1
|
Mekschrat L, Straßer T, Ghassabei S, Schmalbach B, Niedling M, Petrowski K. Light Exposure on Alertness after Wake-Up in Healthy Men: Comparing Dim, Bright, Red, and Blue Light. Neuropsychobiology 2024:1-10. [PMID: 39396496 DOI: 10.1159/000541230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/16/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up. METHODS Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively. RESULTS Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06). CONCLUSION Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.
Collapse
Affiliation(s)
- Liza Mekschrat
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Torsten Straßer
- Institute for Ophthalmic Research, Center for Ophthalmic Research, Eberhart Karls University Tuebingen, Tuebingen, Germany
- University Eye Hospital, Center for Ophthalmic Research, Eberhart Karls University Tuebingen, Tuebingen, Germany
| | - Shiwa Ghassabei
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bjarne Schmalbach
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Katja Petrowski
- Medical Psychology and Medical Sociology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Bjerrum LB, Nordhus IH, Sørensen L, Wulff K, Bjorvatn B, Flo-Groeneboom E, Visted E. Acute effects of light during daytime on central aspects of attention and affect: A systematic review. Biol Psychol 2024; 192:108845. [PMID: 38981576 DOI: 10.1016/j.biopsycho.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Light regulates both image- and various non-image forming responses in humans, including acute effects on attention and affect. To advance the understanding of light's immediate effects, this systematic review describes the acute effects of monochromatic/narrow bandwidth and polychromatic white light during daytime on distinct aspects of attention (alertness, sustained attention, working memory, attentional control and flexibility), and measures of affect (self-report measures, performance-based tests, psychophysiological measures) in healthy, adult human subjects. Original, peer-reviewed (quasi-) experimental studies published between 2000 and May 2024 were included according to predefined inclusion and exclusion criteria. Study quality was assessed, and results were synthesized across aspects of attention and affect and grouped according to light interventions; monochromatic/narrowband-width or polychromatic white light (regular white, bright white, and white with high correlated color temperature (CCT)). Results from included studies (n = 62) showed that alertness and working memory were most affected by light. Electroencephalographic markers of alertness improved the most with exposure to narrow bandwidth long-wavelength light, regular white, and white light with high CCT. Self-reported alertness and measures of working memory improved the most with bright white light. Results from studies testing the acute effects on sustained attention and attentional control and flexibility were inconclusive. Performance-based and psychophysiological measures of affect were only influenced by narrow bandwidth long-wavelength light. Polychromatic white light exerted mixed effects on self-reported affect. Studies were strongly heterogeneous in terms of light stimuli characteristics and reporting of light stimuli and control of variables influencing light's acute effects.
Collapse
Affiliation(s)
| | | | - Lin Sørensen
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Katharina Wulff
- Department of Molecular Biology, Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Norway
| | | | - Endre Visted
- Department of Clinical Psychology, University of Bergen, Norway
| |
Collapse
|
3
|
Wu Z, Jin T, Chen C, Liu X, Yan J. How do different ambient temperatures and vehicle speeds affect the cognitive performance of male drivers? Evidence from ERP. TRAFFIC INJURY PREVENTION 2023; 24:271-278. [PMID: 36853172 DOI: 10.1080/15389588.2023.2181078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Excessive cold or overheating can cause a decline in driver performance and even serious traffic accidents, but the influence mechanism of ambient temperature and vehicle speeds on drivers' cognitive performance is still unclear. This research developed an easy driving simulator experiment to study driver performance under different ambient temperatures and vehicle speeds. METHOD Simulated driving tasks were performed by 30 male participants at different speeds in low, medium, and high-temperature environments. A behavioral experiment was adopted, and the average reaction time of emergency braking was used as the evaluation index of driver performance. RESULTS Both ambient temperature and vehicle speed had a statistically significant relationship with driver's braking reaction time, and the interaction effect was significant. CONCLUSION Drivers' cognitive efforts in medium-temperature environments were significantly lower than that at high and low temperatures. Compared with previous studies, this study also monitored differences in the activity of drivers' brain regions in three ambient temperatures, providing a physiological basis for measuring drivers' cognitive efforts.
Collapse
Affiliation(s)
- Zhengxin Wu
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, China
- School of Design, Jiangnan University, Wuxi, China
| | - Tao Jin
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Chunpeng Chen
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Xinyu Liu
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jiaqi Yan
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
4
|
Danilenko KV. Objective Measures of Immediate “Energizing” Effect of Light: Studies Review and Data Analysis. Clocks Sleep 2022; 4:475-496. [PMID: 36278531 PMCID: PMC9589941 DOI: 10.3390/clockssleep4040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
While the energizing effect of light has been known since the early years of light therapy, its reliable detection using objective measures is still not well-established. This review aims to ascertain the immediate energizing effect of light and determine its best indicators. Sixty-four articles published before July 2022 were included in the review. The articles described 72 (sub-)studies performed in healthy individuals. Fourteen measures were analyzed. The analysis showed that light causes an energizing effect that can be best documented by measuring core (rectal) body temperature: the proportion of the studies revealing increasing, unchanging, and decreasing rectal temperature was 13/6/1. The second most suitable indicator was heart rate (10/22/1), which showed concordant changes with rectal temperature (a trend, seven mutual studies). There is no evidence from the reviewed articles that oxygen consumption, skin conductance, blood pressure, heart rate variability, non-rectal inner temperature (combined digestive, tympanic, and oral), skin temperature, or cortisol levels can provide light effect detection. Four other measures were found to be unsuitable as well but with less certainty due to the low number of studies (≤3): skin blood flow, noradrenaline, salivary alpha-amylase, and thyroid-stimulating hormone levels. On the other hand, light exposure had a noticeable effect on sympathetic nerve activity measured using microneurography; however, this measure can be accepted as a marker only tentatively as it was employed in a single study. The analysis took into account three factors—study limitation in design/analysis, use of light in day- or nighttime, and relative brightness of the light stimulus—that were found to significantly influence some of the analyzed variables. The review indicates that the energizing effect of light in humans can be reliably detected using rectal temperature and heart rate.
Collapse
|
5
|
Carmichael KE, O’Connor PJ, Gay JL. Stair walking effects on feelings of energy and fatigue: Is 4-min enough for benefits? Front Psychol 2022; 13:895446. [PMID: 36059746 PMCID: PMC9434211 DOI: 10.3389/fpsyg.2022.895446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Even low intensity exercise bouts of at least 15 min can improve feelings of energy (FOE) and reduce systolic blood pressure. However, little is known about the psychological outcomes of briefer exercise bouts, particularly for modes of exercise that are more intense than level walking, and readily available to many working adults. This study assessed the effects of a 4-min bout of stair walking on FOE and feelings of fatigue (FOF). Methods Thirty-six young adult participants were randomized to either stair walking or seated control groups. All participants walked on level-ground from a laboratory to a nearby stairwell (~90 s) and were seated for 4 min before beginning their experimental condition. Stair-walking participants walked up and down one flight of 16 stairs at their own pace for 4 min, while control participants remained seated during that time. Participants walked back to the laboratory for post-condition assessments. Measures of blood pressure, heart rate, rated perceived exertion (RPE), and the intensity of feelings of mental energy, mental fatigue, physical energy, and physical fatigue were assessed pre-and post-condition. Separate one-way ANOVAs were conducted on change scores for all variables. Results The stair climbing group experienced significant increases in heart rate [F(1,34) = 13.167, p < 0.001] and RPE [F(1,34) = 93.844, p < 0.001] that were not observed in the seated control group. Four minutes of self-paced stair climbing resulted in small changes and non-significant differences within and between groups in blood pressure as well as FOE and FOF. Conclusion Although a 4-min self-paced exercise bout can convey short-term physiological health benefits, a 4-min bout of self-paced indoor stair walking in a stairwell was insufficient to lower blood pressure or change subjective FOE and fatigue in a sample that exhibited better than typical FOE and FOF at the pre-test.
Collapse
Affiliation(s)
| | - Patrick J. O’Connor
- Department of Health Promotion and Behavior, University of Georgia, Athens, GA, United States
| | - Jennifer L. Gay
- Department of Health Promotion and Behavior, University of Georgia, Athens, GA, United States
- *Correspondence: Jennifer L. Gay,
| |
Collapse
|
6
|
Tu D, Basner M, Smith MG, Williams ES, Ryder VE, Romoser AA, Ecker A, Aeschbach D, Stahn AC, Jones CW, Howard K, Kaizi-Lutu M, Dinges DF, Shou H. Dynamic ensemble prediction of cognitive performance in spaceflight. Sci Rep 2022; 12:11032. [PMID: 35773291 PMCID: PMC9246897 DOI: 10.1038/s41598-022-14456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
During spaceflight, astronauts face a unique set of stressors, including microgravity, isolation, and confinement, as well as environmental and operational hazards. These factors can negatively impact sleep, alertness, and neurobehavioral performance, all of which are critical to mission success. In this paper, we predict neurobehavioral performance over the course of a 6-month mission aboard the International Space Station (ISS), using ISS environmental data as well as self-reported and cognitive data collected longitudinally from 24 astronauts. Neurobehavioral performance was repeatedly assessed via a 3-min Psychomotor Vigilance Test (PVT-B) that is highly sensitive to the effects of sleep deprivation. To relate PVT-B performance to time-varying and discordantly-measured environmental, operational, and psychological covariates, we propose an ensemble prediction model comprising of linear mixed effects, random forest, and functional concurrent models. An extensive cross-validation procedure reveals that this ensemble outperforms any one of its components alone. We also identify the most important predictors of PVT-B performance, which include an individual's previous PVT-B performance, reported fatigue and stress, and temperature and radiation dose. This method is broadly applicable to settings where the main goal is accurate, individualized prediction of human behavior involving a mixture of person-level traits and irregularly measured time series.
Collapse
Affiliation(s)
- Danni Tu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, 219 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Michael G Smith
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - E Spencer Williams
- Toxicology and Environmental Chemistry, National Aeronautics and Space Administration, 2101 E NASA Pkwy, Houston, TX, 77058, USA
| | - Valerie E Ryder
- Toxicology and Environmental Chemistry, National Aeronautics and Space Administration, 2101 E NASA Pkwy, Houston, TX, 77058, USA
| | - Amelia A Romoser
- Center for Toxicology and Environmental Health LLC, 2000 Anders Ln, Kemah, TX, 77565, USA
| | - Adrian Ecker
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Linder Höhe, 51147, Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, Building 076, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander C Stahn
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Kia Howard
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Marc Kaizi-Lutu
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, 219 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Benedetti M, Maierová L, Cajochen C, Scartezzini JL, Münch M. Optimized office lighting advances melatonin phase and peripheral heat loss prior bedtime. Sci Rep 2022; 12:4267. [PMID: 35277539 PMCID: PMC8917232 DOI: 10.1038/s41598-022-07522-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 12/05/2022] Open
Abstract
Improving indoor lighting conditions at the workplace has the potential to support proper circadian entrainment of hormonal rhythms, sleep, and well-being. We tested the effects of optimized dynamic daylight and electric lighting on circadian phase of melatonin, cortisol and skin temperatures in office workers. We equipped one office room with an automated controller for blinds and electric lighting, optimized for dynamic lighting (= Test room), and a second room without any automated control (= Reference room). Young healthy participants (n = 34) spent five consecutive workdays in each room, where individual light exposure data, skin temperatures and saliva samples for melatonin and cortisol assessments were collected. Vertical illuminance in the Test room was 1177 ± 562 photopic lux (mean ± SD) , which was 320 lux higher than in the Reference room (p < 0.01). Melanopic equivalent daylight (D65) illuminance was 931 ± 484 melanopic lux in the Test room and 730 ± 390 melanopic lux in the Reference room (p < 0.01). Individual light exposures resulted in a 50 min earlier time of half-maximum accumulated illuminance in the Test than the Reference room (p < 0.05). The melatonin secretion onset and peripheral heat loss in the evening occurred significantly earlier with respect to habitual sleeptime in the Test compared to the Reference room (p < 0.05). Our findings suggest that optimized dynamic workplace lighting has the potential to promote earlier melatonin onset and peripheral heat loss prior bedtime, which may be beneficial for persons with a delayed circadian timing system.
Collapse
Affiliation(s)
- Marta Benedetti
- Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Lenka Maierová
- University Centre for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Trinecka 1024, 27343, Bustehrad, Czech Republic
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jean-Louis Scartezzini
- Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland.
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand.
| |
Collapse
|
8
|
|
9
|
Siraji MA, Kalavally V, Schaefer A, Haque S. Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review. Front Psychol 2022; 12:765750. [PMID: 35069337 PMCID: PMC8766646 DOI: 10.3389/fpsyg.2021.765750] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
This paper reports the results of a systematic review conducted on articles examining the effects of daytime electric light exposure on alertness and higher cognitive functions. For this, we selected 59 quantitative research articles from 11 online databases. The review protocol was registered with PROSPERO (CRD42020157603). The results showed that both short-wavelength dominant light exposure and higher intensity white light exposure induced alertness. However, those influences depended on factors like the participants' homeostatic sleep drive and the time of day the participants received the light exposure. The relationship between light exposure and higher cognitive functions was not as straightforward as the alerting effect. The optimal light property for higher cognitive functions was reported dependent on other factors, such as task complexity and properties of control light. Among the studies with short-wavelength dominant light exposure, ten studies (morning: 3; afternoon: 7) reported beneficial effects on simple task performances (reaction time), and four studies (morning: 3; afternoon: 1) on complex task performances. Four studies with higher intensity white light exposure (morning: 3; afternoon: 1) reported beneficial effects on simple task performance and nine studies (morning: 5; afternoon: 4) on complex task performance. Short-wavelength dominant light exposure with higher light intensity induced a beneficial effect on alertness and simple task performances. However, those effects did not hold for complex task performances. The results indicate the need for further studies to understand the influence of short-wavelength dominant light exposure with higher illuminance on alertness and higher cognitive functions.
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Alexandre Schaefer
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Shamsul Haque
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
10
|
Luo X, Ru T, Chen Q, Hsiao FC, Hung CS, Yang CM, Zhou G. Temporal Dynamics of Subjective and Objective Alertness During Exposure to Bright Light in the Afternoon for 5 h. Front Physiol 2021; 12:771605. [PMID: 34950050 PMCID: PMC8691749 DOI: 10.3389/fphys.2021.771605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Light can induce an alertness response in humans. The effects of exposure to bright light vs. dim light on the levels of alertness during the day, especially in the afternoon, as reported in the literature, are inconsistent. This study employed a multiple measurement strategy to explore the temporal variations in the effects of exposure to bright light vs. regular office light (1,200 lx vs. 200 lx at eye level, 6,500 K) on the alertness of participants for 5 h in the afternoon. In this study, 20 healthy adults (11 female; mean age 23.25 ± 2.3 years) underwent the Karolinska sleepiness scale (KSS), the auditory psychomotor vigilance test (PVT), and the waking electroencephalogram (EEG) test for two levels of light intervention. The results yielded a relatively lower relative delta power and a relatively higher beta power for the 1,200 lx condition in comparison with the 200 lx condition. However, the light conditions elicited no statistically significant differences in the KSS scores and performance with respect to the PVT. The results suggested that exposure to bright light for 5 h in the afternoon could enhance physiological arousal while exerting insignificant effects on subjective feelings and performance abilities relating to the alertness of the participants.
Collapse
Affiliation(s)
- Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Qingwei Chen
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Fan-Chi Hsiao
- Department of Counseling and Industrial/Organizational Psychology, Ming Chuan University, Taoyuan, Taiwan
| | - Ching-Sui Hung
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Chien-Ming Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,The Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Guofu Zhou
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| |
Collapse
|
11
|
Kompier ME, Smolders KCHJ, de Kort YAW. Abrupt light transitions in illuminance and correlated colour temperature result in different temporal dynamics and interindividual variability for sensation, comfort and alertness. PLoS One 2021; 16:e0243259. [PMID: 33750954 PMCID: PMC7984641 DOI: 10.1371/journal.pone.0243259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Detailed insights in both visual effects of light and effects beyond vision due to manipulations in illuminance and correlated color temperature (CCT) are needed to optimize study protocols as well as to design light scenarios for practical applications. This study investigated temporal dynamics and interindividual variability in subjective evaluations of sensation, comfort and mood as well as subjective and objective measures of alertness, arousal and thermoregulation following abrupt transitions in illuminance and CCT in a mild cold environment. The results revealed that effects could be uniquely attributed to changes in illuminance or CCT. No interaction effects of illuminance and CCT were found for any of these markers. Responses to the abrupt transitions in illuminance and CCT always occurred immediately and exclusively amongst the subjective measures. Most of these responses diminished over time within the 45-minute light manipulation. In this period, no responses were found for objective measures of vigilance, arousal or thermoregulation. Significant interindividual variability occurred only in the visual comfort evaluation in response to changes in the intensity of the light. The results indicate that the design of dynamic light scenarios aimed to enhance human alertness and vitality requires tailoring to the individual to create visually comfortable environments.
Collapse
Affiliation(s)
- Maaike E. Kompier
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Karin C. H. J. Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yvonne A. W. de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
12
|
Qiu Q, Song X, Sun C, Tan Y, Xu Y, Huang G, Zhang N, Li Z, Wei W. [Effect of general anesthesia on postoperative melatonin secretion in 4-to 6-year-old children with snoring]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:128-134. [PMID: 33509765 DOI: 10.12122/j.issn.1673-4254.2021.01.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the effect of general anesthesia on postoperative melatonin secretion in 4-to 6-year-old children with snoring. METHODS Twenty children with snoring aged 4-6 years of either gender (ASA grade Ⅰ and Ⅱ) were selected for adenoidectomy.Before, during and 3 days after the operation, salivary melatonin levels of the children were measured at 11 selected time points (T1-T11).The illumination intensity and body temperature of the children were recorded at each time point of measurement.The sleep time of the children in 3 days after the operation was recorded, and postoperative pain scores (FLACC) and Riker and Rehabilitation Quality Rating Scale-15(QoR-15) scores were assessed.Sleep Apnea Life Quality Evaluation Questionnaire (OSA-18) was used to evaluate postoperative recovery of the children at 28 days after the operation.The incidence of major adverse events of the children during hospitalization was recorded. RESULTS No significant difference was found in baseline salivary melatonin level among the 20 children before the operation.Salivary melatonin level at 7 am after the operation (T8) was significantly lowered as compared with that before the surgery (T4)(P < 0.05) but recovered at 7 am on the second day after the surgery (T11);salivary melatonin levels at T4, T8, and T11 exceeded 3 pg/mL on the third day.No significant difference was found in illumination intensity or body temperature across the time points when melatonin level was measured.The children showed no significant changes in FLACC score, Riker score or QOR- 15 score after the operation, but the OSA-18 score was significantly lowered after the operation (P < 0.05).None of the 20 children had such adverse events as respiratory depression, sinus bradycardia, sinus tachycardia, hypertension, hypotension, nausea or vomiting during hospitalization. CONCLUSIONS In preschool children with snoring, general anesthesia affects but does not inhibit melatonin secretion on the first night after surgery, and minor surgeries under general anesthesia in the morning do not cause significant changes in melatonin secretion to cause disturbance of the circadian rhythm in these children.
Collapse
Affiliation(s)
- Qianqi Qiu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Changzhi Sun
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Yonghong Tan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Yingyi Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Guiliang Huang
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Na Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Zhengke Li
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Wei
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
13
|
Effects of light transitions on measures of alertness, arousal and comfort. Physiol Behav 2020; 223:112999. [PMID: 32540333 DOI: 10.1016/j.physbeh.2020.112999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
Abstract
Knowledge on the onset, persistence, and symmetry of effects of lighting transitions on humans is relevant when designing dynamic lighting scenarios and, additionally, can shed light on the dominance of underlying mechanisms. We examined temporal trajectories in measures of alertness, arousal and comfort after abrupt lighting transitions that were created using two strongly contrasting light conditions (warm, dim lighting vs. cool, bright lighting). In this controlled within-subjects experiment, thirtyeight healthy subjects participated in four separate sessions of 90 min. Subjective experiences (alertness, comfort and mood) and objective measures of vigilance (PVT performance), arousal (HR, HRV, SCL), and thermoregulation (skin temperature and DPG) were studied. The comparison of the temporal trajectories following the transition in light for the different variables indicates a complex interplay of underlying physiological and psychological processes driving these effects.
Collapse
|
14
|
van Duijnhoven J, Aarts MPJ, Kort HSM. The importance of including position and viewing direction when measuring and assessing the lighting conditions of office workers. Work 2019; 64:877-895. [PMID: 31815706 PMCID: PMC7029336 DOI: 10.3233/wor-193028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Light and alertness studies have applied different measurement methodologies to determine lighting conditions. However, it has been demonstrated that researchers rarely measure or describe the lighting conditions of their studies in sufficient detail to generalize conclusions or derive universal guidelines. OBJECTIVE Part I of this paper summarizes the current measurement methodologies used in light and alertness studies to potentially identify methodological issues. Part II determines the differences in lighting conditions for different viewing directions within an office environment. METHODS A literature review (part I) and both experimental studies and an observational study (part II) were undertaken in this study. RESULTS Part I demonstrates that most light and alertness studies include photometric quantities; however, it is recommended that one should measure radiometric quantities as well. Further, the light measurements should be performed at the individual level. Part II demonstrates large differences in lighting conditions between viewing directions. For example, when looking toward the window, vertical illuminances were at least 12 times higher when compared to looking in the opposite direction. CONCLUSIONS Our findings suggest that when analysing or designing an office environment, office workers' positions and viewing direction should be included in the determination of personal lighting conditions.
Collapse
Affiliation(s)
- J van Duijnhoven
- Department of the Built Environment, Eindhoven University of Technology, Building Lighting Group, Eindhoven, The Netherlands.,Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - M P J Aarts
- Department of the Built Environment, Eindhoven University of Technology, Building Lighting Group, Eindhoven, The Netherlands.,Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - H S M Kort
- University of Applied Sciences Utrecht, Research Centre for Sustainable and Healthy Living, Utrecht, The Netherlands.,Department of the Built Environment, Eindhoven University of Technology, Building Healthy Environments for Future Users Group, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Zhu W, Jia L, Chen G, Li X, Meng X, Xing L, Zhao H. Relationships between the changes of skin temperature and radiation skin injury. Int J Hyperthermia 2019; 36:1160-1167. [PMID: 31752541 DOI: 10.1080/02656736.2019.1685685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Radiation skin injury (RSI) causes changes in skin temperature, but detailed information on the thermographic responses is currently lacking. We investigated thermographic patterns after radiotherapy. We hypothesized that skin temperature may be used as a diagnostic and early predictor of RSI severity.Method: All breast cancer patients received radiotherapy after unilateral postmastectomy. The contralateral supraclavicular area served as control, and the frontal thermal image of torso was taken by a thermal infrared imager weekly. We defined areas of interest on bilateral symmetrical supraclavicular area, and analyzed the difference of average and maximum skin temperature (DSTaverage and DSTmax) between them. The extent of the weekly variation in DST (DSTW) was calculated using a mathematical formula to represent a trend of skin temperature change. RSI and symptoms related to RSI were scored from baseline to 2 weeks after the end of radiotherapy.Results: Forty-one patients were enrolled in this study. In comparison to the baseline, the DSTaverage and DSTmax increased significantly over time during radiotherapy (p < .05). The onset of DST increase was accompanied by the onset of radiation dermatitis, and the maximal DST also appeared at the peak of Radiation Therapy Oncology Group (RTOG) and symptom scores. Radiation dose, DSTaverage, burning-feeling and pulling were the independent variables affecting RTOG score according to multivariate analysis (p < .001, p < .034, p < .001, p < .001). Patients with DSTWaverage >1.223 or DSTWmax >1.114 in second week showed a late higher dermatitis score (RTOG score ≥2).Conclusion: This study confirmed that RSI was associated with thermographic response. Our results suggested that the follow-up observations of skin temperature during radiotherapy could provide the objective evaluation criteria and prediction methods for RSI.
Collapse
Affiliation(s)
- Wanqi Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Jia
- Department of Radiation Oncology, Jinan Fourth People's Hospital, Jinan, China
| | - Guanxuan Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Key Laboratory of Radiation Oncology, Jinan, China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hanxi Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Te Kulve M, Schlangen LJM, van Marken Lichtenbelt WD. Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Sci Rep 2019; 9:16064. [PMID: 31690740 PMCID: PMC6831674 DOI: 10.1038/s41598-019-52352-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
The widespread use of electric light and electronic devices has resulted in an excessive exposure to light during the late-evening and at night. This late light exposure acutely suppresses melatonin and sleepiness and delays the circadian clock. Here we investigate whether the acute effects of late-evening light exposure on our physiology and sleepiness are reduced when this light exposure is preceded by early evening bright light. Twelve healthy young females were included in a randomised crossover study. All participants underwent three evening (18:30-00:30) sessions during which melatonin, subjective sleepiness, body temperature and skin blood flow were measured under different light conditions: (A) dim light, (B) dim light with a late-evening (22:30-23:30) light exposure of 750 lx, 4000 K, and (C) the same late-evening light exposure, but now preceded by early-evening bright light exposure (18.30-21.00; 1200 lx, 4000 K). Late-evening light exposure reduced melatonin levels and subjective sleepiness and resulted in larger skin temperature gradients as compared to dim. Interestingly, these effects were reduced when the late-evening light was preceded by an early evening 2.5-hour bright light exposure. Thus daytime and early-evening exposure to bright light can mitigate some of the sleep-disruptive consequences of light exposure in the later evening.
Collapse
Affiliation(s)
- Marije Te Kulve
- Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands. .,bba indoor environmental consultancy, The Hague, The Netherlands.
| | - Luc J M Schlangen
- Intelligent Lighting Institute, Department of Human Technology Interaction, Eindhoven University of Technology, Eindhoven, The Netherlands.,Signify, Eindhoven, The Netherlands
| | | |
Collapse
|
17
|
Lok R, van Koningsveld MJ, Gordijn MCM, Beersma DGM, Hut RA. Daytime melatonin and light independently affect human alertness and body temperature. J Pineal Res 2019; 67:e12583. [PMID: 31033013 PMCID: PMC6767594 DOI: 10.1111/jpi.12583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/01/2022]
Abstract
Light significantly improves alertness during the night (Cajochen, Sleep Med Rev, 11, 2007 and 453; Ruger et al., AJP Regul Integr Comp Physiol, 290, 2005 and R1413), but results are less conclusive at daytime (Lok et al., J Biol Rhythms, 33, 2018 and 589). Melatonin and core body temperature levels at those times of day may contribute to differences in alerting effects of light. In this experiment, the combined effect of daytime exogenous melatonin administration and light intensity on alertness, body temperature, and skin temperature was studied. The goal was to assess whether (a) alerting effects of light are melatonin dependent, (b) soporific effects of melatonin are mediated via the thermoregulatory system, and (c) light can improve alertness after melatonin-induced sleepiness during daytime. 10 subjects (5 females, 5 males) received melatonin (5 mg) in dim (10 lux) and, on a separate occasion, in bright polychromatic white light (2000 lux). In addition, they received placebo both under dim and bright light conditions. Subjects participated in all four conditions in a balanced order, yielding a balanced within-subject design, lasting from noon to 04:00 pm. Alertness and performance were assessed half hourly, while body temperature and skin temperature were measured continuously. Saliva samples to detect melatonin concentrations were collected half hourly. Melatonin administration increased melatonin concentrations in all subjects. Subjective sleepiness and distal skin temperature increased after melatonin ingestion. Bright light exposure after melatonin administration did not change subjective alertness scores, but body temperature and proximal skin temperature increased, while distal skin temperature decreased. Light exposure did not significantly affect these parameters in the placebo condition. These results indicate that (a) exogenous melatonin administration during daytime increases subjective sleepiness, confirming a role for melatonin in sleepiness regulation, (b) bright light exposure after melatonin ingestion significantly affected thermoregulatory parameters without altering subjective sleepiness, therefore temperature changes seem nonessential for melatonin-induced sleepiness, (c) subjective sleepiness was increased by melatonin ingestion, but bright light administration was not able to improve melatonin-induced sleepiness feelings nor performance. Other (physiological) factors may therefore contribute to differences in alerting effects of light during daytime and nighttime.
Collapse
Affiliation(s)
- Renske Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Minke J. van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Marijke C. M. Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Chrono@WorkGroningenThe Netherlands
| | - Domien G. M. Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
18
|
de Zeeuw J, Papakonstantinou A, Nowozin C, Stotz S, Zaleska M, Hädel S, Bes F, Münch M, Kunz D. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime. J Biol Rhythms 2019; 34:410-431. [PMID: 31156018 PMCID: PMC6637815 DOI: 10.1177/0748730419847845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nighttime melatonin suppression is the most commonly used method to indirectly quantify acute nonvisual light effects. Since light is the principal zeitgeber in humans, there is a need to assess its strength during daytime as well. This is especially important since humans evolved under natural daylight but now often spend their time indoors under artificial light, resulting in a different quality and quantity of light. We tested whether the pupillary light response (PLR) could be used as a marker for nonvisual light effects during daytime. We also recorded the wake electroencephalogram to objectively determine changes in daytime sleepiness between different illuminance levels and/or spectral compositions of light. In total, 72 participants visited the laboratory 4 times for 3-h light exposures. All participants underwent a dim-light condition and either 3 metameric daytime light exposures with different spectral compositions of polychromatic white light (100 photopic lux, peak wavelengths at 435 nm or 480 nm, enriched with longer wavelengths of light) or 3 different illuminances (200, 600, and 1200 photopic lux) with 1 metameric lighting condition (peak wavelength at 435 nm or 480 nm; 24 participants each). The results show that the PLR was sensitive to both spectral differences between metameric lighting conditions and different illuminances in a dose-responsive manner, depending on melanopic irradiance. Objective sleepiness was significantly reduced, depending on melanopic irradiance, at low illuminance (100 lux) and showed fewer differences at higher illuminance. Since many people are exposed to such low illuminance for most of their day—living in biological darkness—our results imply that optimizing the light spectrum could be important to improve daytime alertness. Our results suggest the PLR as a noninvasive physiological marker for ambient light exposure effects during daytime. These findings may be applied to assess light-dependent zeitgeber strength and evaluate lighting improvements at workplaces, schools, hospitals, and homes.
Collapse
Affiliation(s)
- Jan de Zeeuw
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,Intellux GmbH, Berlin, Germany
| | - Alexandra Papakonstantinou
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Claudia Nowozin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Sophia Stotz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | | | - Sven Hädel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology
| | - Frederik Bes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| | - Mirjam Münch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Laboratory of Chronobiology.,Sleep/Wake Research Centre, Massey University, Wellington, New Zealand
| | - Dieter Kunz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology.,Intellux GmbH, Berlin, Germany.,St. Hedwig-Hospital, Clinic for Sleep & Chronomedicine, Berlin
| |
Collapse
|
19
|
van Marken Lichtenbelt WD, Pallubinsky H, Te Kulve M. Modulation of thermogenesis and metabolic health: a built environment perspective. Obes Rev 2018; 19 Suppl 1:94-101. [PMID: 30511507 DOI: 10.1111/obr.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023]
Abstract
Lifestyle interventions, obviating the increasing prevalence of the metabolic syndrome, generally focus on nutrition and physical activity. Environmental factors are hardly covered. Because we spend on average more that 90% of our time indoors, it is, however, relevant to address these factors. In the built environment, the attention has been limited to the (assessment and optimization of) building performance and occupant thermal comfort for a long time. Only recently well-being and health of building occupants are also considered to some extent, but actual metabolic health aspects are not generally covered. In this review, we draw attention to the potential of the commonly neglected lifestyle factor 'indoor environment'. More specifically, we review current knowledge and the developments of new insights into the effects of ambient temperature, light and the interaction of the two on metabolic health. The literature shows that the effects of indoor environmental factors are important additional factors for a healthy lifestyle and have an impact on metabolic health.
Collapse
Affiliation(s)
- W D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Pallubinsky
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands
| | - M Te Kulve
- Department of Nutrition and Movement Sciences, NUTRIM Maastricht University Medical Center, Maastricht, The Netherlands.,BBA Binnenmilieu, The Hague, The Netherlands
| |
Collapse
|
20
|
Te Kulve M, Schlangen L, van Marken Lichtenbelt W. Interactions between the perception of light and temperature. INDOOR AIR 2018; 28:881-891. [PMID: 30113746 DOI: 10.1111/ina.12500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 05/14/2023]
Abstract
Expanding the acceptable range of indoor temperatures allows to reduce building energy consumption and may be beneficial for health. Therefore, we explored whether light conditions can be used to influence thermal perception under various ambient temperatures. In two laboratory experiments, we tested the effect of the correlated color temperature of light (2700 K and 5800 K) and its intensity (5 and 1200 lux) on thermal perception. The light exposures were provided during cool, neutral, and warm thermal conditions. Cold-induced perceived shivering was higher for the 5800 K light exposure. All other parameters related to thermal perception did not significantly differ between the light exposures. Interestingly, the other way around, an increasing ambient temperature resulted in a warmer perception of the light color. In every light condition, it appeared that the perceived light intensity was closest to neutral under the thermoneutral condition. Between different light sessions, the change in visual comfort and the change in thermal comfort were positively related. The main conclusion therefore is that thermal discomfort can be partly compensated by lighting that results in a higher perceived visual comfort. Field studies are required to demonstrate whether lighting can enable new strategies to improve indoor environmental workplace satisfaction.
Collapse
Affiliation(s)
- Marije Te Kulve
- Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Luc Schlangen
- Philips Lighting Research, Eindhoven, The Netherlands
| | | |
Collapse
|
21
|
Lok R, Smolders KCHJ, Beersma DGM, de Kort YAW. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J Biol Rhythms 2018; 33:589-601. [PMID: 30191746 PMCID: PMC6236641 DOI: 10.1177/0748730418796443] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light is known to elicit non-image-forming responses, such as effects on alertness. This has been reported especially during light exposure at night. Nighttime results might not be translatable to the day. This article aims to provide an overview of (1) neural mechanisms regulating alertness, (2) ways of measuring and quantifying alertness, and (3) the current literature specifically regarding effects of different intensities of white light on various measures and correlates of alertness during the daytime. In general, the present literature provides inconclusive results on alerting effects of the intensity of white light during daytime, particularly for objective measures and correlates of alertness. However, the various research paradigms employed in earlier studies differed substantially, and most studies tested only a limited set of lighting conditions. Therefore, the alerting potential of exposure to more intense white light should be investigated in a systematic, dose-dependent manner with multiple correlates of alertness and within one experimental paradigm over the course of day.
Collapse
Affiliation(s)
- Renske Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Karin C H J Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Yvonne A W de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
22
|
te Kulve M, Schlangen L, Schellen L, Souman JL, van Marken Lichtenbelt W. Correlated colour temperature of morning light influences alertness and body temperature. Physiol Behav 2018; 185:1-13. [DOI: 10.1016/j.physbeh.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
|