1
|
Huang S, Riley AL. Drug discrimination learning: Interoceptive stimulus control of behavior and its implications for regulated and dysregulated drug intake. Pharmacol Biochem Behav 2024; 244:173848. [PMID: 39137873 DOI: 10.1016/j.pbb.2024.173848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Drug discrimination research has generated rich evidence for the capacity of interoceptive drug stimuli to control behavior by serving as discriminative cues. Owing to its neuropharmacological specificity, drug discrimination learning has been widely used to characterize the stimulus effects and neuropharmacological underpinning of drugs. Apart from such utility, discriminative drug stimuli may help regulate drug use by disambiguating conditioned associations and post-intake outcomes. First, this review summarizes the evidence supporting interoceptive regulation of drug intake from the literature of exteroceptive discriminative control of drug-related behavior, effects of drug priming, and self-titration of drug intake. Second, an overview of interoceptive control of reward-seeking and the animal model of discriminated goal-tracking is provided to illustrate interoceptive stimulus control of the initiation and patterning of drug intake. Third, we highlight the importance of interoceptive control of aversion-avoidance in the termination of drug-use episodes and describe the animal model of discriminated taste avoidance that supports such a position. In bridging these discriminative functions of drug stimuli, we propose that interoceptive drug stimuli help regulate intake by disambiguating whether intake will be rewarding, nonrewarding, or aversive. The reflection and discussion on current theoretical formulations of interoceptive control of drug intake may further scientific advances to improve animal models to study the mechanisms by which interoceptive stimuli regulate drug intake, as well as how alterations of interoceptive processes may contribute to the transition to dysregulated drug use.
Collapse
Affiliation(s)
- Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
2
|
Przybysz KR, Ramirez LA, Pitock JR, Starr EM, Yang H, Glover EJ. A translational rodent model of individual differences in sensitivity to the aversive properties of ethanol. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:516-529. [PMID: 38303664 PMCID: PMC10939790 DOI: 10.1111/acer.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND A strong relationship exists between individual sensitivity to the aversive properties of ethanol and risk for alcohol use disorder (AUD). Despite this, our understanding of the neurobiological mechanisms underlying the subjective response to ethanol is limited. A major contributor to this lack of knowledge is the absence of preclinical models that enable exploration of this individual variability such as is possible in studies of humans. METHODS Adult male and female Long-Evans rats were trained to associate a novel tastant (saccharin) with acute exposure to either saline or ethanol (1.5 g/kg or 2.0 g/kg i.p.) over three conditioning days using a standard conditioned taste aversion (CTA) procedure. Variability in sensitivity to ethanol-induced CTA was phenotypically characterized using a median split across the populations studied. RESULTS When examining group averages, both male and female rats exposed to saccharin paired with either dose of ethanol exhibited lower saccharin intake relative to saline controls indicative of ethanol-induced CTA. Examination of individual data revealed a bimodal distribution of responses uncovering two distinct phenotypes present in both sexes. CTA-sensitive rats exhibited a rapid and progressive reduction in saccharin intake with each successive ethanol pairing. In contrast, saccharin intake was unchanged or maintained after an initial decrease from baseline levels in CTA-resistant rats. While CTA magnitude was similar between male and female CTA-sensitive rats, among CTA-resistant animals females were more resistant to the development of ethanol-induced CTA than males. Phenotypic differences were not driven by differences in baseline saccharin intake. CONCLUSIONS These data parallel work in humans by revealing individual differences in sensitivity to the aversive properties of ethanol that emerge immediately after initial exposure to ethanol in both sexes. This model can be used in future studies to investigate the neurobiological mechanisms that confer risk for AUD.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lindsey A Ramirez
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph R Pitock
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - E Margaret Starr
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hyerim Yang
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elizabeth J Glover
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Riley AL, Manke HN, Huang S. Impact of the Aversive Effects of Drugs on Their Use and Abuse. Behav Neurol 2022; 2022:8634176. [PMID: 35496768 PMCID: PMC9045991 DOI: 10.1155/2022/8634176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Drug use and abuse are complex issues in that the basis of each may involve different determinants and consequences, and the transition from one to the other may be equally multifaceted. A recent model of the addiction cycle (as proposed by Koob and his colleagues) illustrates how drug-taking patterns transition from impulsive (acute use) to compulsive (chronic use) as a function of various neuroadaptations leading to the downregulation of DA systems, upregulation of stress systems, and the dysregulation of the prefrontal/orbitofrontal cortex. Although the nature of reinforcement in the initiation and mediation of these effects may differ (positive vs. negative), the role of reinforcement in drug intake (acute and chronic) is well characterized. However, drugs of abuse have other stimulus properties that may be important in their use and abuse. One such property is their aversive effects that limit drug intake instead of initiating and maintaining it. Evidence of such effects comes from both clinical and preclinical populations. In support of this position, the present review describes the aversive effects of drugs (assessed primarily in conditioned taste aversion learning), the fact that they occur concurrently with reward as assessed in combined taste aversion/place preference designs, the role of aversive effects in drug-taking (in balance with their rewarding effects), the dissociation of these affective properties in that they can be affected in different ways by the same manipulations, and the impact of various parametric, experiential, and subject factors on the aversive effects of drugs and the consequent impact of these factors on their use and abuse potential.
Collapse
Affiliation(s)
- Anthony L. Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Hayley N. Manke
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| |
Collapse
|
4
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
5
|
Riley AL, Hempel BJ, Clasen MM. Sex as a biological variable: Drug use and abuse. Physiol Behav 2017; 187:79-96. [PMID: 29030249 DOI: 10.1016/j.physbeh.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/11/2023]
Abstract
The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability.
Collapse
Affiliation(s)
- Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| |
Collapse
|
6
|
Effects of thalamic hemorrhagic lesions on explicit and implicit learning during the acquisition and retrieval phases in an animal model of central post-stroke pain. Behav Brain Res 2016; 317:251-262. [PMID: 27681112 DOI: 10.1016/j.bbr.2016.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Hemorrhagic stroke has many symptoms, including central pain, learning and memory impairments, motor deficits, language problems, emotional disturbances, and social maladjustment. Lesions of the ventral basal complex (VBC) of the thalamus elicit thermal and mechanical hyperalgesia, forming an animal model of central post-stroke pain (CPSP). However, no research has yet examined the involvement of learning and memory in CPSP using an animal model. The present study examined whether VBC lesions affect motor function, conditioned place preference (CPP; implicit memory), and spatial learning (explicit memory) in the acquisition and retrieval phases. The results showed that rats with VBC lesions exhibited thermal hyperalgesia in the acquisition and retrieval phases, indicating that these lesions can induce CPSP. During these phases, the rats with VBC lesions exhibited enhanced (morphine-induced) CPP learning. These lesions did not affect the rats' total distance travelled, time spent, or velocity in the spatial learning tasks. The lesions also did not affect motor function in the rotarod task. Altogether, VBC lesions resulted in CPSP and facilitated CPP (implicit memory). However, the lesions did not affect spatial learning (explicit memory) or motor function. The relationship between CPSP and learning and memory is important for patients who suffer from such central pain. The implications of the present study may provide insights into helping reduce CPSP and its associated symptoms.
Collapse
|