1
|
Magno LAV, Pinto SHDB, Pacheco A, Rosa DVF, Gubert P, Romano-Silva MA. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Toxicol Res (Camb) 2024; 13:tfae187. [PMID: 39555232 PMCID: PMC11567717 DOI: 10.1093/toxres/tfae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Although dysfunctional Ca2+ signaling can trigger biochemical reactions that lead to cell death, the role of calcium-binding proteins (CBPs) in this process is still a topic of debate. Neuronal calcium sensor 1 (NCS-1) is a CBP that is highly conserved and has been shown to increase cell survival against various types of injuries. As such, we hypothesized that NCS-1 could also be a stress-responsive protein with potential effects on survival and longevity. To explore this possibility, we conducted experiments to examine how Caenorhabditis elegans ncs-1 mutant nematodes fared under three different stress conditions: hyperosmotic, thermal, and chemical oxidant challenges. Our results showed that while the lack of NCS-1 had no effect on survival responses to hyperosmotic and thermal stresses, ncs-1 worms demonstrated remarkable resistance to the oxidant paraquat in a dose-dependent manner. Based on these findings, we conclude that C. elegans may employ adaptive mechanisms in the absence of NCS-1 to survive specific oxidative stress stimuli.
Collapse
Affiliation(s)
- Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Alameda Ezequiel Dias, N° 275, Centro, 30130-110 Belo Horizonte, Minas Gerais, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Sofia Helena Dias Borges Pinto
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ailla Pacheco
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Alameda Ezequiel Dias, N° 275, Centro, 30130-110 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Valadão Freitas Rosa
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Priscila Gubert
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Marco Aurélio Romano-Silva
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Avenida Alfredo Balena N° 190, Santa Efigênia, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
3
|
Varlamova EG, Plotnikov EY, Turovsky EA. Neuronal Calcium Sensor-1 Protects Cortical Neurons from Hyperexcitation and Ca 2+ Overload during Ischemia by Protecting the Population of GABAergic Neurons. Int J Mol Sci 2022; 23:ijms232415675. [PMID: 36555318 PMCID: PMC9778989 DOI: 10.3390/ijms232415675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| |
Collapse
|
4
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Comprehensive somatosensory and neurological phenotyping of NCS1 knockout mice. Sci Rep 2021; 11:2372. [PMID: 33504822 PMCID: PMC7840744 DOI: 10.1038/s41598-021-81650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neuronal calcium sensor 1 (NCS1) regulates a wide range of cellular functions throughout the mammalian nervous systems. Altered NCS1 expression is associated with neurodevelopmental and neurodegenerative diseases. Previous studies focused on affective and cognitive behaviors in NCS1 knockout (KO) mice, but little is known about the physiological and pathological states associated with the loss of NCS1 in the peripheral nervous system. We previously reported that NCS1 expression was reduced following paclitaxel-induced peripheral neuropathy. Here, we comprehensively investigated the phenotypes of NCS1-KO mice through a battery of behavioral tests examining both central and peripheral nervous systems. Generally, only mild differences were observed in thermal sensation and memory acquisition between NCS1-WT and -KO male mice, but not in female mice. No differences were observed in motor performance, affective behaviors, and hearing in both sexes. These results suggest that NCS1 plays a modulatory role in sensory perceptions and cognition, particularly in male mice. NCS1 has been proposed as a pharmacological target for various diseases. Therefore, the sex-specific effects of NCS1 loss may be of clinical interest. As we examined a constitutive KO model, future studies focusing on various conditional KO models will further elucidate the precise physiological significance of NCS1.
Collapse
|
6
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
7
|
Vieira G, Cavalli J, Gonçalves ECD, Braga SFP, Ferreira RS, Santos ARS, Cola M, Raposo NRB, Capasso R, Dutra RC. Antidepressant-Like Effect of Terpineol in an Inflammatory Model of Depression: Involvement of the Cannabinoid System and D2 Dopamine Receptor. Biomolecules 2020; 10:E792. [PMID: 32443870 PMCID: PMC7280984 DOI: 10.3390/biom10050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
Depression has a multifactorial etiology that arises from environmental, psychological, genetic, and biological factors. Environmental stress and genetic factors acting through immunological and endocrine responses generate structural and functional changes in the brain, inducing neurogenesis and neurotransmission dysfunction. Terpineol, monoterpenoid alcohol, has shown immunomodulatory and neuroprotective effects, but there is no report about its antidepressant potential. Herein, we used a single lipopolysaccharide (LPS) injection to induce a depressive-like effect in the tail suspension test (TST) and the splash test (ST) for a preventive and therapeutic experimental schedule. Furthermore, we investigated the antidepressant-like mechanism of action of terpineol while using molecular and pharmacological approaches. Terpineol showed a coherent predicted binding mode mainly against CB1 and CB2 receptors and also against the D2 receptor during docking modeling analyses. The acute administration of terpineol produced the antidepressant-like effect, since it significantly reduced the immobility time in TST (100-200 mg/kg, p.o.) as compared to the control group. Moreover, terpineol showed an antidepressant-like effect in the preventive treatment that was blocked by a nonselective dopaminergic receptor antagonist (haloperidol), a selective dopamine D2 receptor antagonist (sulpiride), a selective CB1 cannabinoid receptor antagonist/inverse agonist (AM281), and a potent and selective CB2 cannabinoid receptor inverse agonist (AM630), but it was not blocked by a nonselective adenosine receptor antagonist (caffeine) or a β-adrenoceptor antagonist (propranolol). In summary, molecular docking suggests that CB1 and CB2 receptors are the most promising targets of terpineol action. Our data showed terpineol antidepressant-like modulation by CB1 and CB2 cannabinoid receptors and D2-dopaminergic receptors to further corroborate our molecular evidence.
Collapse
Affiliation(s)
- Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Saulo F. P. Braga
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.F.P.B.); (R.S.F.)
| | - Rafaela S. Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.F.P.B.); (R.S.F.)
| | - Adair R. S. Santos
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Nádia R. B. Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de For a 36036-330, Brazil;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Endocannabinoid Research Group, 80078 Naples, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| |
Collapse
|
8
|
Magno LAV, Tenza-Ferrer H, Collodetti M, Nicolau EDS, Khlghatyan J, Del'Guidice T, Romano-Silva MA, Beaulieu JM. Contribution of neuronal calcium sensor 1 (Ncs-1) to anxiolytic-like and social behavior mediated by valproate and Gsk3 inhibition. Sci Rep 2020; 10:4566. [PMID: 32165725 PMCID: PMC7067888 DOI: 10.1038/s41598-020-61248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral biomarker and post-mortem brains studies have shown alterations of neuronal calcium sensor 1 (Ncs-1) expression in people with bipolar disorder or schizophrenia. However, its engagement by psychiatric medications and potential contribution to behavioral regulation remains elusive. We investigated the effect on Ncs-1 expression of valproic acid (VPA), a mood stabilizer used for the management of bipolar disorder. Treatment with VPA induced Ncs-1 gene expression in cell line while chronic administration of this drug to mice increased both Ncs-1 protein and mRNA levels in the mouse frontal cortex. Inhibition of histone deacetylases (HDACs), a known biochemical effect of VPA, did not alter the expression of Ncs-1. In contrast, pharmacological inhibition or genetic downregulation of glycogen synthase kinase 3β (Gsk3β) increased Ncs-1 expression, whereas overexpression of a constitutively active Gsk3β had the opposite effect. Moreover, adeno-associated virus-mediated Ncs-1 overexpression in mouse frontal cortex caused responses similar to those elicited by VPA or lithium in tests evaluating social and mood-related behaviors. These findings indicate that VPA increases frontal cortex Ncs-1 gene expression as a result of Gsk3 inhibition. Furthermore, behavioral changes induced by Ncs-1 overexpression support a contribution of this mechanism in the regulation of behavior by VPA and potentially other psychoactive medications inhibiting Gsk3 activity.
Collapse
Affiliation(s)
- Luiz Alexandre Viana Magno
- Centro de Tecnologia em Medicina Molecular, Belo Horizonte, Brazil.,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, CEP, 30130-100, Brazil.,Department of Psychiatry and Neuroscience, Laval University, Québec, Canada
| | - Helia Tenza-Ferrer
- Centro de Tecnologia em Medicina Molecular, Belo Horizonte, Brazil.,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, CEP, 30130-100, Brazil
| | - Mélcar Collodetti
- Centro de Tecnologia em Medicina Molecular, Belo Horizonte, Brazil.,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, CEP, 30130-100, Brazil
| | - Eduardo de Souza Nicolau
- Centro de Tecnologia em Medicina Molecular, Belo Horizonte, Brazil.,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, CEP, 30130-100, Brazil
| | - Jivan Khlghatyan
- Department of Psychiatry and Neuroscience, Laval University, Québec, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Thomas Del'Guidice
- Department of Psychiatry and Neuroscience, Laval University, Québec, Canada.,Feldan Therapeutics, Québec City, Canada
| | - Marco Aurélio Romano-Silva
- Centro de Tecnologia em Medicina Molecular, Belo Horizonte, Brazil. .,Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, CEP, 30130-100, Brazil.
| | - Jean Martin Beaulieu
- Department of Psychiatry and Neuroscience, Laval University, Québec, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Ng E, Georgiou J, Avila A, Trought K, Mun HS, Hodgson M, Servinis P, Roder JC, Collingridge GL, Wong AHC. Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behav Brain Res 2019; 381:112420. [PMID: 31821787 DOI: 10.1016/j.bbr.2019.112420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
Neuronal calcium sensor-1 or Frequenin is a calcium sensor widely expressed in the nervous system, with roles in neurotransmission, neurite outgrowth, synaptic plasticity, learning, and motivated behaviours. Neuronal calcium sensor-1 has been implicated in neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and bipolar disorder. However, the role of neuronal calcium sensor-1 in behavioural phenotypes and brain changes relevant to autism spectrum disorder have not been evaluated. We show that neuronal calcium sensor-1 deletion in the mouse leads to a mild deficit in social approach and impaired displaced object recognition without affecting social interactions, behavioural flexibility, spatial reference memory, anxiety-like behaviour, or sensorimotor gating. Morphologically, neuronal calcium sensor-1 deletion leads to increased dendritic arbour complexity in the frontal cortex. At the level of hippocampal synaptic plasticity, neuronal calcium sensor-1 deletion leads to a reduction in long-term potentiation in the dentate gyrus, but not area Cornu Ammonis 1. Metabotropic glutamate receptor-induced long-term depression was unaffected in both dentate and Cornu Ammonis 1. These studies identify roles for neuronal calcium sensor-1 in specific subregions of the brain including a phenotype relevant to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Enoch Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ariel Avila
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Basic Science Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, 4090541, Chile
| | - Kathleen Trought
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Meggie Hodgson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Panayiotis Servinis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Albert H C Wong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
10
|
Simons C, Benkert J, Deuter N, Poetschke C, Pongs O, Schneider T, Duda J, Liss B. NCS-1 Deficiency Affects mRNA Levels of Genes Involved in Regulation of ATP Synthesis and Mitochondrial Stress in Highly Vulnerable Substantia nigra Dopaminergic Neurons. Front Mol Neurosci 2019; 12:252. [PMID: 31827421 PMCID: PMC6890851 DOI: 10.3389/fnmol.2019.00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Neuronal Ca2+ sensor proteins (NCS) transduce changes in Ca2+ homeostasis into altered signaling and neuronal function. NCS-1 activity has emerged as important for neuronal viability and pathophysiology. The progressive degeneration of dopaminergic (DA) neurons, particularly within the Substantia nigra (SN), is the hallmark of Parkinson's disease (PD), causing its motor symptoms. The activity-related Ca2+ homeostasis of SN DA neurons, mitochondrial dysfunction, and metabolic stress promote neurodegeneration and PD. In contrast, NCS-1 in general has neuroprotective effects. The underlying mechanisms are unclear. We analyzed transcriptional changes in SN DA neurons upon NCS-1 loss by combining UV-laser microdissection and RT-qPCR-approaches to compare expression levels of a panel of PD and/or Ca2+-stress related genes from wildtype and NCS-1 KO mice. In NCS-1 KO, we detected significantly lower mRNA levels of mitochondrially coded ND1, a subunit of the respiratory chain, and of the neuron-specific enolase ENO2, a glycolytic enzyme. We also detected lower levels of the mitochondrial uncoupling proteins UCP4 and UCP5, the PARK7 gene product DJ-1, and the voltage-gated Ca2+ channel Cav2.3 in SN DA neurons from NCS-1 KO. Transcripts of other analyzed uncoupling proteins (UCPs), mitochondrial Ca2+ transporters, PARK genes, and ion channels were not altered. As Cav channels are linked to regulation of gene expression, metabolic stress and degeneration of SN DA neurons in PD, we analyzed Cav2.3 KO mice, to address if the transcriptional changes in NCS-1 KO were also present in Cav.2.3 KO, and thus probably correlated with lower Cav2.3 transcripts. However, in SN DA neurons from Cav2.3 KO mice, ND1 mRNA as well as genomic DNA levels were elevated, while ENO2, UCP4, UCP5, and DJ-1 transcript levels were not altered. In conclusion, our data indicate a possible novel function of NCS-1 in regulating gene transcription or stabilization of mRNAs in SN DA neurons. Although we do not provide functional data, our findings at the transcript level could point to impaired ATP production (lower ND1 and ENO2) and elevated metabolic stress (lower UCP4, UCP5, and DJ-1 levels) in SN DA neurons from NCS-1 KO mice. We speculate that NCS-1 is involved in stimulating ATP synthesis, while at the same time controlling mitochondrial metabolic stress, and in this way could protect SN DA neurons from degeneration.
Collapse
Affiliation(s)
- Carsten Simons
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Nora Deuter
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Olaf Pongs
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, University of the Saarland, Homburg, Germany
| | - Toni Schneider
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Ratai O, Hermainski J, Ravichandran K, Pongs O. NCS-1 Deficiency Is Associated With Obesity and Diabetes Type 2 in Mice. Front Mol Neurosci 2019; 12:78. [PMID: 31001084 PMCID: PMC6456702 DOI: 10.3389/fnmol.2019.00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) knockout (KO) in mice (NCS-1−/− mice) evokes behavioral phenotypes ranging from learning deficits to avolition and depressive-like behaviors. Here, we showed that with the onset of adulthood NCS-1−/− mice gain considerable weight. Adult NCS-1−/− mice are obese, especially when fed a high-fat diet (HFD), are hyperglycemic and hyperinsulinemic and thus develop a diabetes type 2 phenotype. In comparison to wild type (WT) NCS-1−/− mice display a significant increase in adipose tissue mass. NCS-1−/− adipocytes produce insufficient serum concentrations of resistin and adiponectin. In contrast to WT littermates, adipocytes of NCS-1−/− mice are incapable of up-regulating insulin receptor (IR) concentration in response to HFD. Thus, HFD-fed NCS-1−/− mice exhibit in comparison to WT littermates a significantly reduced IR expression, which may explain the pronounced insulin resistance observed especially with HFD-fed NCS-1−/− mice. We observed a direct correlation between NCS-1 and IR concentrations in the adipocyte membrane and that NCS-1 can be co-immunoprecipitated with IR indicating a direct interplay between NCS-1 and IR. We propose that NCS-1 plays an important role in adipocyte function and that NCS-1 deficiency gives rise to obesity and diabetes type 2 in adult mice. Given the association of altered NCS-1 expression with behaviorial abnormalities, NCS-1−/− mice may offer an interesting perspective for studying in a mouse model a potential genetic link between some psychiatric disorders and the risk of being obese.
Collapse
Affiliation(s)
- Olga Ratai
- Center for Integrative Physiology and Molecular Medicine (CIPPM), Institute for Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Joanna Hermainski
- Center for Integrative Physiology and Molecular Medicine (CIPPM), Institute for Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Keerthana Ravichandran
- Center for Integrative Physiology and Molecular Medicine (CIPPM), Institute for Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| | - Olaf Pongs
- Center for Integrative Physiology and Molecular Medicine (CIPPM), Institute for Cellular Neurophysiology, University of the Saarland, Homburg, Germany
| |
Collapse
|
13
|
Bandura J, Feng ZP. Current Understanding of the Role of Neuronal Calcium Sensor 1 in Neurological Disorders. Mol Neurobiol 2019; 56:6080-6094. [PMID: 30719643 DOI: 10.1007/s12035-019-1497-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Neuronal calcium sensor 1 (NCS-1) is a high-affinity calcium-binding protein and its ubiquitous expression in the nervous system implies a wide range of functions. To date, it has been implicated in regulation of calcium channels in both axonal growth cones and presynaptic terminals, pre- and postsynaptic plasticity mechanisms, learning and memory behaviors, dopaminergic signaling, and axonal regeneration. This review summarizes these functions and relates them to several diseases in which NCS-1 plays a role, such as schizophrenia and bipolar disorder, X-linked mental retardation and fragile X syndrome, and spinal cord injury. Many questions remain unanswered about the role of NCS-1 in these diseases, particularly as the genetic factors that control NCS-1 expression in both normal and diseased states are still poorly understood. The review further identifies the therapeutic potential of manipulating the interaction of NCS-1 with its many targets and suggests directions for future research on the role of NCS-1 in these disorders.
Collapse
Affiliation(s)
- Julia Bandura
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Naderi R, Esmaeili-Mahani S, Abbasnejad M. Extracellular calcium influx through L-type calcium channels, intracellular calcium currents and extracellular signal-regulated kinase signaling are involved in the abscisic acid-induced precognitive and anti-anxiety effects. Biomed Pharmacother 2019; 109:582-588. [DOI: 10.1016/j.biopha.2018.10.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022] Open
|
15
|
Park SM, Plachez C, Huang S. Sex-Dependent Motor Deficit and Increased Anxiety-Like States in Mice Lacking Autism-Associated Gene Slit3. Front Behav Neurosci 2018; 12:261. [PMID: 30483073 PMCID: PMC6243047 DOI: 10.3389/fnbeh.2018.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Altered neuronal connectivity has been implicated in the pathophysiology of Autism Spectrum Disorder (ASD). SLIT/ROBO signaling plays an important role in developmental processes of neuronal connectivity, including axon guidance, neuronal migration, and axonal and dendritic branching. Genetic evidence supports that SLIT3, one of the genes encoding SLITs, is associated with ASD. Yet the causal link between SLIT3 mutation and autism symptoms has not been examined. Here we assessed ASD-associated behaviors in Slit3 knockout (KO) mice. Our data showed that Slit3-KO mice exhibited reduced marble burying behaviors but normal social behaviors. In addition, Slit3-KO mice displayed hypolocomotion in the open field test and impaired motor coordination in the rotarod test. Anxiety-like behaviors were mainly observed in female KO mice assessed by three types of behavioral tests, namely, the open field test, elevated plus maze test, and light/dark box test. No differences were observed between KO and wildtype mice in recognition memory in the novel object recognition test or depression-like behavior in the tail suspension test. Taken together, loss of Slit3 may result in disrupted neural circuits related to motor function and increased anxiety-like states, which are co-occurring symptoms in ASD.
Collapse
Affiliation(s)
- Su Mi Park
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Céline Plachez
- Autism & Brain Development Laboratory, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Shiyong Huang
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
16
|
Angebault C, Fauconnier J, Patergnani S, Rieusset J, Danese A, Affortit CA, Jagodzinska J, Mégy C, Quiles M, Cazevieille C, Korchagina J, Bonnet-Wersinger D, Milea D, Hamel C, Pinton P, Thiry M, Lacampagne A, Delprat B, Delettre C. ER-mitochondria cross-talk is regulated by the Ca 2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci Signal 2018; 11:11/553/eaaq1380. [PMID: 30352948 DOI: 10.1126/scisignal.aaq1380] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Communication between the endoplasmic reticulum (ER) and mitochondria plays a pivotal role in Ca2+ signaling, energy metabolism, and cell survival. Dysfunction in this cross-talk leads to metabolic and neurodegenerative diseases. Wolfram syndrome is a fatal neurodegenerative disease caused by mutations in the ER-resident protein WFS1. Here, we showed that WFS1 formed a complex with neuronal calcium sensor 1 (NCS1) and inositol 1,4,5-trisphosphate receptor (IP3R) to promote Ca2+ transfer between the ER and mitochondria. In addition, we found that NCS1 abundance was reduced in WFS1-null patient fibroblasts, which showed reduced ER-mitochondria interactions and Ca2+ exchange. Moreover, in WFS1-deficient cells, NCS1 overexpression not only restored ER-mitochondria interactions and Ca2+ transfer but also rescued mitochondrial dysfunction. Our results describe a key role of NCS1 in ER-mitochondria cross-talk, uncover a pathogenic mechanism for Wolfram syndrome, and potentially reveal insights into the pathogenesis of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire Angebault
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Jennifer Rieusset
- INSERM U1060, UMR INRA 1397, CarMeN Laboratory, Lyon 1 University, F-69003 Lyon, France
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Corentin A Affortit
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Jolanta Jagodzinska
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Camille Mégy
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Mélanie Quiles
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Chantal Cazevieille
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Julia Korchagina
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Delphine Bonnet-Wersinger
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Dan Milea
- Department of Ophthalmology, Angers University Hospital, 43933 Angers, France.,Singapore Eye Research Institute, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore
| | - Christian Hamel
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,CHRU Montpellier, Centre of Reference for Genetic Sensory Diseases, CHU, Gui de Chauliac Hospital, 34090 Montpellier, France
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Bât. B36 (Tour 4) GIGA-Neurosciences, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liège 1, Belgium
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Benjamin Delprat
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France. .,MMDN, Univ. Montpellier, EPHE, INSERM U1198, F-34095 Montpellier, France
| | - Cécile Delettre
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
17
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
18
|
Nakamura TY, Nakao S, Nakajo Y, Takahashi JC, Wakabayashi S, Yanamoto H. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice. PLoS One 2017; 12:e0170829. [PMID: 28122057 PMCID: PMC5266288 DOI: 10.1371/journal.pone.0170829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.
Collapse
Affiliation(s)
- Tomoe Y. Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- * E-mail:
| | - Shu Nakao
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yukako Nakajo
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun C. Takahashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita, Osaka, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hiroji Yanamoto
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
19
|
Todd PAC, McCue HV, Haynes LP, Barclay JW, Burgoyne RD. Interaction of ARF-1.1 and neuronal calcium sensor-1 in the control of the temperature-dependency of locomotion in Caenorhabditis elegans. Sci Rep 2016; 6:30023. [PMID: 27435667 PMCID: PMC4951722 DOI: 10.1038/srep30023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis. In the absence of NCS-1, worms show delayed onset and a shorter duration of paralysis. This phenotype can be rescued by re-expression of ncs-1 in AIY neurons. Mutants with defects in four potential NCS-1 targets (arf-1.1, pifk-1, trp-1 and trp-2) showed qualitatively similar phenotypes to ncs-1 null worms, although the effect of pifk-1 mutation on time to paralysis was considerably delayed. Inhibition of pifk-1 also resulted in a locomotion phenotype. Analysis of double mutants showed no additive effects between mutations in ncs-1 and trp-1 or trp-2. In contrast, double mutants of arf-1.1 and ncs-1 had an intermediate phenotype, consistent with NCS-1 and ARF-1.1 acting in the same pathway. Over-expression of arf-1.1 in the AIY neurons was sufficient to rescue partially the phenotype of both the arf-1.1 and the ncs-1 null worms. These findings suggest that ARF-1.1 interacts with NCS-1 in AIY neurons and potentially pifk-1 in the Ca(2+) signaling pathway that leads to inhibited locomotion at an elevated temperature.
Collapse
Affiliation(s)
- Paul A. C. Todd
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Hannah V. McCue
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Jeff W. Barclay
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
20
|
Mun HS, Saab BJ, Ng E, McGirr A, Lipina TV, Gondo Y, Georgiou J, Roder JC. Self-directed exploration provides a Ncs1-dependent learning bonus. Sci Rep 2015; 5:17697. [PMID: 26639399 PMCID: PMC4671055 DOI: 10.1038/srep17697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms of memory formation is fundamental to establishing optimal educational practices and restoring cognitive function in brain disease. Here, we show for the first time in a non-primate species, that spatial learning receives a special bonus from self-directed exploration. In contrast, when exploration is escape-oriented, or when the full repertoire of exploratory behaviors is reduced, no learning bonus occurs. These findings permitted the first molecular and cellular examinations into the coupling of exploration to learning. We found elevated expression of neuronal calcium sensor 1 (Ncs1) and dopamine type-2 receptors upon self-directed exploration, in concert with increased neuronal activity in the hippocampal dentate gyrus and area CA3, as well as the nucleus accumbens. We probed further into the learning bonus by developing a point mutant mouse (Ncs1P144S/P144S) harboring a destabilized NCS-1 protein, and found this line lacked the equivalent self-directed exploration learning bonus. Acute knock-down of Ncs1 in the hippocampus also decoupled exploration from efficient learning. These results are potentially relevant for augmenting learning and memory in health and disease, and provide the basis for further molecular and circuit analyses in this direction.
Collapse
Affiliation(s)
- Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Bechara J Saab
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Preclinical Laboratory for Translational Research into Affective Disorders, University of Zurich Hospital for Psychiatry, August-Forel-Str 7, CH-8008, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, CH-8057, Switzerland
| | - Enoch Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alexander McGirr
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada
| | - Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, 630117, Russia
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
21
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
22
|
Stathopoulos P, Alexopoulos H, Dalakas MC. Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders. Nat Rev Neurol 2015; 11:143-56. [DOI: 10.1038/nrneurol.2014.260] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Burgoyne RD, Haynes LP. Sense and specificity in neuronal calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1921-32. [PMID: 25447549 PMCID: PMC4728190 DOI: 10.1016/j.bbamcr.2014.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/02/2022]
Abstract
Changes in the intracellular free calcium concentration ([Ca²⁺]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²⁺ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²⁺ signal requires Ca²⁺binding to various Ca²⁺ sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²⁺ sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²⁺ sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²⁺ sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom.
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|