1
|
McDougle M, de Araujo A, Singh A, Yang M, Braga I, Paille V, Mendez-Hernandez R, Vergara M, Woodie LN, Gour A, Sharma A, Urs N, Warren B, de Lartigue G. Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating. Cell Metab 2024; 36:393-407.e7. [PMID: 38242133 DOI: 10.1016/j.cmet.2023.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.
Collapse
Affiliation(s)
- Molly McDougle
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan de Araujo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Arashdeep Singh
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingxin Yang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Isadora Braga
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent Paille
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; UMR1280 Physiopathologie des adaptations nutritionnelles, INRAE, Institut des maladies de l'appareil digestif, Université de Nantes, Nantes, France
| | - Rebeca Mendez-Hernandez
- Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Macarena Vergara
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Lauren N Woodie
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek Gour
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Nikhil Urs
- Department of Pharmacology, University of Florida, Gainesville, FL, USA
| | - Brandon Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; Monell Chemical Senses Center, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. Mol Metab 2023; 78:101833. [PMID: 37925021 PMCID: PMC10665654 DOI: 10.1016/j.molmet.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). METHODS Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. RESULTS We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. CONCLUSIONS Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T Nyema
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Heather M Schneps
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558483. [PMID: 37786670 PMCID: PMC10541598 DOI: 10.1101/2023.09.19.558483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Objective The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). Methods Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. Results We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. Conclusions Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and update these associations on fast timescales. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T. Nyema
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | - Aaron D. McKnight
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - Heather M. Schneps
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | - Amber L. Alhadeff
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
4
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|