1
|
Nakhodkin SS, Barashkov NA, Kazantseva AV, Pshennikova VG, Nikanorova AA, Khusnutdinova EK, Fedorova SA. Associations of the AVPR1A RS1 Microsatellite Locus with the Level of Hormones of the Anterior Pituitary Gland and Personality Traits. Biochem Genet 2024:10.1007/s10528-024-10933-z. [PMID: 39340576 DOI: 10.1007/s10528-024-10933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The arginine vasopressin receptor gene (AVPR1A) is one of the genes affecting mental processes. The aim of this study was to search for associations of microsatellite locus RS1, which is related to the AVPR1A expression level, with the level of hormones of the anterior pituitary gland and personality traits. The study sample included Yakut men aged 18-26 years (n = 121). The analysis of RS1 locus was carried out using the PCR method and sequencing of the primary nucleotide sequence. Serum hormonal levels of thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH) and prolactin were determined by the time-resolved fluorescence immunoassay (DELFIA), plasma adrenocorticotropic hormone (ACTH) levels were determined by enzyme-linked immunosorbent assay (ELISA). In the Yakut population "short" (S) alleles of the AVPR1A RS1 locus containing ≤ 10 repeats (63%) and the corresponding SS genotypes (44.6%) were more frequent, while individuals with "long" (LL) and "heterozygous" (SL) genotypes accounted for 18.2 and 37.2%, respectively. The range of concentrations of ACTH and TSH in the group of SS genotype carriers was significantly lower than that observed in the group of LL genotype carriers (p = 0.042 and p = 0.048, respectively); the LH level was significantly higher (p = 0.029). The trend towards higher neuroticism in SS genotype carriers compared to the individuals with LL genotypes (p = 0.05) is revealed. The results obtained indicate the modulating effect of genetic variants of the AVPR1A gene on the level of anterior pituitary hormones, which could slightly affect the level of neuroticism in humans.
Collapse
Affiliation(s)
| | | | - Anastasiya V Kazantseva
- Institute of Biochemistry and Genetics, UFRC RAS, Ufa, Russia
- Ufa University of Science and Technology, Ufa, Russia
| | | | | | - Elza K Khusnutdinova
- M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
- Institute of Biochemistry and Genetics, UFRC RAS, Ufa, Russia
- Ufa University of Science and Technology, Ufa, Russia
| | - Sardana A Fedorova
- M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia.
- Yakut Science Center of Complex Medical Problems, Yakutsk, Russia.
| |
Collapse
|
2
|
Olsen CM, Glaeser BL, Szabo A, Raff H, Everson CA. The effects of sleep restriction during abstinence on oxycodone seeking: Sex-dependent moderating effects of behavioral and hypothalamic-pituitary-adrenal axis-related phenotypes. Physiol Behav 2023; 272:114372. [PMID: 37805135 PMCID: PMC10841994 DOI: 10.1016/j.physbeh.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
During opioid use and abstinence, sleep disturbances are common and are thought to exacerbate drug craving. In this study, we tested the hypothesis that sleep restriction during abstinence from oxycodone self-administration would increase drug seeking during extinction and footshock reinstatement tests. We also performed behavioral phenotyping to determine if individual variation in responses to stressors and/or pain are associated with oxycodone seeking during abstinence, as stress, pain and sleep disturbance are often co-occurring phenomena. Sleep restriction during abstinence did not have selective effects on oxycodone seeking for either sex in extinction and footshock reinstatement tests. Some phenotypes were associated with drug seeking; these associations differed by sex and type of drug seeking assessment. In female rats, pain-related phenotypes were related to high levels of drug seeking during the initial extinction session. In male rats, lower anxiety-like behavior in the open field was associated with greater drug seeking, although this effect was lost when correcting for oxycodone intake. Adrenal sensitivity prior to oxycodone exposure was positively associated with footshock reinstatement in females. This work identifies sex-dependent relationships between HPA axis function and opioid seeking, indicating that HPA axis function could be a therapeutic target for the treatment of opioid use disorder, with tailored approaches based on sex. Sleep disturbance during abstinence did not appear to be a major contributing factor to opioid seeking.
Collapse
Affiliation(s)
- Christopher M Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank, Milwaukee, WI 53226, USA.
| | - Breanna L Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Wheeler AR, Truckenbrod LM, Cooper EM, Betzhold SM, Setlow B, Orsini CA. Effects of fentanyl self-administration on risk-taking behavior in male rats. Psychopharmacology (Berl) 2023; 240:2529-2544. [PMID: 37612455 PMCID: PMC10878692 DOI: 10.1007/s00213-023-06447-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
RATIONALE Individuals with opioid use disorder (OUD) exhibit impaired decision making and elevated risk-taking behavior. In contrast to the effects of natural and semi-synthetic opioids, however, the impact of synthetic opioids on decision making is still unknown. OBJECTIVES The objective of the current study was to determine how chronic exposure to the synthetic opioid fentanyl alters risk-based decision making in adult male rats. METHODS Male rats underwent 14 days of intravenous fentanyl or oral sucrose self-administration. After 3 weeks of abstinence, rats were tested in a decision-making task in which they chose between a small, safe food reward and a large food reward accompanied by variable risk of footshock punishment. Following testing in the decision-making task, rats were tested in control assays that assessed willingness to work for food and shock reactivity. Lastly, rats were tested on a probabilistic reversal learning task to evaluate enduring effects of fentanyl on behavioral flexibility. RESULTS Relative to rats in the sucrose group, rats in the fentanyl group displayed greater choice of the large, risky reward (risk taking), an effect that was present as long as 7 weeks into abstinence. This increased risk taking was driven by enhanced sensitivity to the large rewards and diminished sensitivity to punishment. The fentanyl-induced elevation in risk taking was not accompanied by alterations in food motivation or shock reactivity or impairments in behavioral flexibility. CONCLUSIONS Results from the current study reveal that the synthetic opioid fentanyl leads to long-lasting increases in risk taking in male rats. Future experiments will extend this work to females and identify neural mechanisms that underlie these drug-induced changes in risk taking.
Collapse
Affiliation(s)
- Alexa-Rae Wheeler
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Matzeu A, Martin-Fardon R. Daily treatment with the dual orexin receptor antagonist DORA-12 during oxycodone abstinence decreases oxycodone conditioned reinstatement. Neuropharmacology 2023; 239:109685. [PMID: 37579870 PMCID: PMC10529002 DOI: 10.1016/j.neuropharm.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Chronic opioid use disturbs circadian rhythm and sleep, encouraging opioid use and relapse. The orexin (OX) system is recruited by opioids and regulates physiological processes including sleep. Dual OX receptor antagonists (DORAs), developed for insomnia treatment, may relieve withdrawal-associated sleep disturbances. This study investigated whether DORA-12, a recently developed DORA, reduces physiological activity disturbances during oxycodone abstinence and consequently prevents oxycodone-seeking behavior. Male and female Wistar rats were trained to intravenously self-administer oxycodone (0.15 mg/kg, 21 sessions; 8 h/session) in the presence of a contextual/discriminative stimulus (SD). The rats were subsequently housed individually (22 h/day) to monitor activity, food and water intake. They received DORA-12 (0-30 mg/kg, p.o.) after undergoing daily 1-h extinction training (14 days). After extinction, the rats were tested for oxycodone-seeking behavior elicited by the SD. Hypothalamus sections were processed to assess oxycodone- or DORA-12-associated changes to the OX cell number. In males, oxycodone-associated increases in activity during the light-phase, reinstatement, and decreases in the number of OX cells observed in the vehicle-treated group were not observed with DORA-12-treatment. Oxycodone-associated increases in light-phase food and water intake were not observed by day 14 of 3 mg/kg DORA-12-treatment and dark-phase water intake was increased across treatment days. In females, OX cell number was unaffected by oxycodone or DORA-12. Three and 30 mg/kg DORA-12 increased females' day 7 dark-phase activity and decreased reinstatement. Thirty mg/kg DORA-12 reduced oxycodone-associated increases in light-phase food and water intake. The results suggest that DORA-12 improves oxycodone-induced disruptions to physiological activities and reduces relapse.
Collapse
Affiliation(s)
- Jessica M Illenberger
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | | | - Glenn Pascasio
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Alessandra Matzeu
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
5
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
6
|
Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020; 131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND previous studies have suggested that methamphetamine (METH) abuse may affect orexin regulation. However, the data regarding the relationship between the current level of orexin and the vulnerability to METH abuse are minimal. Here, we have investigated the correlation between the gene expression level of the orexin-1 receptor (OX1R) in the rat prefrontal cortex (PFC) and blood lymphocytes and susceptibility to METH dependence and its impact on novelty-seeking behavior. METHODS male Wistar rats were first examined for novelty-seeking behavior by the novel object recognition test, and the expression level of OX1R in their blood lymphocytes was evaluated by real-time PCR. Then, the susceptibility to METH abuse was investigated by voluntary METH oral consumption test. According to the amounts of METH consumption, the animals were divided into two groups of METH preferring and non-preferring. Half of the rats in each group were sacrificed, and the level of OX1R in their blood lymphocytes and PFC tissue was measured. The other half were sacrificed for the same reason after two weeks of drug abstinence. RESULTS The indexes of novelty-seeking behavior were significantly higher in the METH- preferring group compared to the non-preferring animals. Furthermore, the expression level of OX1R in the blood lymphocytes and PFC in the preferring group was considerably higher than the non-preferring group. CONCLUSION Up-regulation of the mRNA expression level of OX1R in the lymphocytes and PFC may predict vulnerability to the METH consumption and novelty-seeking, which may serve as a potential biomarker for METH abuse.
Collapse
Affiliation(s)
- Mahnoosh Tavakkolifard
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Mahboubi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
7
|
Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020; 10:brainsci10040226. [PMID: 32290110 PMCID: PMC7225970 DOI: 10.3390/brainsci10040226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prescription opioids are potent analgesics that are used for clinical pain management. However, the nonmedical use of these medications has emerged as a major concern because of dramatic increases in abuse and overdose. Therefore, effective strategies to prevent prescription opioid use disorder are urgently needed. The orexin system has been implicated in the regulation of motivation, arousal, and stress, making this system a promising target for the treatment of substance use disorder. This review discusses recent preclinical studies that suggest that orexin receptor blockade could be beneficial for the treatment of prescription opioid use disorder.
Collapse
|
8
|
Tsou CC, Chou HW, Ho PS, Kuo SC, Chen CY, Huang CC, Liang CS, Lu RB, Huang SY. DRD2 and ANKK1 genes associate with late-onset heroin dependence in men. World J Biol Psychiatry 2019; 20:605-615. [PMID: 28854834 DOI: 10.1080/15622975.2017.1372630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objectives: Dopamine plays an important role in reward system of heroin dependence (HD), and dopaminergic D2 receptor (DRD2) gene is a candidate for the aetiology of HD. Ankyrin repeat and kinase domain containing 1 (ANKK1) gene is proximal to DRD2 and may influence its expression. We explored whether DRD2 and ANKK1 associate with occurrence of HD, and whether the genetic variants influence personality traits in male patients with HD.Methods:DRD2/ANKK1 polymorphisms were analysed in 950 unrelated Han Chinese male participants (601 HD patients and 349 healthy controls). All participants were screened using the same assessment tools and all patients met the diagnostic criteria of HD. Personality traits were assessed in 274 patients and 142 controls using the Tridimensional Personality Questionnaire.Results: According to the allele, genotype and haplotype frequency analysis, we observed an association between HD and several DRD2/ANKK1 polymorphisms (rs1800497, rs1800498, rs1079597 and rs4648319); this was most notable in the late-onset HD subgroup. However, these DRD2/ANKK1 polymorphisms did not associate with specific personality traits in HD patients and controls.Conclusions:DRD2/ANKK1 may play an important role in occurrence of late-onset HD, but does not mediate the relationship between personality traits and HD in Han Chinese male population.
Collapse
Affiliation(s)
- Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Han-Wei Chou
- Department of Psychiatry, Hsinchu Armed Force Hospital, Hsinchu, Taiwan, R.O.C
| | - Pei-Shen Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shin-Chang Kuo
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chun-Yen Chen
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chang-Chih Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Psychiatry, Buddhist Tzu Chi General Hospital, Taipei, Taiwan, R.O.C
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, R.O.C
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
9
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
10
|
Walker DM, Cates HM, Loh YHE, Purushothaman I, Ramakrishnan A, Cahill KM, Lardner CK, Godino A, Kronman HG, Rabkin J, Lorsch ZS, Mews P, Doyle MA, Feng J, Labonté B, Koo JW, Bagot RC, Logan RW, Seney ML, Calipari ES, Shen L, Nestler EJ. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biol Psychiatry 2018; 84:867-880. [PMID: 29861096 PMCID: PMC6202276 DOI: 10.1016/j.biopsych.2018.04.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD). METHODS We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context. RNA sequencing was conducted on six interconnected brain reward regions. Using pattern analysis of gene expression and factor analysis of behavior, we identified genes that are strongly associated with addiction-related behaviors and uniquely altered by a history of cocaine SA. We then identified potential upstream regulators of these genes. RESULTS We focused on three patterns of gene expression that reflect responses to 1) acute cocaine, 2) context re-exposure, and 3) drug + context re-exposure. These patterns revealed region-specific regulation of gene expression. Further analysis revealed that each of these gene expression patterns correlated with an addiction index-a composite score of several addiction-like behaviors during cocaine SA-in a region-specific manner. Cyclic adenosine monophosphate response element binding protein and nuclear receptor families were identified as key upstream regulators of genes associated with such behaviors. CONCLUSIONS This comprehensive picture of transcriptome-wide regulation in the brain's reward circuitry by cocaine SA and prolonged WD provides new insight into the molecular basis of cocaine addiction, which will guide future studies of the key molecular pathways involved.
Collapse
Affiliation(s)
- Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah M Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kelly M Cahill
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Casey K Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hope G Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacqui Rabkin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philipp Mews
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marie A Doyle
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan W Logan
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
11
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
12
|
Bates MLS, Hofford RS, Emery MA, Wellman PJ, Eitan S. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward. Drug Alcohol Depend 2018; 188:113-118. [PMID: 29772497 DOI: 10.1016/j.drugalcdep.2018.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The association with opioid-abusing individuals or even the perception of opioid abuse by peers are risk factors for the initiation and escalation of abuse. Similarly, we demonstrated that morphine-treated animals housed with only morphine-treated animals (referred to as morphine only) acquire morphine conditioned place-preference (CPP) more readily than morphine-treated animals housed with drug-naïve animals (referred to as morphine cage-mates). However, the molecular mechanisms underlying these effects are still elusive. METHODS Mice received repeated morphine or saline while housed as saline only, morphine only, or cage-mates. Then, they were examined for the expression levels of D1 dopamine receptor (D1DR), D2 dopamine receptor (D2DR), dopamine transporter (DAT), oxytocin, and Arginine-vasopressin (AVP) in the striatum using qPCR. Additionally, we examined the effects of the AVP-V1b receptor antagonist, SSR149415, on the acquisition of morphine conditioned place-preference (CPP). RESULTS Increased striatal expression of D1DR and AVP was observed in morphine only animals, but not morphine cage-mates. No significant effects were observed on the striatal expression of D2DR, DAT, or oxytocin. Antagonizing the AVP-V1b receptors decreased the acquisition of morphine CPP in the morphine only mice, but did not alter the acquisition of morphine CPP in the morphine cage-mate mice. CONCLUSIONS Housing with drug-naïve animals protects against the increase in striatal expression of D1DR and AVP elicited by morphine exposure. Moreover, our studies suggest that the protective effect of housing with drug-naïve animals on the acquisition of morphine reward might be, at least partially, mediated by AVP.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Rebeca S Hofford
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Michael A Emery
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paul J Wellman
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Tsai MC, Huang TL. Orexin A in men with heroin use disorder undergoing methadone maintenance treatment. Psychiatry Res 2018; 264:412-415. [PMID: 29680730 DOI: 10.1016/j.psychres.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Orexins have played a role in reward-seeking and addiction-related behavior. There are few reports in the literature on serum levels of orexins in patients with heroin use disorder (HUD) undergoing methadone maintenance treatment (MMT). The aim of this study was to investigate the serum levels of orexin A in HUD patients undergoing MMT. Fifty male HUD patients undergoing MMT and 25 healthy males were enrolled for this study. Serum orexin A were measured with assay kits. Using analysis of covariance (ANCOVA) with body mass index (BMI) adjustments, the serum levels of orexin A in HUD men undergoing MMT were found to be significantly higher than in healthy controls. In conclusion, our results suggest that MMT might increase orexin A levels in HUD patients.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
14
|
Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull 2017; 137:217-224. [PMID: 29258865 DOI: 10.1016/j.brainresbull.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
Orexin plays a key role in mediating stress-induced drug relapse. However, the role of different types of orexinergic receptors that modulate stress-induced drug seeking remains unknown. The nucleus accumbens (NAc) has an important role in the reward system and receives orexinergic projections of the lateral hypothalamus. In addition, orexin interacts with other receptors that are involved in drug reinstatement. Therefore, in the present study, the role of orexin receptors in the NAc in morphine priming- induced reinstatement and the effect of food deprivation (FD) on drug reinstatement were examined. The extinguished morphine preference rats were tested for reinstatement following the 24-h FD condition after conditioning was induced. In the other groups, the animals were given intra-accumbal administration of SB334867 (01, 1 and 10 nM/0.5 μl DMSO) as an orexin-1 receptor antagonist and TCSOX229 (1, 5 and 25 nM/0.5 μl DMSO), as an orexin-2 receptor antagonist. The results showed that the blockade of two types of orexin receptors in the NAc remarkably attenuated the effect of FD on the drug reinstatement; however, they were more effective in FD condition. These findings indicate that the NAc is a brain area within which orexin has a fundamental role in the effect of stress on morphine-induced reinstatement and the effect of food deprivation- on the reinstatement of morphine.
Collapse
Affiliation(s)
- Marjan Sahafzadeh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Nutritional and Food Sciences, Faculty of Agriculture, Rheinische Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Sánchez-García A, Cabral-Pacheco GA, Zomosa-Signoret VC, Ortiz-López R, Camacho A, Tabera-Tarello PM, Garnica-López JA, Vidaltamayo R. Modular organization of a hypocretin gene minimal promoter. Mol Med Rep 2017; 17:2263-2270. [PMID: 29207107 PMCID: PMC5783473 DOI: 10.3892/mmr.2017.8142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Orexins or hypocretins are neurotransmitters produced by a small population of neurons in the lateral hypothalamus. This family of peptides modulates sleep-wake cycle, arousal and feeding behaviors; however, the mechanisms regulating their expression remain to be fully elucidated. There is an interest in defining the key molecular elements in orexin regulation, as these may serve to identify targets for generating novel therapies for sleep disorders, obesity and addiction. Our previous studies showed that the expression of orexin was decreased in mice carrying null-mutations of the transcription factor early B-cell factor 2 (ebf2) and that the promoter region of the prepro-orexin (Hcrt) gene contained two putative ebf-binding sites, termed olf-1 sites. In the present study, a minimal promoter region of the murine Hcrt gene was identified, which was able to drive the expression of a luciferase reporter gene in the human 293 cell line. Deletion of the olf1-site proximal to the transcription start site of the Hcrt gene increased reporter gene expression, whereas deletion of the distal olf1-like site decreased its expression. The lentiviral transduction of murine transcription factor ebf2 cDNA into 293 cells increased the gene expression driven by this minimal Hcrt-gene promoter and an electrophoretic mobility shift assays demonstrated that the distal olf1-like sequence was a binding site for ebf2.
Collapse
Affiliation(s)
- Adriana Sánchez-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Griselda A Cabral-Pacheco
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Viviana C Zomosa-Signoret
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Rocío Ortiz-López
- Genomics Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Alberto Camacho
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Paulo M Tabera-Tarello
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - José A Garnica-López
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - Román Vidaltamayo
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| |
Collapse
|
16
|
Nowacka-Chmielewska MM, Kasprowska-Liśkiewicz D, Barski JJ, Obuchowicz E, Małecki A. The behavioral and molecular evaluation of effects of social instability stress as a model of stress-related disorders in adult female rats. Stress 2017; 20:549-561. [PMID: 28911267 DOI: 10.1080/10253890.2017.1376185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The study aimed to test the hypotheses that chronic social instability stress (CSIS) alters behavioral and physiological parameters and expression of selected genes important for stress response and social behaviors. Adult female Sprague-Dawley rats were subjected to the 4-week CSIS procedure, which involves unpredictable rotation between phases of isolation and overcrowding. Behavioral analyses (Experiment 1) were performed on the same rats before and after CSIS (n = 16) and physiological and biochemical measurements (Experiment 2) were made on further control (CON; n = 7) and stressed groups (CSIS; n = 8). Behaviors in the open field test (locomotor and exploratory activities) and elevated-plus maze (anxiety-related behaviors) indicated anxiety after CSIS. CSIS did not alter the physiological parameters measured, i.e. body weight gain, regularity of estrous cycles, and circulating concentrations of stress hormones and sex steroids. QRT-PCR analysis of mRNA expression levels was performed on amygdala, hippocampus, prefrontal cortex (PFC), and hypothalamus. The main finding is that CSIS alters the mRNA levels for the studied genes in a region-specific manner. Hence, expression of POMC (pro-opiomelanocortin), AVPR1a (arginine vasopressin receptor), and OXTR (oxytocin receptor) significantly increased in the amygdala following CSIS, while in PFC and/or hypothalamus, POMC, AVPR1a, AVPR1b, OXTR, and ERβ (estrogen receptor beta) expression decreased. CSIS significantly reduced expression of CRH-R1 (corticotropin-releasing hormone receptor type 1) in the hippocampus. The directions of change in gene expression and the genes and regions affected indicate a molecular basis for the behavior changes. In conclusion, CSIS may be valuable for further analyzing the neurobiology of stress-related disorders in females.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Behavior, Animal
- Brain/metabolism
- Chronic Disease
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/metabolism
- Pituitary-Adrenal System/metabolism
- Prefrontal Cortex/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Daniela Kasprowska-Liśkiewicz
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Jarosław Jerzy Barski
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
- c Department of Physiology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Ewa Obuchowicz
- d Department of Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Andrzej Małecki
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
| |
Collapse
|
17
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
18
|
Marie-Claire C, Jourdaine C, Lépine JP, Bellivier F, Bloch V, Vorspan F. Pharmacoepigenomics of opiates and methadone maintenance treatment: current data and perspectives. Pharmacogenomics 2017; 18:1359-1372. [DOI: 10.2217/pgs-2017-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current treatments of opioid addiction include primarily maintenance medications such as methadone. Chronic exposure to opiate and/or long-lasting maintenance treatment induce modulations of gene expression in brain and peripheral tissues. There is increasing evidence that epigenetic modifications underlie these modulations. This review summarizes published results on opioid-induced epigenetic changes in animal models and in patients. The epigenetic modifications observed with other drugs of abuse often used by opiate abusers are also outlined. Specific methadone maintenance treatment induced epigenetic modifications at different treatment stages may be combined with the ones resulting from patients’ substance use history. Therefore, research comparing groups of addicts with similar history and substances use disorders but contrasting for well-characterized treatment phenotypes should be encouraged.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Clément Jourdaine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Jean-Pierre Lépine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Vanessa Bloch
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Florence Vorspan
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| |
Collapse
|
19
|
Lehner M, Gryz M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Skórzewska A, Płaźnik A. The amphetamine-associated context exerts a stronger motivational effect in low-anxiety rats than in high-anxiety rats. Behav Brain Res 2017; 330:97-107. [PMID: 28479265 DOI: 10.1016/j.bbr.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
Abstract
This study used the conditioned place preference test to explore the effects of subchronic amphetamine administration on drug-associated cues in rats with different emotional reactivity. We also examined the changes in markers of dopaminergic activity in brain regions in response to the amphetamine-paired context, after a withdrawal period preceded by subchronic amphetamine treatment. We used low-anxiety (LR) and high-anxiety (HR) rats, which are known to exhibit distinct levels of susceptibility to amphetamine. Compared to HR rats, LR rats spent significantly more time in the amphetamine-paired compartment after the withdrawal period preceded by subchronic amphetamine treatment. Compared to HR control rats, LR control rats showed higher expression of the D1 receptor in the nucleus accumbens core (NAC core) and basolateral amygdala and higher expression of the D2 receptor in the NAC core. After the amphetamine treatment and withdrawal period, the LR rats showed higher D1 receptor expression in the NAC core, an increased level of homovanilic acid (HVA) in the prefrontal cortex, the NAC and the central amygdala than HR rats, as well as lower D2 receptor expression in the NAC core and the amygdala than LR control rats. These results indicate that the differences in the activity of the dopaminergic mesolimbic system in the HR and LR rats are maintained and even enhanced after a multi-day break in the use of the drug, indicating the occurrence of sensitisation. These findings show that the innate reactivity of the limbic dopaminergic innervations, dependent on the level of emotional reactivity, may significantly and chronically modify the development and maintenance of sensitisation to amphetamine.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| |
Collapse
|
20
|
Sushchyk S, Xi ZX, Wang JB. Combination of Levo-Tetrahydropalmatine and Low Dose Naltrexone: A Promising Treatment for Prevention of Cocaine Relapse. J Pharmacol Exp Ther 2016; 357:248-57. [PMID: 26903543 DOI: 10.1124/jpet.115.229542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 01/23/2023] Open
Abstract
Relapse to drug use is often cited as the major obstacle in overcoming a drug addiction. Whereas relapse can occur for a myriad of reasons, it is well established that complex neuroadaptations that occur over the course of addiction are major factors. Cocaine, as a potent dopamine transporter blocker, specifically induces alterations in the dopaminergic as well as other monoaminergic neurotransmissions, which lead to cocaine abuse and dependence. Evidence also suggests that adaptations in the endogenous opioids play important roles in pathophysiology of cocaine addiction. Following this evidence, we investigated a combination medication, levo-tetrahydropalmatine (l-THP) and low dose naltrexone (LDN), targeting primarily dopaminergic and endogenous opioid systems as a cocaine-relapse-prevention treatment. In the present study Wistar rats were used to assess the effects ofl-THP and LDN on cocaine self-administration, drug-seeking behavior during cocaine reinstatement, spontaneous locomotion, and effects on the endogenous opioid system. We determined that the combination ofl-THP and LDN reduces drug-seeking behavior during reinstatement more potently thanl-THP alone. Additionally, the combination ofl-THP and LDN attenuates the sedative locomotor effect induced byl-THP. Furthermore, we revealed that treatment with the combination ofl-THP and LDN has an upregulatory effect on both plasmaβ-endorphin and hypothalamic POMC that was not observed inl-THP-treated groups. These results suggest that the combination ofl-THP and LDN has great potential as an effective and well-tolerated medication for cocaine relapse prevention.
Collapse
Affiliation(s)
- Sarah Sushchyk
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland (S.S., J.B.W.); Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland (Z.-X.X.)
| | - Zheng-Xiong Xi
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland (S.S., J.B.W.); Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland (Z.-X.X.)
| | - Jia Bei Wang
- Department of Pharmaceutical Sciences, University of Maryland Baltimore, Baltimore, Maryland (S.S., J.B.W.); Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland (Z.-X.X.)
| |
Collapse
|
21
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Assessment of individual differences in the rat nucleus accumbens transcriptome following taste-heroin extended access. Brain Res Bull 2015; 123:71-80. [PMID: 26733446 DOI: 10.1016/j.brainresbull.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022]
Abstract
Heroin addiction is a disease of chronic relapse that harms the individual through devaluation of personal responsibilities in favor of finding and using drugs. Only some recreational heroin users devolve into addiction but the basis of these individual differences is not known. We have shown in rats that avoidance of a heroin-paired taste cue reliably identifies individual animals with greater addiction-like behavior for heroin. Here rats received 5min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 6h. Large Suppressors of the heroin-paired taste cue displayed increased drug escalation, motivation for drug, and drug loading behavior compared with Small Suppressors. Little is known about the molecular mechanisms of these individual differences in addiction-like behavior. We examined the individual differences in mRNA expression in the nucleus accumbens (NAc) of rats that were behaviorally stratified by addiction-like behavior using next-generation sequencing. We hypothesized that based on the avoidance of the drug-paired cue there will be a unique mRNA profile in the NAc. Analysis of strand-specific whole genome RNA-Seq data revealed a number of genes differentially regulated in NAc based on the suppression of the natural saccharine reward. Large Suppressors exhibited a unique mRNA prolife compared to Saline controls and Small Suppressors. Genes related to immunity, neuronal activity, and behavior were differentially expressed among the 3 groups. In total, individual differences in avoidance of a heroin-paired taste cue are associated with addiction-like behavior along with differential NAc gene expression.
Collapse
|
23
|
McFalls AJ, Imperio CG, Bixler G, Freeman WM, Grigson PS, Vrana KE. Reward devaluation and heroin escalation is associated with differential expression of CRF signaling genes. Brain Res Bull 2015; 123:81-93. [PMID: 26655889 DOI: 10.1016/j.brainresbull.2015.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
Abstract
One of the most damaging aspects of drug addiction is the degree to which natural rewards (family, friends, employment) are devalued in favor of seeking, obtaining and taking drugs. We have utilized an animal model of reward devaluation and heroin self-administration to explore the role of the coricotropin releasing factor (CRF) pathway. Given access to a saccharin cue followed by the opportunity to self-administer heroin, animals will parse into distinct phenotypes that suppress their saccharin intake (in favor of escalating heroin self-administration) or vice versa. We find that large saccharin suppressors (large heroin takers) demonstrate increased mRNA expression for elements of the CRF signaling pathway (CRF, CRF receptors and CRF binding protein) within the hippocampus, medial prefrontal cortex and the ventral tegmental area. Moreover, there were no gene expression changes of these components in the nucleus accumbens. Use of bisulfite conversion sequencing suggests that changes in CRF binding protein and CRF receptor gene expression may be mediated by differential promoter methylation.
Collapse
Affiliation(s)
- Ashley J McFalls
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Caesar G Imperio
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Georgina Bixler
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Patricia Sue Grigson
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E Vrana
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, United States.
| |
Collapse
|
24
|
Su H, Li Z, Du J, Jiang H, Chen Z, Sun H, Zhao M. Predictors of heroin relapse: Personality traits, impulsivity, COMT gene Val158met polymorphism in a 5-year prospective study in Shanghai, China. Am J Med Genet B Neuropsychiatr Genet 2015; 168:712-9. [PMID: 26345603 DOI: 10.1002/ajmg.b.32376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023]
Abstract
Relapse is a typical feature of heroin addiction and rooted in genetic and psychological determinants. The aim of this study was to evaluate the effect of personality traits, impulsivity, and COMT gene polymorphism (rs4680) on relapse to heroin use during 5-year follow up. 564 heroin dependent patients were enrolled in compulsory drug rehabilitation center. 12 months prior to their release, personality traits were measured by BIS-11 (Barratt Impulsiveness Scale-11) and Temperament and Character Inventory (TCI). The COMT gene rs4680 polymorphism was genotyped using a DNA sequence detection system. The heroin use status was evaluated for 5 years after discharged. Among the 564 heroin-dependent patients, 500 were followed for 5 years after discharge and 53.0% (n = 265) were considered as relapsed to heroin use according to a strict monitor system. Univariate analysis showed that age, having ever been in methadone maintenance treatment (MMT), the total scores and non-planning scores of BIS-11, and the COMT rs4680 gene variants were different between relapse and abstinent groups. Logistic regression analysis showed higher BIS total score, having ever been in MMT and younger first heroin use age are the predictors of relapse to heroin use during 5 years follow-up, and the COMT rs4680 gene had an interaction with BIS scores. Our findings indicated that the impulsive personality traits, methadone use history, and onset age could predict relapse in heroin-dependent patients during 5 year's follow up. The COMT gene showed a moderational effect in part the relationship of impulsivity with heroin relapse.
Collapse
Affiliation(s)
- Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhibin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiming Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Tacelosky DM, Alexander DN, Morse M, Hajnal A, Berg A, Levenson R, Grigson PS. Low expression of D2R and Wntless correlates with high motivation for heroin. Behav Neurosci 2015; 129:744-55. [PMID: 26501177 DOI: 10.1037/bne0000104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug overdose now exceeds car accidents as the leading cause of accidental death in the United States. Of those drug overdoses, a large percentage of the deaths are due to heroin and/or pharmaceutical overdose, specifically misuse of prescription opioid analgesics. It is imperative, then, that we understand the mechanisms that lead to opioid abuse and addiction. The rewarding actions of opioids are mediated largely by the mu-opioid receptor (MOR), and signaling by this receptor is modulated by various interacting proteins. The neurotransmitter dopamine also contributes to opioid reward, and opioid addiction has been linked to reduced expression of dopamine D2 receptors (D2R) in the brain. That said, it is not known if alterations in the expression of these proteins relate to drug exposure and/or to the "addiction-like" behavior exhibited for the drug. Here, we held total drug self-administration constant across acquisition and showed that reduced expression of the D2R and the MOR interacting protein, Wntless, in the medial prefrontal cortex was associated with greater addiction-like behavior for heroin in general and with a greater willingness to work for the drug in particular. In contrast, reduced expression of the D2R in the nucleus accumbens and hippocampus was correlated with greater seeking during signaled nonavailability of the drug. Taken together, these data link reduced expression of both the D2R and Wntless to the explicit motivation for the drug rather than to differences in total drug intake per se.
Collapse
Affiliation(s)
- Diana M Tacelosky
- Department of Pharmacology, College of Medicine, Pennsylvania State University
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University
| | - Megan Morse
- Department of Pharmacology, College of Medicine, Pennsylvania State University
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University
| | - Arthur Berg
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, College of Medicine, Pennsylvania State University
| | - Robert Levenson
- Department of Pharmacology, College of Medicine, Pennsylvania State University
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University
| |
Collapse
|
26
|
Gold MS, Badgaiyan RD, Blum K. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry. Psychiatr Clin North Am 2015; 38:419-62. [PMID: 26300032 DOI: 10.1016/j.psc.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors.
Collapse
Affiliation(s)
- Mark S Gold
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Rivermend Health Scientific Advisory Board, 2300 Windy Ridge Parkway South East, Suite 210S, Atlanta, GA 30339, USA; Drug Enforcement Administration (DEA) Educational Foundation, Washington, DC, USA.
| | - Rajendra D Badgaiyan
- Laboratory of Advanced Radiochemistry and Molecular and Functioning Imaging, Department of Psychiatry, College of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Psychiatry, Center for Clinical & Translational Science, Community Mental Health Institute, University of Vermont College of Medicine, University of Vermont, Burlington, VT, USA; Division of Applied Clinical Research, Dominion Diagnostics, LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA; Rivermend Health Scientific Advisory Board, Atlanta, GA, USA
| |
Collapse
|