1
|
Nakatomi C, Sako N, Miyamura Y, Horie S, Shikayama T, Morii A, Naniwa M, Hsu CC, Ono K. Novel approaches to the study of viscosity discrimination in rodents. Sci Rep 2022; 12:16448. [PMID: 36180505 PMCID: PMC9525710 DOI: 10.1038/s41598-022-20441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Texture has enormous effects on food preferences. The materials used to study texture discrimination also have tastes that experimental animal can detect; therefore, such studies must be designed to exclude taste differences. In this study, to minimize the effects of material tastes, we utilized high- and low-viscosity forms of carboxymethyl cellulose (CMC-H and CMC-L, respectively) at the same concentrations (0.1-3%) for viscosity discrimination tests in rats. In two-bottle preference tests of water and CMC, rats avoided CMC-H solutions above 1% (63 mPa·s) but did not avoid less viscous CMC-L solutions with equivalent taste magnitudes, suggesting that rats spontaneously avoided high viscosity. To evaluate low-viscosity discrimination, we performed conditioned aversion tests to 0.1% CMC, which initially showed a comparable preference ratio to water in the two-bottle preference tests. Conditioning with 0.1% CMC-L (1.5 mPa·s) did not induce aversion to 0.1% CMC-L or CMC-H. However, rats acquired a conditioned aversion to 0.1% CMC-H (3.6 mPa·s) even after latent inhibition to CMC taste by pre-exposure to 0.1% CMC-L. These results suggest that rats can discriminate considerably low viscosity independent of CMC taste. This novel approach for viscosity discrimination can be used to investigate the mechanisms of texture perception in mammals.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Noritaka Sako
- Department of Oral Physiology, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Seiwa Horie
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Takemi Shikayama
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan.
| |
Collapse
|
2
|
Gaspari L, Paris F, Kalfa N, Soyer-Gobillard MO, Sultan C, Hamamah S. Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. Int J Mol Sci 2021; 22:ijms22169091. [PMID: 34445797 PMCID: PMC8396488 DOI: 10.3390/ijms22169091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that endocrine disruptors (EDs) can promote the transgenerational inheritance of disease susceptibility. Among the many existing EDs, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) affects reproductive health, including in humans, following direct occupational exposure or environmental disasters, for instance the Agent Orange sprayed during the Vietnam War. Conversely, few studies have focused on TCDD multigenerational and transgenerational effects on human reproductive health, despite the high amount of evidence in animal models of such effects on male and female reproductive health that mimic human reproductive system disorders. Importantly, these studies show that paternal ancestral TCDD exposure substantially contributes to pregnancy outcome and fetal health, although pregnancy outcome is considered tightly related to the woman’s health. In this work, we conducted a systematic review of the literature and a knowledge synthesis in order (i) to describe the findings obtained in rodent models concerning TCDD transgenerational effects on reproductive health and (ii) to discuss the epigenetic molecular alterations that might be involved in this process. As ancestral toxicant exposure cannot be changed in humans, identifying the crucial reproductive functions that are negatively affected by such exposure may help clinicians to preserve male and female fertility and to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Nicolas Kalfa
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- Département de Chirurgie Viscérale et Urologique Pédiatrique, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France
- Institut Debrest de Santé Publique IDESP, UMR INSERM, University of Montpellier, 34090 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- CNRS, Sorbonne University, 75006 Paris, France;
- Association Hhorages-France, 95270 Asnières-sur-Oise, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
| | - Samir Hamamah
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- Département de Biologie de la Reproduction, Biologie de la Reproduction/DPI et CECOS, CHU Montpellier, University of Montpellier, 34090 Montpellier, France
- Correspondence: ; Fax: +33-4-67-33-62-90
| |
Collapse
|
3
|
Pohjanvirta R, Karppinen I, Galbán-Velázquez S, Esteban J, Håkansson H, Sankari S, Lindén J. Effects of a high-fat diet and global aryl hydrocarbon receptor deficiency on energy balance and liver retinoid status in male Sprague-Dawley rats. J Nutr Biochem 2021; 95:108762. [PMID: 33965534 DOI: 10.1016/j.jnutbio.2021.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
The physiological functions of the aryl hydrocarbon receptor (AHR) are only beginning to unfold. Studies in wildtype and AHR knockout (AHRKO) mice have recently disclosed that AHR activity is required for obesity and steatohepatitis to develop when mice are fed with a high-fat diet (HFD). In addition, a line of AHRKO mouse has been reported to accumulate retinoids in the liver. Whether these are universal manifestations across species related to AHR activity level is not known yet. Therefore, we here subjected wildtype and AHRKO male rats (on Sprague-Dawley background) to HFD feeding coupled with free access to 10% sucrose solution and water; controls received a standard diet and water. Although the HFD-fed rats consumed more energy throughout the 24-week feeding regimen, they did not get overweight. However, relative weights of the brown and epididymal adipose tissues were elevated in HFD-fed rats, while that of the liver was lower in AHRKO than wildtype rats. Moreover, the four groups exhibited diet- or genotype-dependent differences in biochemical variables, some of which suggested marked dissimilarities from AHRKO mice. Expression of pro- and anti-inflammatory genes was induced in livers of HFD-fed AHRKO rats, but histologically they did not differ from others. HFD reduced the hepatic concentrations of retinyl palmitate, 9-cis-4-oxo-13,14-dihydroretinoic acid and (suggestively) retinol, whereas AHR status had no effect. Hence, the background strain/line of AHRKO rat is resistant to diet-induced obesity, and AHR does not modulate this or liver retinoid concentrations. Yet, subtle AHR-dependent differences in energy balance-related factors exist despite similar weight development.
Collapse
Affiliation(s)
- Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Ira Karppinen
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Satu Sankari
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jere Lindén
- FCLAP, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|