1
|
Farrokhfar S, Tiraihi T, Movahedin M, Azizi H. The Effect of Antinociceptive Dose of Morphine on Cell Therapy in Rats with Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04350-x. [PMID: 39012442 DOI: 10.1007/s12035-024-04350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Spinal cord injury (SCI) is a sensory-motor injury. Today, combined treatments such as cell therapy along with drug therapy and their interactions are of interest. Morphine is an opioid drug used to relieve intolerable pain. This study aims to evaluate the impact of an antinociceptive dose of morphine (with minimal tolerance/dependence but effective pain relief) on cell therapy in SCI. The antinociceptive dose of morphine was determined in rats with SCI through the Hargreaves and naloxone-induced morphine withdrawal tests. The rats were then allocated to 5 groups: laminectomy, SCI, SCI + Morphine, SCI + cell therapy, SCI + Morphine + cell therapy. The antinociceptive dose (5 mg/kg) was administered on days 1, 4, 10, and 13 (i.p.) post-SCI. On day 7, Neural-like stem cells derived from adipose tissue were transplanted intraspinally into the injured animals, and they were monitored for 12 weeks. The outcomes were assessed using the BBB test, somatosensory evoked potential (SSEP), and histology. The BBB test indicated that morphine significantly hindered functional recovery post-cell transplantation compared to animals receiving only cell therapy (p < 0.05). In the SSEP test, the analysis of amplitude and latency of waves did not reveal a significant difference (p > 0.05). The histological results showed that cell therapy reduced the cavity size post-SCI, while morphine had no significant impact on it. Morphine at the antinociceptive dose significantly impairs motor recovery despite cell therapy. Nonetheless, there was no significant difference between groups in terms of sensory pathway outcomes.
Collapse
Affiliation(s)
- Samaneh Farrokhfar
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Gutierrez A, Taffe MA. Persistent effects of repeated adolescent and adult heroin vapor inhalation in female Wistar rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592492. [PMID: 38765990 PMCID: PMC11100616 DOI: 10.1101/2024.05.06.592492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adolescent drug exposure has been associated with more severe mental health outcomes related to substance abuse and anxiety disorders. The aim of the present study was to contrast the long-term effects of repeated heroin vapor inhalation during adolescence with similar heroin exposure in adulthood. Groups of female Wistar rats underwent twice daily 30-minute sessions of heroin or propylene glycol (control) vapor inhalation from postnatal days (PND) 36-45 or PND 85-94, respectively. Nociception was assessed after vapor inhalation sessions and forty days later, for the Adolescent-Exposed and Adult-Exposed groups. Anxiety-like behavior was assessed with an elevated plus-maze (EPM) and spatial learning was assessed with a Barnes maze. Acute effects of naloxone (0.3 mg/kg, i.p.) and heroin (0.5 and 1.0 mg/kg, s.c.) on thermal nociception were determined on PND 140/189 and PND 149/198, respectively. Repeated heroin vapor inhalation produced anti-nociceptive tolerance across sessions in both adolescent and adult rats, with the adolescents exhibiting more complete tolerance. Heroin vapor inhalation produced anxiolytic effects, regardless of age of exposure. There were no effects of heroin on spatial learning. Naloxone produced acute hyperalgesia in all but the Adolescent-Exposed heroin group, and heroin anti-nociception was blunted in both heroin-exposed groups at the highest heroin dose. Repeated heroin vapor inhalation can produce lasting effects on nociception and anxiety-like behavior that persist for months after the exposure. Importantly, these findings suggest that adolescent exposure to heroin vapor produces specific effects on nociception that are not observed when exposure occurs in adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
3
|
Khani F, Pourmotabbed A, Veisi M, Hosseinmardi N, Fathollahi Y, Azizi H. Adolescent morphine exposure impairs dark avoidance memory and synaptic potentiation of ventral hippocampal CA1 during adulthood in rats. Life Sci 2023; 314:121344. [PMID: 36587788 DOI: 10.1016/j.lfs.2022.121344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Adolescence is a neurobiological critical period for neurodevelopmental processes. Adolescent opioid exposure can affect cognitive abilities via regional-specific lasting changes in brain structure and function. The current study was therefore designed to assess the long-term effects of adolescent morphine exposure on dark avoidance memory and synaptic plasticity of the ventral hippocampal CA1. Adolescent Wistar rats received escalating doses of morphine for 10 days. Morphine injections were started with an incremental dose of 2.5 mg/kg to reach a dose of 25 mg/kg. 30 days after the last injection, inhibitory memory and in vitro field potential recording were evaluated. Also, the weight of the animals was measured during drug and post-drug exposure. We found that adolescent morphine exposure decreased weight gain during morphine and post-morphine exposure. Passive avoidance memory was impaired in the morphine group. Moreover, adolescent morphine exposure caused an increase in baseline synaptic responsiveness and failed long-term potentiation (LTP) in the ventral hippocampal CA1 during adulthood. In the morphine group, the mean values of the field excitatory postsynaptic potential (fEPSP) slopes required to elicit a half-maximal population spike (PS) amplitude were significantly greater than that of the saline group. Therefore, adolescent morphine exposure has a durable effect on memory functions, synaptic activity, and plasticity of ventral hippocampal CA1. Adults with adolescent morphine exposures may experience maladaptive behaviors and cognitive disabilities.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozhgan Veisi
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Gutierrez A, Harvey EL, Creehan KM, Taffe MA. The long-term effects of repeated heroin vapor inhalation during adolescence on measures of nociception and anxiety-like behavior in adult Wistar rats. Psychopharmacology (Berl) 2022; 239:3939-3952. [PMID: 36287213 PMCID: PMC9672020 DOI: 10.1007/s00213-022-06267-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Adolescents represent a vulnerable group due to increased experimentation with illicit substances that is often associated with the adolescent period, and because adolescent drug use can result in long-term effects that differ from those caused by drug use initiated during adulthood. OBJECTIVES The purpose of the present study was to determine the effects of repeated heroin vapor inhalation during adolescence on measures of nociception, and anxiety-like behavior during adulthood in female and male Wistar rats. METHODS Rats were exposed twice daily to 30 min of heroin vapor from post-natal day (PND) 36 to PND 45. At 12 weeks of age, baseline thermal nociception was assessed across a range of temperatures with a warm-water tail-withdrawal assay. Anxiety-like behavior was assessed in an elevated plus-maze (EPM) and activity was measured in an open-field arena. Starting at 23 weeks of age, baseline thermal nociception was re-assessed, nociception was determined after acute heroin or naloxone injection, and anxiety-like behavior was redetermined in the EPM. RESULTS Adolescent heroin inhalation altered baseline thermal nociception in female rats at 12 weeks of age and in both female and male rats at ~ 23 weeks. Heroin-treated animals exhibited anxiety-like behavior when tested in the elevated plus-maze, showed blunted heroin-induced analgesia, but exhibited no effect on naloxone-induced hyperalgesia. CONCLUSIONS The present study demonstrates that heroin vapor inhalation during adolescence produces behavioral and physiological consequences in rats that persist well into adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric L Harvey
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kevin M Creehan
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, Mail Code 0714, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Development of anxiety-like behaviors during adolescence: Persistent effects of adolescent morphine exposure in male rats. Dev Psychobiol 2022; 64:e22315. [PMID: 36282759 DOI: 10.1002/dev.22315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors. Adolescent male Wistar rats underwent increasing doses of morphine for 10 days (PNDs 31-40). After that the open field test (OFT) and elevated plus maze (EPM) test were performed over a 4-week postmorphine treatment from adolescence to adulthood. Moreover, the weight of the animals was measured at these time points. We found that chronic adolescent morphine exposure reduces the weight gain during the period of morphine treatment and 4 weeks after that. It had no significant effect on the locomotor activity in the animals. Moreover, anxiolytic-like behavior was observed in the rats exposed to morphine during adolescence evaluated by OFT and EPM test. Thus, long-term exposure to morphine during adolescence has the profound potential of altering the anxiety-like behavior profile in the period from adolescence to adulthood. The maturation of the nervous system can be affected by drug abuse during the developmental window of adolescence and these effects may lead to behaviorally stable alterations.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Impairment of spatial memory and dorsal hippocampal synaptic plasticity in adulthood due to adolescent morphine exposure. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110532. [PMID: 35149126 DOI: 10.1016/j.pnpbp.2022.110532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
Opioid exposure during adolescence, a crucial period of neurodevelopment, has lasting neurological and behavioral consequences and affects the cognitive functions in adulthood. This study investigated the effects of adolescent morphine exposure in spatial learning and memory and synaptic plasticity of the CA1 area of the dorsal hippocampus. Adolescent Wistar rats received increasing doses of morphine for 1, 5, and 10 days. Acute morphine group was injected 2.5 mg/kg morphine for 1 day, subchronic morphine group for 5 days, with an increasing dose of 2.5 mg/kg and reached to the dose of 12.5 mg/kg and chronic morphine group for 10 days that began with an increasing dose of 2.5 mg/kg and reached to the dose of 25 mg/kg. Then after 25 days and reaching adulthood, spatial learning and memory were evaluated via the Morris water maze (MWM) test. Moreover, we test the electrophysiological properties of dorsal hippocampal plasticity in adult rats by in vitro field potential recordings. Subchronic and chronic adolescent morphine exposure impaired spatial learning and memory in the MWM test. Baseline synaptic responses in the chronic morphine group were increased and long-term potentiation (LTP) impaired in the CA1 area in subchronic and chronic morphine groups. In adulthood, the slope of the field excitatory postsynaptic potential (fEPSP) required to elicit a half-maximal population spike (PS) amplitude was significantly larger in subchronic and chronic adolescent morphine exposure compared to the saline group. Therefore, subchronic and chronic adolescent morphine exposure altered synaptic transmission and plasticity in addition to learning and memory. Long-term morphine exposure during adolescence can interfere with neurodevelopment, making a persistent impression on plasticity and cognitive capability in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
8
|
Rahman S, Rahman ZI, Ronan PJ, Lutfy K, Bell RL. Adolescent opioid abuse: Role of glial and neuroimmune mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:147-165. [PMID: 34801168 DOI: 10.1016/bs.irn.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Opioids are widely prescribed for pain management, and prescription opioid misuse in adolescents has become a major epidemic in the United States and worldwide. Emerging data indicate that adolescence represents a critical period of brain development, and exposure to opioids during adolescence may increase the risk of addiction in adulthood. There is growing evidence that disruptions in brain glial function may be implicated in numerous chronic neuropathologies. Evidence suggests that glial mechanisms have an important role in the development and maintenance of opioid abuse and the risk for addiction. This review will describe glial and neuroimmune mechanisms involved in opioid use disorders during adolescence, which may increase substance use disorder liability later in life. Moreover, this review will identify some important neuro-glial targets, involved in opioid abuse and addiction, to develop future preventions and treatment strategies.
Collapse
Affiliation(s)
- S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States.
| | - Z I Rahman
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - P J Ronan
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - R L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Lloyd AR, Savage R, Eaton EF. Opioid use disorder: a neglected human immunodeficiency virus risk in American adolescents. AIDS 2021; 35:2237-2247. [PMID: 34387219 PMCID: PMC8563394 DOI: 10.1097/qad.0000000000003051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In 2017 alone, 783 000 children aged 12-17 years misused opioids with 14 000 using heroin. Opioid misuse and opioid use disorder (OUD) in adolescents and young adults are significant barriers to ending the HIV epidemic. To address these synergistic scourges requires dedicated practitioners and improved access to life-saving evidence-based treatment. Adolescents and young adults make up over one in five new HIV diagnoses even though they are less likely to be tested or know they are infected. Adolescents and young adults living with HIV are less likely to be retained in care or achieve virological suppression. OUD further leads to increased rates of risky behaviours (like sex without condoms), deceased retention in HIV care and decreased rates of viral suppression in this vulnerable population. Medications for opioid use disorder (MOUD) are recommended for adolescents and young adults with severe OUD and help retain youth in HIV treatment and decrease risk of death. However, due to stigma and lack of experience prescribing MOUD in adolescents, MOUD is often perceived as a last line option. MOUD remains difficult to access for adolescents with a shortage of providers and decreased options for treatment as compared to adults. Addiction treatment is infection prevention, and integrated addiction and HIV services are recommended to improve health outcomes. A multipronged approach including patient education, provider training and policy changes to improve access to treatment and harm reduction are urgently needed confront the drug use epidemic in youth.
Collapse
Affiliation(s)
- Audrey R Lloyd
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham
| | - Rebekah Savage
- Division of Adolescent Medicine, University of Alabama at Birmingham
| | - Ellen F Eaton
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabamas, USA
| |
Collapse
|
10
|
Sabuee S, Ahmadi-Soleimani SM, Azizi H. Prolonged morphine exposure during adolescence alters the responses of lateral paragigantocellularis neurons to naloxone in adult morphine dependent rats. J Physiol Sci 2021; 71:25. [PMID: 34429058 PMCID: PMC10716981 DOI: 10.1186/s12576-021-00810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Adolescence is a critical period in brain development, and it is characterized by persistent maturational alterations in the function of central nervous system. In this respect, many studies show the non-medical use of opioid drugs by adolescents. Although this issue has rather widely been addressed during the last decade, cellular mechanisms through which adolescent opioid exposure may induce long-lasting effects are not duly understood. The present study examined the effect of adolescent morphine exposure on neuronal responses of lateral paragigantocellularis nucleus to naloxone in adult morphine-dependent rats. METHODS Adolescent male Wistar rats (31 days old) received increasing doses of morphine (from 2.5 to 25 mg/kg, twice daily, s.c.) for 10 days. Control subjects were injected saline with the same protocol. After a drug-free interval (20 days), animals were rendered dependent on morphine during 10 days (10 mg/kg, s.c., twice daily). Then, extracellular single-unit recording was performed to investigate neural response of LPGi to naloxone in adult morphine-dependent rats. RESULTS Results indicated that adolescent morphine treatment increases the number of excitatory responses to naloxone, enhances the baseline activity and alters the pattern of firing in neurons with excitatory responses in adult morphine-dependent rats. Moreover, the intensity of excitatory responses is reduced following the early life drug intake. CONCLUSION It seems that prolonged opioid exposure during adolescence induces long-lasting neurobiological changes in LPGi responsiveness to future opioid withdrawal challenges.
Collapse
Affiliation(s)
- Sara Sabuee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Circadian rhythm influences naloxone induced morphine withdrawal and neuronal activity of lateral paragigantocellularis nucleus. Behav Brain Res 2021; 414:113450. [PMID: 34265318 DOI: 10.1016/j.bbr.2021.113450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Investigations have shown that the circadian rhythm can affect the mechanisms associated with drug dependence. In this regard, we sought to assess the negative consequence of morphine withdrawal syndrome on conditioned place aversion (CPA) and lateral paragigantocellularis (LPGi) neuronal activity in morphine-dependent rats during light (8:00-12:00) and dark (20:00-24:00) cycles. Male Wistar rats (250-300 g) were received 10 mg/kg morphine or its vehicle (Saline, 2 mL/kg/12 h, s.c.) in 13 consecutive days for behavioral assessment tests. Then, naloxone-induced conditioned place aversion and physical signs of withdrawal syndrome were evaluated during light and dark cycles. In contrast to the behavioral part, we performed in vivo extracellular single-unit recording for investigating the neural response of LPGi to naloxone in morphine-dependent rats on day 10 of morphine/saline exposure. Results showed that naloxone induced conditioned place aversion in both light and dark cycles, but the CPA score during the light cycle was larger. Moreover, the intensity of physical signs of morphine withdrawal syndrome was more severe during the light cycle (rest phase) compare to the dark one. In electrophysiological experiments, results indicated that naloxone evoked both excitatory and inhibitory responses in LPGi neurons and the incremental effect of naloxone on LPGi activity was stronger in the light cycle. Also, the neurons with the excitatory response exhibited higher baseline activity in the dark cycle, but the neurons with the inhibitory response showed higher baseline activity in the light cycle. Interestingly, the baseline firing rate of neurons recorded in the light cycle was significantly different in response (excitatory/inhibitory) -dependent manner. We concluded that naloxone-induced changes in LPGi cellular activity and behaviors of morphine-dependent rats can be affected by circadian rhythm and the internal clock.
Collapse
|
12
|
Zhu QM, Wu LX, Zhang B, Dong YP, Sun L. Donepezil prevents morphine tolerance by regulating N-methyl-d-aspartate receptor, protein kinase C and CaM-dependent kinase II expression in rats. Pharmacol Biochem Behav 2021; 206:173209. [PMID: 34058253 DOI: 10.1016/j.pbb.2021.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Current studies have indicated that donepezil as a cholinesterase inhibitor can attenuate morphine-induced tolerance. The present study aimed to evaluate the possible role of N-methyl-d-aspartate receptors (NMDARs), protein kinase C (PKC) and CaM-dependent kinase II (CaMKII) pathways in this effect. Female Wistar rats received daily morphine (10 mg/kg, i.p.) alone or in combination with donepezil (1.5 or 2 mg/kg, gavaged) for 14 days. The analgesic effect was assessed by Von-frey, hotplate and tail flick test. On the 15th day, the periaqueductal gray (PAG) and lumbar spinal cord of rats were dissected. Then, protein levels of NMDAR-NR1, NR2B, PKCγ and CaMKIIα were tested using Western blot method. The results showed that morphine tolerance was seen after 8-10 days of injection compared with control group, while daily co-administration of donepezil with morphine prolonged the occurrence of analgesic tolerance. Western blot showed that morphine significantly increased NR1, PKCγ and CaMKIIα expressions in PAG, and significantly increased PKCγ and CaMKIIα in spinal cord. In contrast, donepezil downregulated NR1 and PKCγ in PAG, and downregulated PKCγ and CaMKIIα in spinal cord. Moreover, donepezil alone activates NR1 and NR2B in spinal cord, which needs to be further studied. Thus, the present results suggest that the attenuation effects of donepezil on morphine tolerance are possibly mediated by preventing morphine-induced upregulations in NR1, PKCγ and CaMKIIα expressions.
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Bo Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yan-Peng Dong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China; Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.113 Baohe Road, Longgang District, Shenzhen 518116, China.
| |
Collapse
|
13
|
Windisch KA, Kreek MJ. Review of addiction risk potential associated with adolescent opioid use. Pharmacol Biochem Behav 2020; 198:173022. [PMID: 32871141 DOI: 10.1016/j.pbb.2020.173022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/31/2023]
Abstract
Adolescence is a critical period of development with robust behavioral, morphological, hormonal, and neurochemical changes including changes in brain regions implicated in the reinforcing effects of drugs such as opioids. Here we examine the preclinical and, where appropriate complementary clinical literature, for the behavioral and neurological changes induced by adolescent opioid exposure/use and their long-term consequences during adulthood. Adolescent opioid exposure results in a widened biphasic shift in reinforcement with increased impact of positive rewarding aspects during initial use and profound negative reinforcement during adulthood. Females may have enhanced vulnerability due to fast onset of antinociceptive tolerance and reduced severity of somatic withdrawal symptoms during adolescence. Overall, adolescent opioid exposure, be it legally prescribed protracted intake or illicit consumption, results in significant and prolonged consequences of increased opioid reward concomitant with reduced analgesic efficacy and exacerbated somatic withdrawal severity during opioid use/exposure in adulthood. These findings are highly relevant to physicians, parents, law makers, and the general public as adolescent opioid exposure/misuse results in heightened risk for substance use disorders.
Collapse
Affiliation(s)
- Kyle A Windisch
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
14
|
Harun N, Johari IS, Mansor SM, Shoaib M. Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats. Psychopharmacology (Berl) 2020; 237:855-867. [PMID: 31832720 DOI: 10.1007/s00213-019-05418-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE Kratom is proposed to exhibit therapeutic potential as an opium substitute, but little is known about its dependence-producing profile, particularly of its main psychoactive compound, mitragynine (MG). OBJECTIVES This study examined the dependence-producing effects of MG using operant-scheduled behaviour in rats and investigated the potential therapeutic effect of MG by comparing effects to buprenorphine in morphine-dependent rats using the same schedule-controlled behavioural task. METHODS The effects of acutely administered MG and morphine were determined in rats trained to respond under fixed-ratio (FR) 10 schedule of food reinforcement. Next, the rats were administered MG and morphine twice daily for 14 consecutive days to determine if physiological dependence would develop by examining cessation of drug treatment and following antagonist-precipitated withdrawal. The study then examined the effects of MG substitution to suppress naloxone-precipitated morphine withdrawal effects on scheduled responding. RESULTS Acute doses of MG did not produce dose-related decreases on FR schedules of responding compared to morphine. Unlike morphine, MG-treated rats showed no suppression of response rates following cessation of MG treatment. However, withdrawal effects were evident for MG after precipitation by either naloxone or SR141716A (rimonabant), similar to morphine-treated rats. MG in higher doses (10 and 30 mg/kg) attenuated the naloxone-precipitated morphine withdrawal effects while smaller doses of buprenorphine (0.3 and 1.0 mg/kg) were necessary to alleviate these effects. CONCLUSION The findings suggest that MG does not induce physiological dependence but can alleviate the physical symptoms associated with morphine withdrawal which represent the desired characteristics of novel pharmacotherapeutic interventions for managing opioid use disorder (OUD).
Collapse
Affiliation(s)
- Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia.
| | - Illa Syafiqah Johari
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Sharif Mahsufi Mansor
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
15
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
16
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
17
|
Adolescent nicotine challenge promotes the future vulnerability to opioid addiction: Involvement of lateral paragigantocellularis neurons. Life Sci 2019; 234:116784. [DOI: 10.1016/j.lfs.2019.116784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023]
|
18
|
Pachenari N, Azizi H, Semnaniann S. Adolescent Morphine Exposure in Male Rats Alters the Electrophysiological Properties of Locus Coeruleus Neurons of the Male Offspring. Neuroscience 2019; 410:108-117. [DOI: 10.1016/j.neuroscience.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 01/26/2023]
|
19
|
Abstract
During the past decades, the use/misuse of opioids has increased dramatically among adolescent population. It is now well acknowledged that various morphological and physiological changes occur in the brain during adolescence. During this critical period, brain development and maturation could be affected by several factors including stress, drug abuse, nutritional status, etc. Although studies on transgenerational effects of substances such as alcohol, nicotine, and cocaine have focused on both paternal and maternal drug exposure, most reports on transgenerational effects of morphine are restricted to maternal exposure. Thus, in this study, we aimed to investigate the transgenerational effect of paternal morphine exposure during adolescence on pain perception and antinociceptive effect of morphine in rat offspring. Male rats received escalating doses of morphine for 10 days during postnatal days 31-40. Twenty days after the last morphine injection, male rats were mated with intact female rats, and then behavioral tests were conducted on the male offspring on postnatal day 60. Pain perception and morphine antinociception were evaluated using the formalin test. Our results demonstrated that morphine-sired and saline-sired animals differed in the interphase and phase 2 of the formalin test. These findings indicate a significant transgenerational effect of paternal morphine exposure on pain-related behaviors in rat offspring.
Collapse
|
20
|
Moazen P, Azizi H, Salmanzadeh H, Semnanian S. Adolescent morphine exposure induces immediate and long-term increases in impulsive behavior. Psychopharmacology (Berl) 2018; 235:3423-3434. [PMID: 30350222 DOI: 10.1007/s00213-018-5051-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
RATIONALE Adolescence in humans represents a unique and critical developmental time point associated with increased risk-taking behavior. Converging clinical and epidemiological studies report a peak of drug use during adolescence, leading to the hypothesis that the developing adolescents brain is at risk to lose control over drug intake. Both adolescence and drug abuse are associated with significant cognitive and psychological changes such as lack of impulse control. A simple definition for impulsive behavior is the tendency to act prematurely without foresight. Increase in impulsivity is evident in acute morphine consumption, but to date, little is known with respect to subchronic morphine administration in impulsive behavior, particularly comparing time-dependent effects in adults, young adults, and adolescents. METHODS To evaluate this, adult, young adult, and adolescent rats were treated with a subchronic regimen of morphine or saline during 5 days (s.c.). Thereafter, we examined impulsive behavioral effects of morphine administration, 24 h and 25 days after administration in rats, while responding under a five-choice serial reaction time task (5-CSRTT). RESULTS Subchronic morphine administration increased premature responding 24 h after the last injection of morphine in adult, young adult, and adolescent rats without increasing motor activity but a significant change in motivation in adult and young adult rats only. After 25 days of abstinence, premature responses were significantly increased in comparison with baseline in adolescent rats but not in adults and young adults. CONCLUSION The main conclusion of this study is that morphine exposure in adolescents has a long-term profound effect on motor impulsive behavior later in adulthood. An implication of our findings might be that we should be especially careful about consuming and prescribing opioid drugs in adolescents.
Collapse
Affiliation(s)
- Parisa Moazen
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Ghasemi E, Pachenari N, Semnanian S, Azizi H. Adolescent morphine exposure increases nociceptive behaviors in rat model of formalin test. Dev Psychobiol 2018; 61:254-260. [DOI: 10.1002/dev.21790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Elmira Ghasemi
- Department of Physiology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
22
|
Inan S, Eisenstein TK, Watson MN, Doura M, Meissler JJ, Tallarida CS, Chen X, Geller EB, Rawls SM, Cowan A, Adler MW. Coadministration of Chemokine Receptor Antagonists with Morphine Potentiates Morphine's Analgesic Effect on Incisional Pain in Rats. J Pharmacol Exp Ther 2018; 367:433-441. [PMID: 30249618 DOI: 10.1124/jpet.118.252890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Crossdesensitization between opioid and chemokine receptors and involvement of chemokines in pain modulation are well established. We investigated if coadministration of chemokine receptor antagonists (CRAs) with morphine would enhance the analgesic potency of morphine on incisional pain in rats. Animals underwent incisional surgery on the left hind paw and pain responses were evaluated using von Frey filaments at various time points postsurgery between 15 and 360 minutes and daily between 24 and 72 hours. Dose-response curves for morphine, maraviroc (a CCR5 antagonist), and AMD3100 (a CXCR4 antagonist) alone were established. While morphine significantly reduced pain in a time- and dose-dependent manner, maraviroc and AMD3100 had no effect by themselves. Coadministration of either maraviroc or AMD3100 with morphine significantly increased morphine's analgesic effect on incisional pain, shifting the dose-response curve to the left 2.3- and 1.8-fold, respectively. Coadministration of both CRAs with morphine significantly shifted further the morphine dose-response curve to the left 3.3-fold. The effect of treatments on mRNA levels in the draining popliteal lymph node for a panel of chemokines and cytokines showed that message for many of these mediators was upregulated by the incision, and the combination of morphine with the CRAs markedly downregulated them. The data show that combining morphine with CRAs potentiates morphine's analgesic effect on incisional pain. Thus, the same analgesic effect of morphine alone can be achieved with lower doses of morphine when combined with CRAs. Using morphine in lower doses could reduce unwanted side effects and possibly block development of tolerance and dependence.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Mia N Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Menahem Doura
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaohong Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Alan Cowan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
PET Imaging Reveals Brain Metabolic Changes in Adolescent Rats Following Chronic Escalating Morphine Administration. Mol Imaging Biol 2018; 20:993-1000. [DOI: 10.1007/s11307-018-1188-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Chronic adolescent morphine exposure alters the responses of lateral paragigantocellular neurons to acute morphine administration in adulthood. Brain Res Bull 2018; 137:178-186. [DOI: 10.1016/j.brainresbull.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022]
|