintics, but their growing inefficiency due to resistance to many drugs, their potential for contamination of soil and products, and negative public opinion indicate an urgency to seek alternatives. We can learn to deal with these challenges by observing biological aspects of the parasite and the host’s behaviour to develop managements that have a multidimensional view that vary in time and space. Improving animal welfare in the context of the parasitic challenge in grazing systems should be seen as a priority to ensure the sustainability of livestock production. Among the measures to control gastrointestinal nematodes and increase animal welfare in grazing systems are the management and decontamination of pastures, offering multispecies pastures, and grazing strategies such as co-grazing with other species that have different grazing behaviours, rotational grazing with short grazing periods, and improved nutrition. Genetic selection to improve herd or flock parasite resistance to gastrointestinal nematode infection may also be incorporated into a holistic control plan, aiming at a substantial reduction in the use of anthelmintics and endectocides to make grazing systems more sustainable.
Collapse
|
5
|
Monk JE, Colditz IG, Clark S, Lee C. Repeatability of an attention bias test for sheep suggests variable influence of state and trait affect on behaviour. PeerJ 2023; 11:e14730. [PMID: 36751637 PMCID: PMC9899428 DOI: 10.7717/peerj.14730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding the effects of repeated testing on behaviour is essential for behavioural tests that are re-applied to the same individuals for research and welfare assessment purposes. Assessing the repeatability of behaviour can also help us understand the influence of persistent traits vs transient states on animal responses during testing. This study examined the repeatability of behavioural responses in an attention bias test developed for sheep as a measure of affective state. Sheep were assessed in the attention bias test three times (n = 81 sheep), with testing occurring at intervals of 1 year then 2 weeks. During testing, individual sheep were exposed to a dog located behind a window for 3 s in a 4 × 4 m arena, then the dog was obscured from view, removed and sheep behaviours were recorded for 180 s. We hypothesised that behaviours in the test would have moderate-high repeatability but that the mean behavioural responses would change over consecutive trials as sheep habituated to the test environment. To estimate repeatability, data were modelled using restricted maximum likelihood linear mixed-effects models, fitting animal ID as a random effect. Vigilance behaviour, defined as having the head at or above shoulder height, was moderately repeatable (r = 0.58). Latency to eat (r = 0.20) and duration spent looking towards the previous location of the dog (attention to the dog wall) (r = 0.08) had low repeatability. Mean latency to eat did not differ significantly between trials (P = 0.2) and mean vigilance behaviour tended to decrease over the trials (P = 0.07). Mean duration of attention to the dog wall significantly decreased across the trials (P < 0.001), while mean zones crossed increased (P < 0.001), as did behaviours directed towards the exit door such as duration in proximity and pawing at the door. Overall, vigilance behaviour was moderately repeatable, suggesting it may have been driven by temperament or personality traits, while attention and feeding behaviours may have been more influenced by transient affective states or other factors, however further research is needed to better tease apart these potential effects. Sheep demonstrated some habituation to the test over consecutive trials. Care should therefore be taken during future application of the test to ensure all animals undergoing attention bias testing have equivalent experience for a valid interpretation of their relative behavioural responses.
Collapse
Affiliation(s)
- Jessica E. Monk
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia,Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Armidale, NSW, Australia
| | - Ian G. Colditz
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Armidale, NSW, Australia
| | - Sam Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Caroline Lee
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia,Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Armidale, NSW, Australia
| |
Collapse
|
6
|
Bushby EV, Cotter SC, Wilkinson A, Friel M, Collins LM. Judgment Bias During Gestation in Domestic Pigs. Front Vet Sci 2022; 9:881101. [PMID: 35647100 PMCID: PMC9133791 DOI: 10.3389/fvets.2022.881101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
In humans and rats, changes in affect are known to occur during pregnancy, however it is unknown how gestation may influence mood in other non-human mammals. This study assessed changes in pigs' judgment bias as a measure of affective state throughout gestation. Pigs were trained to complete a spatial judgment bias task with reference to positive and negative locations. We tested gilts before mating, and during early and late gestation, by assessing their responses to ambiguous probe locations. Pigs responded increasingly negatively to ambiguous probes as gestation progressed and there were consistent inter-individual differences in baseline optimism. This suggests that the pigs' affective state may be altered during gestation, although as a non-pregnant control group was not tested, an effect of learning cannot be ruled out. These results suggest that judgment bias is altered during gestation in domestic pigs, consequently raising novel welfare considerations for captive multiparous species.
Collapse
Affiliation(s)
- Emily V. Bushby
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena C. Cotter
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Anna Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Mary Friel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lisa M. Collins
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- *Correspondence: Lisa M. Collins
| |
Collapse
|
7
|
A promising novel judgement bias test to evaluate affective states in dogs (Canis familiaris). Anim Cogn 2022; 25:837-852. [DOI: 10.1007/s10071-021-01596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 11/01/2022]
|
8
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Candiani D, Rapagnà C, Van der Stede Y, Michel V. Welfare of sheep and goats at slaughter. EFSA J 2021; 19:e06882. [PMID: 34765030 PMCID: PMC8573542 DOI: 10.2903/j.efsa.2021.6882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The killing of sheep and goats for human consumption (slaughtering) can take place in a slaughterhouse or on-farm. The processes of slaughtering that were assessed for welfare, from the arrival of sheep and goats until their death (including slaughtering without stunning), were grouped into three main phases: pre-stunning (including arrival, unloading from the truck, lairage, handling and moving of sheep and goats); stunning (including restraint); and bleeding. Stunning methods were grouped into two categories: mechanical and electrical. Twelve welfare consequences that sheep and goats may experience during slaughter were identified: heat stress, cold stress, fatigue, prolonged thirst, prolonged hunger, impeded movement, restriction of movements, resting problems, social stress, pain, fear and distress. These welfare consequences and their relevant animal-based measures are described in detail in this Scientific Opinion. In total, 40 welfare hazards that could occur during slaughter were identified and characterised, most of them related to stunning and bleeding. Staff were identified as the origin of 39 hazards, which were attributed to the lack of appropriate skill sets needed to perform tasks or to fatigue. Measures to prevent and correct hazards were identified, and structural and managerial measures were identified as those with a crucial role in prevention. Outcome tables linking hazards, welfare consequences, animal-based measures, origin of hazards and preventive and corrective measures were developed for each process. Mitigation measures to minimise welfare consequences are proposed.
Collapse
|
9
|
Lecorps B, Weary DM, von Keyserlingk MAG. Negative expectations and vulnerability to stressors in animals. Neurosci Biobehav Rev 2021; 130:240-251. [PMID: 34454913 DOI: 10.1016/j.neubiorev.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023]
Abstract
Humans express stable differences in pessimism that render some individuals more vulnerable to stressors and mood disorders. We explored whether non-human animals express stable individual differences in expectations (assessed via judgment bias tests) and whether these differences relate to susceptibility to stressors. Judgment bias tests do not distinguish pessimism from sensitivity to reinforcers; negative expectations are likely driven by a combination of these two elements. The available evidence suggests that animals express stable individual differences in expectations such that some persistently perceive ambiguous situations in a more negative way. A lack of research prevents drawing firm conclusions on how negative expectations affect responses to stressors, but current evidence suggests a link between negative expectations and the adoption of avoidance coping strategies, stronger responses to uncontrollable stressors and risk of mood-related disorders. We explore implications for animals living in captivity and for research using animals as models for human disorders.
Collapse
Affiliation(s)
- Benjamin Lecorps
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, 2357 Main Mall, The University of British Columbia, Vancouver BC V6T 1Z6, Canada.
| |
Collapse
|
10
|
Resasco A, MacLellan A, Ayala MA, Kitchenham L, Edwards AM, Lam S, Dejardin S, Mason G. Cancer blues? A promising judgment bias task indicates pessimism in nude mice with tumors. Physiol Behav 2021; 238:113465. [PMID: 34029586 DOI: 10.1016/j.physbeh.2021.113465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
In humans, affective states can bias responses to ambiguous information: a phenomenon termed judgment bias (JB). Judgment biases have great potential for assessing affective states in animals, in both animal welfare and biomedical research. New animal JB tasks require construct validation, but for laboratory mice (Mus musculus), the most common research vertebrate, a valid JB task has proved elusive. Here (Experiment 1), we demonstrate construct validity for a novel mouse JB test: an olfactory Go/Go task in which subjects dig for high- or low-value food rewards. In C57BL/6 and Balb/c mice faced with ambiguous cues, latencies to dig were sensitive to high/low welfare housing: environmentally-enriched animals responded with relative 'optimism' through shorter latencies. Illustrating the versatility of this validated JB task across different fields of research, it further allowed us to test hypotheses about the mood-altering effects of cancer in male and female nude mice (Experiment 2). Males, although not females, treated ambiguous cues as intermediate; and males bearing subcutaneous lung adenocarcinomas also responded more pessimistically to these than did healthy controls. To our knowledge, this is the first evidence of a valid mouse JB task, and the first demonstration of pessimism in tumor-bearing animals. This task still needs to be refined to improve its sensitivity. However, it has great potential for investigating mouse welfare, the links between affective state and disease, depression-like states in animals, and hypotheses regarding the neurobiological mechanisms that underlie affect-mediated biases in judgment.
Collapse
Affiliation(s)
- A Resasco
- Institute of Cell Biology and Neurosciences, National Scientific and Technical Research Council-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina; Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - A MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M A Ayala
- Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - L Kitchenham
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - A M Edwards
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - S Lam
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - S Dejardin
- Formerly Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Mason
- Department of Integrative Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
11
|
Supplementation of Lactobacillus early in life alters attention bias to threat in piglets. Sci Rep 2021; 11:10130. [PMID: 33980959 PMCID: PMC8115133 DOI: 10.1038/s41598-021-89560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbes play an important role in regulating brain processes and influence behaviour, cognition and emotional states in humans and rodents. Nevertheless, it is not known how ingestion of beneficial microbes modulates emotional states in piglets and whether it can improve welfare. Here we use an attention bias task to assess the effects of Lactobacillus reuteri ATCC-PTA-6475 and Lactobacillus plantarum L1-6 supplementation early in life on emotional states in 33 piglets compared to 31 placebo supplemented piglets. We hypothesized that Lactobacillus supplementation would reduce vigilance behaviour (head at shoulder height or higher) and attention (head oriented towards the threat) in response to an auditory threat. The results showed that the control group increased vigilance behaviour in response to the threat, but there was no increase in the probiotics group. Despite the increased vigilance, the control group paid less attention to the threat. One explanation may be that control piglets avoided looking in the direction of the threat just because they perceived it as more threatening, but further research is necessary to confirm this. In conclusion, Lactobacillus supplementation may be a suitable tool to reduce anxiety, promote a more appropriate response to a challenge and so improve welfare.
Collapse
|
12
|
Abstract
Allowing dairy cattle to access pasture can promote natural behaviour and improve their health. However, the psychological benefits are poorly understood. We compared a cognitive indicator of emotion in cattle either with or without pasture access. In a crossover experiment, 29 Holstein-Friesian dairy cows had 18 days of overnight pasture access and 18 days of full-time indoor housing. To assess emotional wellbeing, we tested cows on a spatial judgement bias task. Subjects learnt to approach a rewarded bucket location, but not approach another, unrewarded bucket location. We then presented cows with three "probe" buckets intermediate between the trained locations. Approaching the probes reflected an expectation of reward under ambiguity-an "optimistic" judgement bias, suggesting positive emotional states. We analysed the data using linear mixed-effects models. There were no treatment differences in latency to approach the probe buckets, but cows approached the known rewarded bucket slower when they had pasture access than when they were indoors full-time. Our results indicate that, compared to cattle housed indoors, cattle with pasture access display less anticipatory behaviour towards a known reward. This reduced reward anticipation suggests that pasture is a more rewarding environment, which may induce more positive emotional states than full-time housing.
Collapse
|
13
|
Whittaker AL, Barker TH. A consideration of the role of biology and test design as confounding factors in judgement bias tests. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Kahnau P, Habedank A, Diederich K, Lewejohann L. Behavioral Methods for Severity Assessment. Animals (Basel) 2020; 10:ani10071136. [PMID: 32635341 PMCID: PMC7401632 DOI: 10.3390/ani10071136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In 2017, 9.4 million animals were used for research and testing in the European Union. Animal testing always entails the potential for harm caused to the animals. In order to minimize animal suffering, it is of ethical and scientific interest to have a research-based severity assessment of animal experiments. In the past, many methods have been developed to investigate animal suffering. Initially, the focus was on physiological parameters, such as body weight or glucocorticoids as an indicator of stress. In addition, the animals’ behavior has come more into focus and has been included as an indicator of severity. However, in order to obtain a comprehensive understanding of animal suffering, an animal’s individual perspective should also be taken into account. Preference tests might be used, for example, to “ask” animals what they prefer, and providing such goods in turn allows, among other things, to improve housing conditions. In this review, different methods are introduced, which can be used to investigate and evaluate animal suffering and well-being with a special focus on animal-centric strategies. Abstract It has become mandatory for the application for allowance of animal experimentation to rate the severity of the experimental procedures. In order to minimize suffering related to animal experimentation it is therefore crucial to develop appropriate methods for the assessment of animal suffering. Physiological parameters such as hormones or body weight are used to assess stress in laboratory animals. However, such physiological parameters alone are often difficult to interpret and leave a wide scope for interpretation. More recently, behavior, feelings and emotions have come increasingly into the focus of welfare research. Tests like preference tests or cognitive bias tests give insight on how animals evaluate certain situations or objects, how they feel and what their emotional state is. These methods should be combined in order to obtain a comprehensive understanding of the well-being of laboratory animals.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Correspondence: ; Tel.: +49-30-18412-29202
| | - Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
15
|
Do dietary and milking frequency changes during a gradual dry-off affect feed-related attention bias and visual lateralisation in dairy cows? Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2019.104923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
A Ten-Stage Protocol for Assessing the Welfare of Individual Non-Captive Wild Animals: Free-Roaming Horses ( Equus Ferus Caballus) as an Example. Animals (Basel) 2020; 10:ani10010148. [PMID: 31963232 PMCID: PMC7022444 DOI: 10.3390/ani10010148] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Knowledge of the welfare status of wild animals is vital for informing debates about the ways in which we interact with wild animals and their habitats. Currently, there is no published information about how to scientifically assess the welfare of free-roaming wild animals during their normal day-to-day lives. Using free-roaming horses as an example, we describe a ten-stage protocol for systematically and scientifically assessing the welfare of individual non-captive wild animals. The protocol starts by emphasising the importance of readers having an understanding of animal welfare in a conservation context and also of the Five Domains Model for assessing welfare. It goes on to detail what species-specific information is required to assess welfare, how to identify measurable and observable indicators of animals' physical states and how to identify which individuals are being assessed. Further, it addresses how to select appropriate methods for measuring/observing physical indicators of welfare, the scientific validation of these indicators and then the grading of animals' welfare states, along with assigning a confidence score. Finally, grading future welfare risks and how these can guide management decisions is discussed. Applying this ten-stage protocol will enable biologists to scientifically assess the welfare of wild animals and should lead to significant advances in the field of wild animal welfare.
Collapse
|
17
|
Pharmacologically-induced stress has minimal impact on judgement and attention biases in sheep. Sci Rep 2019; 9:11446. [PMID: 31391491 PMCID: PMC6686049 DOI: 10.1038/s41598-019-47691-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
The emotional impact of exposure to stressors has not been well quantified in animals. We hypothesised that exogenous induction of stress in sheep would induce a pessimistic judgement bias and increased attention towards a threatening stimulus, suggestive of a negative emotional state. Stress was induced pharmacologically by administering synthetic adrenocorticotropic hormone. Judgement bias was assessed using a spatial go/no-go task after exposure to acute stress (one injection), chronic stress (21 daily injections) and acute-on-chronic stress (2 min isolation after 28 daily injections). Attention bias was assessed during chronic stress only (22 daily injections). In contrast with our hypotheses, there was no strong evidence that Synacthen administration altered judgement bias or attention bias at any stage of the experiment. Stressed sheep were more likely to approach ambiguous locations than saline Control animals, however, statistical evidence for models fitting treatment group was very weak. Overall, our findings suggest that elevated levels of cortisol may not fully explain changes to judgement bias observed in previous studies after environmentally-induced stress. Further studies are required to better understand which aspects of environmentally-induced stress alter judgement bias and to further validate cognitive methods of assessing affect in sheep.
Collapse
|
18
|
Chronic stress influences attentional and judgement bias and the activity of the HPA axis in sheep. PLoS One 2019; 14:e0211363. [PMID: 30699168 PMCID: PMC6353200 DOI: 10.1371/journal.pone.0211363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/12/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Environmental challenges are part of everyday life for most domestic animals. However, very little is known about how animals cope emotionally and physiologically with cumulative challenges. This experiment aimed to determine the impact of long-term exposure to environmental challenges on the affective state and hypothalamic-pituitary-adrenal (HPA) axis responses to a subsequent additional acute shearing challenge. METHODS Sheep were exposed to either a long-term environmental challenge (rest disruption and individual housing) in order to induce chronic stress (chronic stress group) or control conditions (group housing in a field with low stress handling and daily feed rewards, control group). Judgement and attention bias were assessed as measures of the emotional state following several days of the challenge or control treatment (pre-shearing tests). In addition, the responsiveness of the HPA-axis was evaluated using a combined Corticotropin Releasing Hormone and Arginine Vasopressin (CRH/AVP) challenge. Finally, all animals were exposed to an acute shearing challenge, then judgement bias (post-shearing test), HPA-axis and internal body temperature responses were determined. RESULTS In the pre-shearing judgement bias test, the chronic stress group slightly increased optimism compared to the control treatment. In the attention bias test, the chronic stress group showed reduced vigilance behaviour towards a predator threat and a quicker approach to the food compared to the control treatment. The chronic stress group also had lower plasma ACTH concentrations in response to the CRH/AVP challenge compared to the control group, no differences in cortisol concentrations were found. In the post-shearing judgement bias test, differences in optimism were no longer evident between the chronic stress and control groups. Plasma ACTH concentrations and body temperatures showed a greater increase in response to shearing in the chronic stress group compared to the control group. CONCLUSION Our results suggest that long-term exposure to challenges biased cognitive measures of the affective state towards an increased expectation of a reward and reduced attention towards a threat. The exaggerated ACTH responses in the chronic stress group may be indicative of HPA-axis dysregulation. Despite a period of challenge exposure in the chronic stress group, judgement bias responses to the shearing challenge were similar in the chronic stress and control groups; the reasons for this need further investigation. The altered affective state together with signs of HPA-axis dysregulation may indicate an increased risk of compromised welfare in animals exposed to long-term environmental challenges.
Collapse
|
19
|
Rao A, Range F, Kadletz K, Kotrschal K, Marshall-Pescini S. Food preferences of similarly raised and kept captive dogs and wolves. PLoS One 2018; 13:e0203165. [PMID: 30235228 PMCID: PMC6157812 DOI: 10.1371/journal.pone.0203165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
Food preferences may be driven by a species' ecology. Closely related species such as dogs and wolves may have evolved preferences for different foods owing to their differing foraging styles. Wolves have been shown to be more persistent in problem-solving experiments and more risk-prone in a foraging task. A possible element affecting these (and other) results is a potential wolf-dog difference in food preferences. To address this possibility, we tested similarly raised and kept dogs and wolves in two different food choice tasks, a classic two-choice task and a multiple-choice paradigm. We predicted that if dogs have adapted to a more opportunistic, scavenging foraging style, they would show a weaker preference for meat over starch rich foods (such as kibble) and be less affected by hunger than wolves. Alternatively, given the recentness of the new niche dogs have created, we predicted no substantial differences between dogs' and wolves' food preferences. We found that our subjects did not differ in their preference for meat over kibble in either paradigm. However, wolves' (but not dogs') choice patterns were affected by satiation, with wolves being less "selective" when hungry. Furthermore, when fed before testing, wolves were more selective than dogs. These differences were more noticeable in the multiple-choice paradigm than the two-choice task, suggesting that the former, novel paradigm may be more sensitive and better capable of evaluating food preferences in a diverse range of species. Overall, we found that the distinct differences in wolves' and dogs' ecology and foraging styles do not appear to have affected their food preferences and thus, differences in food preferences are unlikely to have influenced results of previous experiments demonstrating wolf-dog differences in cognitive skills.
Collapse
Affiliation(s)
- Akshay Rao
- Wolf Science Center, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Friederike Range
- Wolf Science Center, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Kerstin Kadletz
- Wolf Science Center, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Kurt Kotrschal
- Wolf Science Center, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - Sarah Marshall-Pescini
- Wolf Science Center, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Crump A, Arnott G, Bethell EJ. Affect-Driven Attention Biases as Animal Welfare Indicators: Review and Methods. Animals (Basel) 2018; 8:E136. [PMID: 30087230 PMCID: PMC6115853 DOI: 10.3390/ani8080136] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022] Open
Abstract
Attention bias describes the differential allocation of attention towards one stimulus compared to others. In humans, this bias can be mediated by the observer's affective state and is implicated in the onset and maintenance of affective disorders such as anxiety. Affect-driven attention biases (ADABs) have also been identified in a few other species. Here, we review the literature on ADABs in animals and discuss their utility as welfare indicators. Despite a limited research effort, several studies have found that negative affective states modulate attention to negative (i.e., threatening) cues. ADABs influenced by positive-valence states have also been documented in animals. We discuss methods for measuring ADAB and conclude that looking time, dot-probe, and emotional spatial cueing paradigms are particularly promising. Research is needed to test them with a wider range of species, investigate attentional scope as an indicator of affect, and explore the possible causative role of attention biases in determining animal wellbeing. Finally, we argue that ADABs might not be best-utilized as indicators of general valence, but instead to reveal specific emotions, motivations, aversions, and preferences. Paying attention to the human literature could facilitate these advances.
Collapse
Affiliation(s)
- Andrew Crump
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Emily J Bethell
- Research Centre in Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
21
|
Hintze S, Melotti L, Colosio S, Bailoo JD, Boada-Saña M, Würbel H, Murphy E. A cross-species judgement bias task: integrating active trial initiation into a spatial Go/No-go task. Sci Rep 2018; 8:5104. [PMID: 29572529 PMCID: PMC5865189 DOI: 10.1038/s41598-018-23459-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/13/2018] [Indexed: 01/29/2023] Open
Abstract
Judgement bias tasks are promising tools to assess emotional valence in animals, however current designs are often time-consuming and lack aspects of validity. This study aimed to establish an improved design that addresses these issues and can be used across species. Horses, rats, and mice were trained on a spatial Go/No-go task where animals could initiate each trial. The location of an open goal-box, at either end of a row of five goal-boxes, signalled either reward (positive trial) or non-reward (negative trial). Animals first learned to approach the goal-box in positive trials (Go) and to re-initiate/not approach in negative trials (No-go). Animals were then tested for responses to ambiguous trials where goal-boxes at intermediate locations were opened. The Go:No-go response ratio was used as a measure of judgement bias. Most animals quickly learned the Go/No-go discrimination and performed trials at a high rate compared to previous studies. Subjects of all species reliably discriminated between reference cues and ambiguous cues, demonstrating a monotonic graded response across the different cue locations, with no evidence of learning about the outcome of ambiguous trials. This novel test protocol is an important step towards a practical task for comparative studies on judgement biases in animals.
Collapse
Affiliation(s)
- Sara Hintze
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland. .,Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Strasse 33, 1180, Vienna, Austria.
| | - Luca Melotti
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland.,RG Behavioural Biology & Animal Welfare, Division of Behavioural Biology, University of Münster, Badestrasse 13, 48149, Münster, Germany
| | - Simona Colosio
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Jeremy D Bailoo
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Maria Boada-Saña
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Eimear Murphy
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| |
Collapse
|
22
|
de Haas EN, Lee C, Rodenburg TB. Learning and Judgment Can Be Affected by Predisposed Fearfulness in Laying Hens. Front Vet Sci 2017; 4:113. [PMID: 28798918 PMCID: PMC5530324 DOI: 10.3389/fvets.2017.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
High fearfulness could disrupt learning and likely affects judgment in animals, especially when it is part of an animals’ personality, i.e., trait anxiety. Here, we tested whether high fearfulness affects discrimination learning and judgment bias (JB) in laying hens. Based on the response to an open field at 5 weeks of age, birds were categorized as fearful (FC) by showing no walking or vocalizing or non-fearful (NFC) by showing walking and vocalizing. At adult age, birds (n = 24) were trained in a go–go task to discriminate two cues (white or black) with a small or large reward. Birds that reached training criteria were exposed to three unrewarded ambiguous cues (25, 50, and 75% black) to assess JB. Task acquisition took longer for FC birds than for NFC birds, due to a left side bias, and more sessions were needed to unlearn this side bias. Changes in trial setup increased response latencies for FC birds but not for NFC birds. A larger number of FC birds than NFC birds chose optimistically in the last ambiguous trial (25% black). FC birds had a longer latency to choose in the ambiguous trial (75% black) compared to NFC birds. Prior choice in ambiguous trials and a preceding large or small trial affected latencies and choices for both types of birds. Our study showed that fearfulness was associated with differences in discrimination learning ability and JB. It appeared that FC birds used a rigid response strategy during early learning phases by choosing a specific side repeatedly irrespective of success. FC birds were more affected by changes in the setup of the trials in comparison to NFC birds. We speculate that FC birds are more sensitive to changes in environmental cues and reward expectancy. These factors could explain how high fearfulness affects learning.
Collapse
Affiliation(s)
- Elske N de Haas
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands.,Adaptation Physiology Group, Wageningen University, Wageningen, Netherlands
| | - Caroline Lee
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, Wageningen, Netherlands.,Adaptation Physiology Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
23
|
The ovine motor cortex: A review of functional mapping and cytoarchitecture. Neurosci Biobehav Rev 2017; 80:306-315. [PMID: 28595827 DOI: 10.1016/j.neubiorev.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/27/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
In recent years, sheep (Ovis aries) have emerged as a useful animal model for neurological research due to their relatively large brain and blood vessel size, their cortical architecture, and their docile temperament. However, the functional anatomy of sheep brain is not as well studied as that of non-human primates, rodents, and felines. For example, while the location of the sheep motor cortex has been known for many years, there have been few studies of the somatotopy of the motor cortex and there were a range of discrepancies across them. The motivation for this review is to provide a definitive resource for studies of the sheep motor cortex. This work critically reviews the literature examining the organization of the motor cortex in sheep, utilizing studies that have applied direct electrical stimulation and histological methods A clearer understanding of the sheep brain will facilitate and progress the use of this species as a scientific animal model for neurological research.
Collapse
|
24
|
Do horses with poor welfare show 'pessimistic' cognitive biases? Naturwissenschaften 2017; 104:8. [PMID: 28083632 DOI: 10.1007/s00114-016-1429-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
This field study tested the hypothesis that domestic horses living under putatively challenging-to-welfare conditions (for example involving social, spatial, feeding constraints) would present signs of poor welfare and co-occurring pessimistic judgement biases. Our subjects were 34 horses who had been housed for over 3 years in either restricted riding school situations (e.g. kept in single boxes, with limited roughage, ridden by inexperienced riders; N = 25) or under more naturalistic conditions (e.g. access to free-range, kept in stable social groups, leisure riding; N = 9). The horses' welfare was assessed by recording health-related, behavioural and postural indicators. Additionally, after learning a location task to discriminate a bucket containing either edible food ('positive' location) or unpalatable food ('negative' location), the horses were presented with a bucket located near the positive position, near the negative position and halfway between the positive and negative positions to assess their judgement biases. The riding school horses displayed the highest levels of behavioural and health-related problems and a pessimistic judgment bias, whereas the horses living under more naturalistic conditions displayed indications of good welfare and an optimistic bias. Moreover, pessimistic bias data strongly correlated with poor welfare data. This suggests that a lowered mood impacts a non-human species' perception of its environment and highlights cognitive biases as an appropriate tool to assess the impact of chronic living conditions on horse welfare.
Collapse
|
25
|
Papciak J, Rygula R. Measuring Cognitive Judgement Bias in Rats Using the Ambiguous-Cue Interpretation Test. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 78:9.57.1-9.57.22. [PMID: 28046201 DOI: 10.1002/cpns.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An active-choice, operant, ambiguous-cue interpretation (ACI) paradigm is described that can be used for measuring cognitive judgement bias in rats. In this behavioral test, animals in an operant conditioning chamber are trained to press a lever to receive a food reward when a specific tone is presented, and to press another lever in response to a different tone to avoid punishment by an electric foot-shock. The tones, which serve as discriminative stimuli, acquire a positive or negative valence, and the training continues until the rats demonstrate a stable, correct discrimination between these two stimuli. The animals are tested after they have attained stable discrimination performance. The ambiguous-cue test consists of a discrimination task, as described above, but includes the presentation of additional tones with frequencies that are intermediate between the trained positive and negative tones. The lever-press response pattern to these ambiguous cues is considered an indicator of the rat's expectation of a positive or negative event; in other words, it is a measure of 'optimism' or 'pessimism', respectively. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Justyna Papciak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Affective Cognitive Neuroscience Lab, Krakow, Poland
- Currently at School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Rafal Rygula
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioral Neuroscience and Drug Development, Affective Cognitive Neuroscience Lab, Krakow, Poland
| |
Collapse
|
26
|
Baciadonna L, Nawroth C, McElligott AG. Judgement bias in goats ( Capra hircus): investigating the effects of human grooming. PeerJ 2016; 4:e2485. [PMID: 27761311 PMCID: PMC5068416 DOI: 10.7717/peerj.2485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Animal emotional states can be investigated by evaluating their impact on cognitive processes. In this study, we used a judgement bias paradigm to determine if short-term positive human-animal interaction (grooming) induced a positive affective state in goats. We tested two groups of goats and trained them to discriminate between a rewarded and a non-rewarded location over nine training days. During training, the experimental group (n = 9) was gently groomed by brushing their heads and backs for five min over 11 days (nine training days, plus two testing days, total time 55 min). During training, the control group (n = 10) did not experience any direct interaction with the experimenter, but was kept unconstrained next to him for the same period of time. After successful completion of the training, the responses (latency time) of the two groups to reach ambiguous locations situated between the two reference locations (i.e., rewarded/non-rewarded) were compared over two days of testing. There was not a positive bias effect after the animals had been groomed. In a second experiment, 10 goats were tested to investigate whether grooming induced changes in physiological activation (i.e., heart rate and heart rate variability). Heart rate increased when goats were groomed compared to the baseline condition, when the same goats did not receive any contact with the experimenter. Also, subjects did not move away from the experimenter, suggesting that the grooming was positively accepted. The very good care and the regular positive contacts that goats received from humans at the study site could potentially account for the results obtained. Good husbandry outcomes are influenced by animals' perception of the events and this is based on current circumstances, past experiences and individual variables. Taking into account animals' individual characteristics and identifying effective strategies to induce positive emotions could increase the understanding and reliability of using cognitive biases paradigms to investigate and promote animal welfare.
Collapse
Affiliation(s)
- Luigi Baciadonna
- Queen Mary University of London, Biological and Experimental Psychology, School of Biological and Chemical Sciences , London , UK
| | - Christian Nawroth
- Queen Mary University of London, Biological and Experimental Psychology, School of Biological and Chemical Sciences , London , UK
| | - Alan G McElligott
- Queen Mary University of London, Biological and Experimental Psychology, School of Biological and Chemical Sciences , London , UK
| |
Collapse
|
27
|
Bethell EJ, Holmes A, MacLarnon A, Semple S. Emotion Evaluation and Response Slowing in a Non-Human Primate: New Directions for Cognitive Bias Measures of Animal Emotion? Behav Sci (Basel) 2016; 6:bs6010002. [PMID: 26761035 PMCID: PMC4810036 DOI: 10.3390/bs6010002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 11/16/2022] Open
Abstract
The cognitive bias model of animal welfare assessment is informed by studies with humans demonstrating that the interaction between emotion and cognition can be detected using laboratory tasks. A limitation of cognitive bias tasks is the amount of training required by animals prior to testing. A potential solution is to use biologically relevant stimuli that trigger innate emotional responses. Here; we develop a new method to assess emotion in rhesus macaques; informed by paradigms used with humans: emotional Stroop; visual cueing and; in particular; response slowing. In humans; performance on a simple cognitive task can become impaired when emotional distractor content is displayed. Importantly; responses become slower in anxious individuals in the presence of mild threat; a pattern not seen in non-anxious individuals; who are able to effectively process and disengage from the distractor. Here; we present a proof-of-concept study; demonstrating that rhesus macaques show slowing of responses in a simple touch-screen task when emotional content is introduced; but only when they had recently experienced a presumably stressful veterinary inspection. Our results indicate the presence of a subtle “cognitive freeze” response; the measurement of which may provide a means of identifying negative shifts in emotion in animals.
Collapse
Affiliation(s)
- Emily J Bethell
- Research Centre in Brain and Behaviour, School of Natural Sciences and Psychology, James Parsons Building, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Amanda Holmes
- Centre for Research in Cognition, Emotion and Interaction, University of Roehampton, London SW15 4JD, UK.
| | - Ann MacLarnon
- Centre for Research in Evolutionary, Social and Interdisciplinary Anthropology, University of Roehampton, London SW15 4JD, UK.
| | - Stuart Semple
- Centre for Research in Evolutionary, Social and Interdisciplinary Anthropology, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
28
|
Löckener S, Reese S, Erhard M, Wöhr AC. Pasturing in herds after housing in horseboxes induces a positive cognitive bias in horses. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2015.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Doyle RE, Lee C, McGill DM, Mendl M. Evaluating pharmacological models of high and low anxiety in sheep. PeerJ 2015; 3:e1510. [PMID: 26713255 PMCID: PMC4690367 DOI: 10.7717/peerj.1510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/25/2015] [Indexed: 11/20/2022] Open
Abstract
New tests of animal affect and welfare require validation in subjects experiencing putatively different states. Pharmacological manipulations of affective state are advantageous because they can be administered in a standardised fashion, and the duration of their action can be established and tailored to suit the length of a particular test. To this end, the current study aimed to evaluate a pharmacological model of high and low anxiety in an important agricultural and laboratory species, the sheep. Thirty-five 8-month-old female sheep received either an intramuscular injection of the putatively anxiogenic drug 1-(m-chlorophenyl)piperazine (mCPP; 1 mg/kg; n = 12), an intravenous injection of the putatively anxiolytic drug diazepam (0.1 mg/kg; n = 12), or acted as a control (saline intramuscular injection n = 11). Thirty minutes after the treatments, sheep were individually exposed to a variety of tests assessing their general movement, performance in a ‘runway task’ (moving down a raceway for a food reward), response to startle, and behaviour in isolation. A test to assess feeding motivation was performed 2 days later following administration of the drugs to the same animals in the same manner. The mCPP sheep had poorer performance in the two runway tasks (6.8 and 7.7 × slower respectively than control group; p < 0.001), a greater startle response (1.4 vs. 0.6; p = 0.02), a higher level of movement during isolation (9.1 steps vs. 5.4; p < 0.001), and a lower feeding motivation (1.8 × slower; p < 0.001) than the control group, all of which act as indicators of anxiety. These results show that mCPP is an effective pharmacological model of high anxiety in sheep. Comparatively, the sheep treated with diazepam did not display any differences compared to the control sheep. Thus we suggest that mCPP is an effective treatment to validate future tests aimed at assessing anxiety in sheep, and that future studies should include other subtle indicators of positive affective states, as well as dosage studies, so conclusions on the efficacy of diazepam as a model of low anxiety can be drawn.
Collapse
Affiliation(s)
- Rebecca E Doyle
- Animal Welfare Science Centre, Faculty of Veterinary and Animal Sciences, The University of Melbourne , Parkville , Australia ; Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University) , Wagga Wagga , Australia
| | | | - David M McGill
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University) , Wagga Wagga , Australia
| | - Michael Mendl
- School of Veterinary Science, University of Bristol , Langford , United Kingdom
| |
Collapse
|
30
|
Stockwell-Goering MG, Benavides EA, Keisler DH, Daniel JA. Impact of visual, olfactory, and auditory cues on circulating concentrations of ghrelin in wethers. J Anim Sci 2015; 93:3886-90. [PMID: 26440168 DOI: 10.2527/jas.2015-9026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ghrelin is a hormone that stimulates feed intake and regulates energy homeostasis. A link has been observed in sheep, in which simulated feedings at scheduled meal times resulted in an increase in ghrelin concentrations. The present study sought to characterize the effect of feeding cues outside of scheduled meal times on circulating ghrelin concentrations in sheep. Katahdin wethers (age 201 ± 4.9 d; weight 35 ± 1.2 kg) were not offered feed (CONT; = 5), offered 275 g of feed (FED; = 5), or fitted with a muzzle and offered 275 g of feed (SHAM; = 5) during the sampling period, which began 2.5 h after normally scheduled daily feeding time. Blood samples were collected via jugular catheter every 15 min for 2.5 h. Feed was offered for 15 min 0.5 h after the start of blood sampling. The CONT samples were collected on d 1, and FED and SHAM samples were collected on d 2. The active ghrelin present in the plasma was then analyzed by RIA. After the Shapiro-Wilk W goodness of fit test demonstrated that 1 SHAM wether was an outlier and it was removed, data were tested for effect of treatment (FED, SHAM, or CONT), time, and treatment × time interaction using procedures for repeated measures with JMP Software (SAS Inst. Inc., Cary, NC). There was no treatment or time effect ( > 0.05); however, there was a treatment × time interaction on plasma ghrelin concentrations ( = 0.0028) such that ghrelin concentrations in SHAM wethers were greater than in CONT wethers 15, 60, and 90 min after feeding, whereas ghrelin concentrations in SHAM wethers were greater than those in FED wethers 30, 60, 90, and 120 min after feeding ( < 0.05). Within the SHAM treatment, ghrelin concentrations were greater at 15 min than at -30 min. Moreover, ghrelin concentrations within the FED treatment were greater at -30 min than at 30, 45, 60, 90, 105, and 120 min and at -15 min than at 15 through 120 min. The area under the curve representing circulating concentrations of ghrelin in CONT, FED, and SHAM treatments, determined using the trapezoidal method, yielded a treatment effect with a tendency toward significance ( = 0.0866). These results indicate plasma ghrelin concentrations in scheduled meal-fed wethers are elevated following visual, olfactory, and auditory feeding cues outside of scheduled feeding times.
Collapse
|
31
|
Bethell EJ. A “How-To” Guide for Designing Judgment Bias Studies to Assess Captive Animal Welfare. J APPL ANIM WELF SCI 2015; 18 Suppl 1:S18-42. [DOI: 10.1080/10888705.2015.1075833] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Bethell EJ, Koyama NF. Happy hamsters? Enrichment induces positive judgement bias for mildly (but not truly) ambiguous cues to reward and punishment in Mesocricetus auratus. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140399. [PMID: 26587255 PMCID: PMC4632568 DOI: 10.1098/rsos.140399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/03/2015] [Indexed: 05/07/2023]
Abstract
Recent developments in the study of animal cognition and emotion have resulted in the 'judgement bias' model of animal welfare. Judgement biases describe the way in which changes in affective state are characterized by changes in information processing. In humans, anxiety and depression are characterized by increased expectation of negative events and negative interpretation of ambiguous information. Positive wellbeing is associated with enhanced expectation of positive outcomes and more positive interpretation of ambiguous information. Mood-congruent judgement biases for ambiguous information have been demonstrated in a range of animal species, with large variation in the way tests are administered and in the robustness of analyses. We highlight and address some issues using a laboratory species not previously tested: the Syrian hamster (Mesocricetus auratus). Hamsters were tested using a spatial judgement go/no-go task in enriched and unenriched housing. We included a number of controls and additional behavioural tests and applied a robust analytical approach using linear mixed effects models. Hamsters approached the ambiguous cues significantly more often when enriched than unenriched. There was no effect of enrichment on responses to the middle cue. We discuss these findings in light of mechanisms underlying processing cues to reward, punishment and true ambiguity, and the implications for the welfare of laboratory hamsters.
Collapse
Affiliation(s)
- Emily J. Bethell
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | | |
Collapse
|
33
|
Acute stress enhances sensitivity to a highly attractive food reward without affecting judgement bias in laying hens. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2014.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep. Brain Cogn 2014; 93:35-41. [PMID: 25506630 DOI: 10.1016/j.bandc.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/23/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
Animal welfare concerns have raised an interest in animal affective states. These states also play an important role in the proximate control of behaviour. Due to their potential to modulate short-term emotional reactions, one specific focus is on long-term affective states, that is, mood. These states can be assessed by using non-verbal cognitive judgement bias paradigms. Here, we conducted a spatial variant of such a test on 24 focal animals that were kept under either unpredictable, stimulus-poor or predictable, stimulus-rich housing conditions to induce differential mood states. Based on functional near-infrared spectroscopy, we measured haemodynamic frontal brain reactions during 10 s in which the sheep could observe the configuration of the cognitive judgement bias trial before indicating their assessment based on the go/no-go reaction. We used (generalised) mixed-effects models to evaluate the data. Sheep from the unpredictable, stimulus-poor housing conditions took longer and were less likely to reach the learning criterion and reacted slightly more optimistically in the cognitive judgement bias test than sheep from the predictable, stimulus-rich housing conditions. A frontal cortical increase in deoxy-haemoglobin [HHb] and a decrease in oxy-haemoglobin [O2Hb] were observed during the visual assessment of the test situation by the sheep, indicating a frontal cortical brain deactivation. This deactivation was more pronounced with the negativity of the test situation, which was reflected by the provenance of the sheep from the unpredictable, stimulus-poor housing conditions, the proximity of the cue to the negatively reinforced cue location, or the absence of a go reaction in the trial. It seems that (1) sheep from the unpredictable, stimulus-poor in comparison to sheep from the predictable, stimulus-rich housing conditions dealt less easily with the test conditions rich in stimuli, that (2) long-term housing conditions seemingly did not influence mood--which may be related to the difficulty of tracking a constant long-term state in the brain--and that (3) visual assessment of an emotional stimulus leads to frontal brain deactivation in sheep, specifically if that stimulus is negative.
Collapse
|
35
|
Scientific Opinion on the welfare risks related to the farming of sheep for wool, meat and milk production. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
|
37
|
Hales CA, Stuart SA, Anderson MH, Robinson ESJ. Modelling cognitive affective biases in major depressive disorder using rodents. Br J Pharmacol 2014; 171:4524-38. [PMID: 24467454 PMCID: PMC4199314 DOI: 10.1111/bph.12603] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/18/2014] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) affects more than 10% of the population, although our understanding of the underlying aetiology of the disease and how antidepressant drugs act to remediate symptoms is limited. Major obstacles include the lack of availability of good animal models that replicate aspects of the phenotype and tests to assay depression-like behaviour in non-human species. To date, research in rodents has been dominated by two types of assays designed to test for depression-like behaviour: behavioural despair tests, such as the forced swim test, and measures of anhedonia, such as the sucrose preference test. These tests have shown relatively good predictive validity in terms of antidepressant efficacy, but have limited translational validity. Recent developments in clinical research have revealed that cognitive affective biases (CABs) are a key feature of MDD. Through the development of neuropsychological tests to provide objective measures of CAB in humans, we have the opportunity to use ‘reverse translation’ to develop and evaluate whether similar methods are suitable for research into MDD using animals. The first example of this approach was reported in 2004 where rodents in a putative negative affective state were shown to exhibit pessimistic choices in a judgement bias task. Subsequent work in both judgement bias tests and a novel affective bias task suggest that these types of assay may provide translational methods for studying MDD using animals. This review considers recent work in this area and the pharmacological and translational validity of these new animal models of CABs.
Collapse
Affiliation(s)
- Claire A Hales
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
| | | | | | | |
Collapse
|
38
|
Verbeek E, Ferguson D, Quinquet de Monjour P, Lee C. Generating positive affective states in sheep: The influence of food rewards and opioid administration. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|