1
|
Ribeiro FM, Anderson M, Aguiar S, Gabriela E, Petriz B, Franco OL. Systematic review and meta-analysis of gut peptides expression during fasting and postprandial states in individuals with obesity. Nutr Res 2024; 127:27-39. [PMID: 38843565 DOI: 10.1016/j.nutres.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 07/28/2024]
Abstract
Gut peptides play a role in signaling appetite control in the hypothalamus. Limited knowledge exists regarding the release of these peptides in individuals with obesity before and during external stimuli. We hypothesize that the expression of gut peptides is different in the fasting and postprandial states in the scenario of obesity. PubMed/MEDLINE, Scopus, and Science Direct electronic databases were searched. The meta-analysis was performed using Review Manager Software. Randomized controlled trials that measured gut peptides in both obese and lean subjects were included in the analysis. A total of 552 subjects with obesity were enrolled in 25 trials. The gut peptide profile did not show any significant difference between obese and lean subjects for glucagon-like peptide 1 (95% confidence interval [CI], -1.21 to 0.38; P = .30), peptide YY (95% CI, -1.47 to 0.18; P = .13), and cholecystokinin (95% CI, -1.25 to 1.28; P = .98). Gut peptides are decreased by an increased high-fat, high-carbohydrate diet and by decreased chewing. There is no statistically significant difference in gut peptides between individuals with obesity and leanness in a fasting state. However, the release of gut peptides is affected in individuals with obesity following external stimuli, such as dietary interventions and chewing. Further studies are necessary to investigate the relationship between various stimuli and the release of gut peptides, as well as their impact on appetite regulation in subjects with obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Postgraduate Program in Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil; Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Maycon Anderson
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Samuel Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Elza Gabriela
- Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Laboratory of Molecular Exercise Physiology - University Center - UDF, Brasilia, DF, Brazil
| | - Octavio L Franco
- Postgraduate Program in Physical Education, Catholic University of Brasilia, Brasilia, DF, Brazil; Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
2
|
Think Yourself Slim? Assessing the Satiation Efficacy of Imagined Eating. Foods 2022; 12:foods12010036. [PMID: 36613251 PMCID: PMC9818889 DOI: 10.3390/foods12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitous exposure to visual food content has been implicated in the development of obesity with both individual and societal costs. The development and increasing adoption of Extended Reality (XR) experiences, which deliver an unprecedented immersion in digital content, would seem to carry the risk of further exacerbating the consequences of visual food exposure on real-world eating behavior. However, some studies have also identified potentially health-promoting effects of exposure to visual food stimuli. One example is repeated imagined consumption, which has been demonstrated to decrease subsequent food consumption. This work contains the first comparison between imagined eating and actual eating, to investigate how the simulated activity fares against its real counterpart in terms of inducing satiation. Three-hundred participants took part in an experiment at a local food festival. The participants were randomized between three experimental conditions: imagined eating, actual eating, and control. Each condition consisted of thirty trials. Before and after the experimental manipulation, the participants recorded their eating desires and enjoyment of a piece of chocolate candy. The resulting data showed generally no difference between the imagined eating and control conditions, which stands in conflict with the prior literature. In contrast, the differences between imagined and actual eating were significant. These results may be explained by differences in the experimental tasks' dose-response relationships, as well as environmental-contextual disturbances. Overall, the findings do not corroborate the efficacy of imagined eating within a real-life context.
Collapse
|
3
|
Farokhnia M, Browning BD, Crozier ME, Sun H, Akhlaghi F, Leggio L. The glucagon‐like peptide‐1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post‐mortem brain study. Addict Biol 2022; 27:e13211. [DOI: 10.1111/adb.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Baltimore Maryland USA
| | - Brittney D. Browning
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Madeline E. Crozier
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda Maryland USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences University of Rhode Island Kingston Rhode Island USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health Baltimore and Bethesda Maryland USA
- Center on Compulsive Behaviors National Institutes of Health Bethesda Maryland USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
4
|
Wiedemann SJ, Trimigliozzi K, Dror E, Meier DT, Molina-Tijeras JA, Rachid L, Le Foll C, Magnan C, Schulze F, Stawiski M, Häuselmann SP, Méreau H, Böni-Schnetzler M, Donath MY. The cephalic phase of insulin release is modulated by IL-1β. Cell Metab 2022; 34:991-1003.e6. [PMID: 35750050 DOI: 10.1016/j.cmet.2022.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The initial cephalic phase of insulin secretion is mediated through the vagus nerve and is not due to glycemic stimulation of pancreatic β cells. Recently, IL-1β was shown to stimulate postprandial insulin secretion. Here, we describe that this incretin-like effect of IL-1β involves neuronal transmission. Furthermore, we found that cephalic phase insulin release was mediated by IL-1β originating from microglia. Moreover, IL-1β activated the vagus nerve to induce insulin secretion and regulated the activity of the hypothalamus in response to cephalic stimulation. Notably, cephalic phase insulin release was impaired in obesity, in both mice and humans, and in mice, this was due to dysregulated IL-1β signaling. Our findings attribute a regulatory role to IL-1β in the integration of nutrient-derived sensory information, subsequent neuronally mediated insulin secretion, and the dysregulation of autonomic cephalic phase responses in obesity.
Collapse
Affiliation(s)
- Sophia J Wiedemann
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Kelly Trimigliozzi
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Erez Dror
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jose Alberto Molina-Tijeras
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Friederike Schulze
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Stawiski
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stéphanie P Häuselmann
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hélène Méreau
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Chen X, Yang K, Sun P, Zhao R, Liu B, Lu P. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol Metab Syndr 2021; 13:116. [PMID: 34688315 PMCID: PMC8542289 DOI: 10.1186/s13098-021-00732-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bone formation ability of type 2 diabetes is inhibited, and exercise can effectively improve the bone formation of T2DM. However, whether exercise can mediate the Wnt3a/β-catenin pathway to improve the mechanism of bone formation and metabolism still needs further research. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with swimming and downhill running exercise. Alizarin red staining is used to observe the changes of the left femoral trabecular bone; micro-CT is used to analyze the trabecular and cortical BMD, BV/TV, BS/BV, BS/TV, Tb.Th, Tb.Sp; the ALP staining of skull was used to observe the changes in ALP activity of bone tissues at the skull herringbone sutures; ALP staining was performed to observe the changes in the number of OBs and ALP activity produced by differentiation; Quantitative PCR was used to detect mRNA expression; Western blot was used to detect protein expression levels. RESULTS When the Wnt3a/β-catenin pathway in the bones of T2DM mice was inhibited, the bone formation ability of the mice was significantly reduced, resulting in the degradation of the bone tissue morphology and structure. Swimming caused the significant increase in body weight and Runx2 mRNA expression, while downhill running could significantly decrease the body weight of the mice, while the tibia length, wet weight, and the trabecular morphological structure of the distal femur and the indexes of bone histomorphology were significantly improved by activating the Wnt3a/β-catenin pathway. CONCLUSIONS Bone formation is inhibited in T2DM mice, leading to osteoporosis. Downhill running activates the Wnt3a/β-catenin pathway in the bones of T2DM mice, promotes OB differentiation and osteogenic capacity, enhances bone formation metabolism, and improves the bone morphological structure.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|