1
|
Liang Q, Liu D, Zhu B, Wang F. NMDAR-CaMKII Pathway as a Central Regulator of Aggressiveness: Evidence from Transcriptomic and Metabolomic Analysis in Swimming Crabs Portunus trituberculatus. Int J Mol Sci 2024; 25:12560. [PMID: 39684272 DOI: 10.3390/ijms252312560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Aggressiveness is one of the personality traits of crustaceans, playing a crucial role in their growth, life history, and adaptability by influencing resource acquisition. However, the neuroregulatory mechanisms of aggressiveness in crustaceans remain poorly understood. The thoracic ganglion offers valuable insights into complementary aspects of aggression control. This study identified the aggressiveness of swimming crabs Portunus trituberculatus, conducted transcriptomic and metabolomic analyses of the thoracic ganglia, and confirmed the neural regulatory effects on aggressiveness. Behavioral analyses showed that highly aggressive individuals exhibited increased frequency and duration of chela extension, more frequent attacks, approaches and retreats, as well as extended movement distances. Omics analysis revealed 11 key candidate genes and three metabolites associated with aggressiveness, which were primarily enriched in pathways related to energy metabolism and neurodegeneration. Injection of an NMDAR activator significantly decreased aggressiveness in highly aggressive crabs, accompanied by a significant increase in NMDAR protein fluorescence intensity and downregulation of NR2B, CaMKII, and CREB genes. Conversely, when lowly aggressive crabs were injected with an NMDAR inhibitor, they showed increased aggressiveness alongside significantly decreased NMDAR protein fluorescence intensity, upregulated NR2B expression, and downregulated CaMKII and CREB genes. These results suggest that NMDAR within the thoracic ganglia serves as a key receptor in modulating aggressiveness in P. trituberculatus, potentially by influencing neural energy state via the NMDAR-CaMKII pathway, which in turn affects oxidative phosphorylation, cAMP, and FoxO pathways.
Collapse
Affiliation(s)
- Qihang Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Wu B, Zhao C, Zheng X, Peng Z, Liu M. Observation of Agonistic Behavior in Pacific White Shrimp ( Litopenaeus vannamei) and Transcriptome Analysis. Animals (Basel) 2024; 14:1691. [PMID: 38891739 PMCID: PMC11171402 DOI: 10.3390/ani14111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Agonistic behavior has been identified as a limiting factor in the development of intensive L. vannamei aquaculture. However, the characteristics and molecular mechanisms underlying agonistic behavior in L. vannamei remain unclear. In this study, we quantified agonistic behavior through a behavioral observation system and generated a comprehensive database of eyestalk and brain ganglion tissues obtained from both aggressive and nonaggressive L. vannamei employing transcriptome analysis. The results showed that there were nine behavior patterns in L. vannamei which were correlated, and the fighting followed a specific process. Transcriptome analysis revealed 5083 differentially expressed genes (DEGs) in eyestalk and 1239 DEGs in brain ganglion between aggressive and nonaggressive L. vannamei. Moreover, these DEGs were primarily enriched in the pathways related to the energy metabolism process and signal transduction. Specifically, the phototransduction (dme04745) signaling pathway emerges as a potential key pathway for the adjustment of the L. vannamei agonistic behavior. The G protein-coupled receptor kinase 1-like (LOC113809193) was screened out as a significant candidate gene within the phototransduction pathway. Therefore, these findings contribute to an enhanced comprehension of crustacean agonistic behavior and provide a theoretical basis for the selection and breeding of L. vannamei varieties suitable for high-density aquaculture environments.
Collapse
Affiliation(s)
- Bo Wu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315000, China; (B.W.); (C.Z.); (X.Z.)
| | - Chenxi Zhao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315000, China; (B.W.); (C.Z.); (X.Z.)
| | - Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315000, China; (B.W.); (C.Z.); (X.Z.)
| | - Zhilan Peng
- Zhejiang Engineering Research Center for Aquacultural Seeds Industry and Green Cultivation Technologies, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315000, China;
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315000, China; (B.W.); (C.Z.); (X.Z.)
| |
Collapse
|
3
|
Pang YY, Zhang JY, Chen Q, Niu C, Shi AY, Zhang DX, Ma XL, Zhang Y, Song YM, Hou MN, Shi XL, Yang XZ, Cheng YX. Effects of dietary L-tryptophan supplementation on agonistic behavior, feeding behavior, growth performance, and nutritional composition of the Chinese mitten crab (Eriocheir sinensis). AQUACULTURE REPORTS 2024; 35:101985. [DOI: 10.1016/j.aqrep.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Liang Q, Zhu B, Liu D, Lu Y, Zhang H, Wang F. Serotonin and dopamine regulate the aggressiveness of swimming crabs (Portunus trituberculatus) in different ways. Physiol Behav 2023; 263:114135. [PMID: 36813219 DOI: 10.1016/j.physbeh.2023.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Bioamines act as a pivotal part in the regulation of aggressive behavior in animals as a type of neuroendocrine, but the patterns of how they regulate aggressiveness in crustaceans are still unclear due to species-specific responses. To determine the effects of serotonin (5-HT) and dopamine (DA) on the aggressiveness of swimming crabs (Portunus trituberculatus), we quantified their behavioral and physiological characteristics. The results showed that an injection of 5-HT at 0.5 mmol L-1 and 5 mmol L-1 could significantly enhance the aggressiveness of swimming crabs, as well as an injection of DA at 5 mmol L-1. The regulation of 5-HT and DA on aggressiveness is dose-dependent, and these two bioamines have different concentration thresholds that can trigger aggressiveness changes. 5-HT could up-regulate the 5-HTR1 gene expression and increase lactate content at the thoracic ganglion as the aggressiveness enhances, suggesting that 5-HT may activate related receptors and neuronal excitability to regulate aggressiveness. As a result of DA injection at 5 mmol L-1, lactate content in the chela muscle and hemolymph increased, glucose content in the hemolymph increased, and the CHH gene was significantly up-regulated. Pyruvate kinase and hexokinase enzyme activities in the hemolymph increased, which accelerated the glycolysis process. These results demonstrate that DA regulates the lactate cycle, which provides substantial short-term energy for aggressive behavior. Both 5-HT and DA can mediate aggressive behavior in the crab by activating calcium regulation in muscle tissue. We conclude that the enhancement of aggressiveness is a process of energy consumption, in which 5-HT acts on the central nervous system to induce aggressive behavior, and DA affects muscle and hepatopancreas tissue to provide a large amount of energy. This study expands upon the knowledge of regulatory mechanisms of aggressiveness in crustaceans and offers a theoretical foundation for enhancing crab culture management.
Collapse
Affiliation(s)
- Qihang Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Yunliang Lu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hanzun Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, Shandong, China
| |
Collapse
|
5
|
Identification and Characterization of 5-HT Receptor 1 from Scylla paramamosain: The Essential Roles of 5-HT and Its Receptor Gene during Aggressive Behavior in Crab Species. Int J Mol Sci 2023; 24:ijms24044211. [PMID: 36835632 PMCID: PMC9960410 DOI: 10.3390/ijms24044211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biogenic amines (BAs) play an important role in the aggressive behavior of crustaceans. In mammals and birds, 5-HT and its receptor genes (5-HTRs) are characterized as essential regulators involved in neural signaling pathways during aggressive behavior. However, only one 5-HTR transcript has been reported in crabs. In this study, the full-length cDNA of the 5-HTR1 gene, named Sp5-HTR1, was first isolated from the muscle of the mud crab Scylla paramamosain using the reverse-transcription polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) methods. The transcript encoded a peptide of 587 amino acid residues with a molecular mass of 63.36 kDa. Western blot results indicate that the 5-HTR1 protein was expressed at the highest level in the thoracic ganglion. Furthermore, the results of quantitative real-time PCR show that the expression levels of Sp5-HTR1 in the ganglion at 0.5, 1, 2, and 4 h after 5-HT injection were significantly upregulated compared with the control group (p < 0.05). Meanwhile, the behavioral changes in 5-HT-injected crabs were analyzed with EthoVision. After 0.5 h of injection, the speed and movement distance of the crab, the duration of aggressive behavior, and the intensity of aggressiveness in the low-5-HT-concentration injection group were significantly higher than those in the saline-injection and control groups (p < 0.05). In this study, we found that the Sp5-HTR1 gene plays a role in the regulation of aggressive behavior by BAs, including 5-HT in the mud crab. The results provide reference data for the analysis of the genetic mechanism of aggressive behaviors in crabs.
Collapse
|
6
|
Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, Li E, Qin J, Chen L. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114399. [PMID: 36508784 DOI: 10.1016/j.ecoenv.2022.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 μg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 μg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 μg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
7
|
Jiang H, Bao J, Cao G, Xing Y, Feng C, Hu Q, Li X, Chen Q. Experimental Transmission of the Yeast, Metschnikowia bicuspidata, in the Chinese Mitten Crab, Eriocheir sinensis. J Fungi (Basel) 2022; 8:jof8020210. [PMID: 35205964 PMCID: PMC8876508 DOI: 10.3390/jof8020210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
The Chinese mitten crab, Eriocheirsinensis, is an important farmed crustacean species in China, outranking other farmed crabs in yield and economic importance. An infection called "milky disease", caused by the yeast, Metschnikowiabicuspidata, has emerged in E. sinensis farms in northeast China and has caused progressive economic losses. The diseased crabs present with opaque, whitish muscles and milky hemolymph. Currently, there are no effective drugs to treat the infection. Clarifying the transmission route of M. bicuspidata would help to treat and prevent the disease. We investigated the effects of three different M. bicuspidata infection methods (feeding, immersion, and cohabitation) on E. sinensis. All three infection methods led to a high infection rate in healthy crabs. After 35 d, the infection rate was 76.7%, 66.7%, and 53.3% in the feeding, immersion, and cohabitation groups, respectively. Diseased crabs exhibited the typical symptom of hemolymph emulsification, with a high pathogen load of M. bicuspidata. The yeast was not detected in the oocytes of infected crabs. Fertilized embryos, zoea larvae, and megalopae of infected ovigerous crabs tested negative for yeast, indicating that direct transmission from mother to offspring does not occur. Our results highlight avenues for the prevention and control of this yeast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qijun Chen
- Correspondence: ; Tel./Fax: +86-024-8848-7156
| |
Collapse
|
8
|
Pang YY, Huang GY, Song YM, Song XZ, Lv JH, He L, Niu C, Shi AY, Shi XL, Cheng YX, Yang XZ. Effects of miR-143 and its target receptor 5-HT2B on agonistic behavior in the Chinese mitten crab (Eriocheir sinensis). Sci Rep 2021; 11:4492. [PMID: 33627750 PMCID: PMC7904944 DOI: 10.1038/s41598-021-83984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5′-UTR (untranslated region), a 779 bp 3′-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3′-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xiao- Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ao-Ya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xing-Liang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
9
|
Pang Y, He L, Song Y, Song X, Lv J, Cheng Y, Yang X. Identification and Integrated Analysis of MicroRNA and mRNA Expression Profiles During Agonistic Behavior in Chinese Mitten Crab ( Eriocheir sinensis) Using a Deep Sequencing Approach. Front Genet 2020; 11:321. [PMID: 32391050 PMCID: PMC7191074 DOI: 10.3389/fgene.2020.00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
As a commercially important species, the Chinese mitten crab (Eriocheir sinensis) has been cultured for a long time in China. Agonistic behavior often causes limb disability and requires much energy, which is harmful to the growth and survival of crabs. In this paper, we divided crabs into a control group (control, no treatment) and an experimental group (fight, agonistic behavior after 1 h) and then collected the thoracic ganglia (TG) to extract RNA. Subsequently, we first used a deep sequencing approach to examine the transcripts of microRNAs (miRNAs) and messenger RNAs (mRNAs) in E. sinensis displaying agonistic behavior. According to the results, we found 29 significant differentially expressed miRNAs (DEMs) and 116 significant differentially expressed unigenes (DEGs). The DEMs esi-miR-199a-5p, esi-let-7d, esi-miR-200a, and esi-miR-200b might participate in the regulation of agonistic behavior by mediating neuroregulation and energy metabolism. Focusing on the transcripts of the mRNAs, the renin–angiotensin system (RAS) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway might be involved in the regulation of agonistic behavior through glucose metabolism as this pathway was significantly enriched with DEGs. Besides, an integrated analysis of the miRNA and mRNA profiles revealed that the retinoid X receptor (RXR) was also involved in visual signal transduction, which was important for agonistic behavior. In addition, four vital agonistic behavior-related metabolic pathways, including the cAMP signaling, MAPK, protein digestion and absorption, and fatty acid metabolism pathways, were significantly enriched with the predicted target unigenes. In conclusion, the findings of this study might provide important insight enhancing our understanding of the underlying molecular mechanisms of agonistic behavior in E. sinensis.
Collapse
Affiliation(s)
- Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiahuan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Pang YY, Song YM, Zhang L, Song XZ, Zhang C, Lv JH, He L, Cheng YX, Yang XZ. 5-HT2B, 5-HT7, and DA2 Receptors Mediate the Effects of 5-HT and DA on Agonistic Behavior of the Chinese Mitten Crab ( Eriocheir sinensis). ACS Chem Neurosci 2019; 10:4502-4510. [PMID: 31642670 DOI: 10.1021/acschemneuro.9b00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a commercially important crab in China and is usually managed at high stocking densities. Agonistic behavior directly impacts crab integrity, survival, and growth and results in economic losses. In the present study, we evaluated the modulatory effects of serotonin (5-HT) and dopamine (DA) though the 5-HT2 and DA2 receptor-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway on agonistic behavior. The results showed that injection of either 10-6 mol/crab 5-HT or DA reduced the agonistic behavior of E. sinensis (P < 0.05), as did 10-10 mol/crab DA and 10-8 mol/crab 5-HT and DA (P < 0.05); however, a dose of 10-10 mol/crab 5-HT promoted agonistic behavior. 5-HT significantly increased the mRNA expression level of 5-HT7 receptor and reduced that of the DA2 receptor in the cerebral ganglion (P < 0.05). In contrast to 5-HT, DA significantly decreased 5-HT2B mRNA levels and increased 5-HT7 and DA2 receptor levels in the thoracic ganglia (P < 0.05). In addition, injections of either 5-HT or DA increased the cAMP and PKA levels in hemolymph (P < 0.05). By using in vitro culture of the thoracic ganglia, the current study showed that ketanserin (5-HT2 antagonist) and [R(-)-TNPA] (DA2 agonist) had obvious effects on the expression levels of the two receptors (P < 0.05). In vivo experiments further demonstrated that ketanserin and [R(-)-TNPA] could both significantly reduce the agonistic behavior of the crabs (P < 0.05). Furthermore, both ketanserin and [R(-)-TNPA] promoted the cAMP and PKA levels (P < 0.05). The injection of CPT-cAMP (cAMP analogue) elevated the PKA levels and inhibited agonistic behavior. In summary, this study showed that 5HT-2B and DA2 receptors were involved in the agonistic behavior that 5-HT/DA induced through the cAMP-PKA pathway in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|