1
|
Figueroa CM, Lunn JE, Iglesias AA. Nucleotide-sugar metabolism in plants: the legacy of Luis F. Leloir. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4053-4067. [PMID: 33948638 DOI: 10.1093/jxb/erab109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This review commemorates the 50th anniversary of the Nobel Prize in Chemistry awarded to Luis F. Leloir 'for his discovery of sugar-nucleotides and their role in the biosynthesis of carbohydrates'. He and his co-workers discovered that activated forms of simple sugars, such as UDP-glucose and UDP-galactose, are essential intermediates in the interconversion of sugars. They elucidated the biosynthetic pathways for sucrose and starch, which are the major end-products of photosynthesis, and for trehalose. Trehalose 6-phosphate, the intermediate of trehalose biosynthesis that they discovered, is now a molecule of great interest due to its function as a sugar signalling metabolite that regulates many aspects of plant metabolism and development. The work of the Leloir group also opened the doors to an understanding of the biosynthesis of cellulose and other structural cell wall polysaccharides (hemicelluloses and pectins), and ascorbic acid (vitamin C). Nucleotide-sugars also serve as sugar donors for a myriad of glycosyltransferases that conjugate sugars to other molecules, including lipids, phytohormones, secondary metabolites, and proteins, thereby modifying their biological activity. In this review, we highlight the diversity of nucleotide-sugars and their functions in plants, in recognition of Leloir's rich and enduring legacy to plant science.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
2
|
Di Dato V, Di Costanzo F, Barbarinaldi R, Perna A, Ianora A, Romano G. Unveiling the presence of biosynthetic pathways for bioactive compounds in the Thalassiosira rotula transcriptome. Sci Rep 2019; 9:9893. [PMID: 31289324 PMCID: PMC6616357 DOI: 10.1038/s41598-019-46276-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/26/2019] [Indexed: 12/02/2022] Open
Abstract
Diatoms are phytoplankton eukaryotic microalgae that are widely distributed in the world’s oceans and are responsible for 20–25% of total carbon fixation on the planet. Using transcriptome sequencing here we show for the first time that the ubiquitous diatom Thalassiosira rotula expresses biosynthetic pathways that potentially lead to the synthesis of interesting secondary metabolites with pharmaceutical applications such as polyketides, prostaglandins and secologanin. We also show that these pathways are differentially expressed in conditions of silica depletion in comparison with standard growth conditions.
Collapse
Affiliation(s)
- Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy.
| | - Federica Di Costanzo
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Roberta Barbarinaldi
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Anna Perna
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
3
|
Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat Struct Mol Biol 2019; 26:415-423. [PMID: 31133698 DOI: 10.1038/s41594-019-0225-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.
Collapse
|
4
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
5
|
Abstract
Plants are being developed as a cost-effective production system for biopharmaceuticals in large quantities. Although plants properly fold and assemble complex proteins from human origin, one issue that needs to be addressed is their glycan structure. In the past years we have been witnessing outstanding results in targeted manipulation of the plant N-glycosylation pathway allowing recombinant proteins to be produced with human-type oligosaccharides at large homogeneity. This opens new possibility in manufacturing next-generation biopharmaceuticals.This review presents a variety of technologies and strategies that are being employed to engineer the plant N-glycosylation, thus pointing to the enormous potential of plants being used as a novel production system with unique features and possibilities.
Collapse
|
6
|
Kleczkowski LA, Decker D. Sugar Activation for Production of Nucleotide Sugars as Substrates for Glycosyltransferases in Plants. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University
| |
Collapse
|
7
|
Riemersma M, Sandrock J, Boltje TJ, Büll C, Heise T, Ashikov A, Adema GJ, van Bokhoven H, Lefeber DJ. Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal α-dystroglycan O-mannosylation, independent from sialic acid. Hum Mol Genet 2014; 24:2241-6. [PMID: 25552652 DOI: 10.1093/hmg/ddu742] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of cellular α-dystroglycan (α-DG) to its extracellular matrix ligands is fully dependent on a unique O-mannose-linked glycan. Disrupted O-mannosylation is the hallmark of the muscular dystrophy-dystroglycanopathy (MDDG) syndromes. SLC35A1, encoding the transporter of cytidine 5'-monophosphate-sialic acid, was recently identified as MDDG candidate gene. This is surprising, since sialic acid itself is dispensable for α-DG-ligand binding. In a novel SLC35A1-deficient cell model, we demonstrated a lack of α-DG O-mannosylation, ligand binding and incorporation of sialic acids. Removal of sialic acids from HAP1 wild-type cells after incorporation or preventing sialylation during synthesis did not affect α-DG O-mannosylation or ligand binding but did affect sialylation. Lentiviral-mediated complementation with the only known disease mutation p.Q101H failed to restore deficient O-mannosylation in SLC35A1 knockout cells and partly restored sialylation. These data indicate a role for SLC35A1 in α-DG O-mannosylation that is distinct from sialic acid metabolism. In addition, human SLC35A1 deficiency can be considered as a combined disorder of α-DG O-mannosylation and sialylation, a novel variant of the MDDG syndromes.
Collapse
Affiliation(s)
- Moniek Riemersma
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Julia Sandrock
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands and
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands and
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Department of Laboratory Medicine,
| |
Collapse
|
8
|
Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. ANNALS OF BOTANY 2014; 114:1177-88. [PMID: 24825296 PMCID: PMC4195553 DOI: 10.1093/aob/mcu093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Sophie Bouton
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Marie Christine Kiefer-Meyer
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Aline Voxeur
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France Institut Jean-Pierre Bourgin UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France
| | - Jérôme Pelloux
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
9
|
The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:11563-8. [PMID: 25053812 DOI: 10.1073/pnas.1406073111] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.
Collapse
|
10
|
Smyth KM, Marchant A. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. Carbohydr Res 2013; 380:70-5. [DOI: 10.1016/j.carres.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023]
|
11
|
Molecular cloning, phylogenetic analysis, and expression profiling of a grape CMP-sialic acid transporter-like gene induced by phytohormone and abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kobayashi M, Kouzu N, Inami A, Toyooka K, Konishi Y, Matsuoka K, Matoh T. Characterization of Arabidopsis CTP:3-Deoxy-d-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the Enzyme that Activates KDO During Rhamnogalacturonan II Biosynthesis. ACTA ACUST UNITED AC 2011; 52:1832-43. [DOI: 10.1093/pcp/pcr120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Kajiura H, Misaki R, Fujiyama K, Seki T. Stable coexpression of two human sialylation enzymes in plant suspension-cultured tobacco cells. J Biosci Bioeng 2011; 111:471-7. [PMID: 21220208 DOI: 10.1016/j.jbiosc.2010.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/12/2010] [Accepted: 11/22/2010] [Indexed: 01/21/2023]
Abstract
Human CMP-N-acetylneuraminic acid (NeuAc) synthase (hCSS) and α2,6-sialyltransferase (hST) participate in the sialylation of N-linked glycans in mammalian cells. hCSS synthesizes CMP-NeuAc, which hST uses as a donor substrate to transfer NeuAc to the terminal position of N-linked glycans. In plant cells, the presence of NeuAc has not yet been substantiated and the identification of the genes involved in the sialylation of N-glycan has not been carried out. In this study, we introduced hCSS and hST genes into suspension-cultured tobacco BY2 cells to provide the machinery for the sialylation pathway in plants. hCSS and hST stably expressed in the plant cells showed activity. In addition, CMP-NeuAc produced by hCSS in the transformed plant cells functioned as a donor substrate to hST. An in vitro coupled hCSS and hST reaction resulted in the production of mammalian-type sialoglycoproteins bearing terminal NeuAc residues. Furthermore, the results of the purification of the coupled-reaction products by Sambucus sieboldian lectin column chromatography and digestion with linkage-specific neuraminidase revealed that the modified terminal residue was α2,6-linked NeuAc. Here, we demonstrate that the in vitro sialylation of N-linked glycans on mammalian proteins can be achieved using plant cell extracts stably expressing hCSS and hST, providing proof-of-principle that a sialylated human therapeutic protein can be produced in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
14
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
15
|
Deng Y, Wang W, Li WQ, Xia C, Liao HZ, Zhang XQ, Ye D. MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:829-43. [PMID: 20738727 DOI: 10.1111/j.1744-7909.2010.00963.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sialyltransferases (SiaTs) exist widely in vertebrates and play important roles in a variety of biological processes. In plants, several genes have also been identified to encode the proteins that share homology with the vertebrate SiaTs. However, very little is known about their functions in plants. Here we report the identification and characterization of a novel Arabidopsis gene, MALE GAMETOPHYTE DEFECTIVE 2 (MGP2) that encodes a sialyltransferase-like protein. MGP2 was expressed in all tissues including pollen grains and pollen tubes. The MGP2 protein was targeted to Golgi apparatus. Knockout of MGP2 significantly inhibited the pollen germination and retarded pollen tube growth in vitro and in vivo, but did not affect female gametophytic functions. These results suggest that the sialyltransferase-like protein MGP2 is important for normal pollen germination and pollen tube growth, giving a novel insight into the biological roles of the sialyltransferase-like proteins in plants.
Collapse
Affiliation(s)
- Yi Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Seino J, Ishii K, Nakano T, Ishida N, Tsujimoto M, Hashimoto Y, Takashima S. Characterization of rice nucleotide sugar transporters capable of transporting UDP-galactose and UDP-glucose. J Biochem 2010; 148:35-46. [PMID: 20305274 DOI: 10.1093/jb/mvq031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the basic local alignment search tool (BLAST) algorithm to search the Oryza sativa (Japanese rice) nucleotide sequence databases with the Arabidopsis thaliana UDP-galactose transporter sequences as queries, we found a number of sequences encoding putative O. sativa UDP-galactose transporters. From these, we cloned four putative UDP-galactose transporters, designated OsUGT1, 2, 3 and 4, which exhibited high sequence similarity with Arabidopsis thaliana UDP-galactose transporters. OsUGT1, 2, 3 and 4 consisted of 350, 337, 345 and 358 amino acids, respectively, and all of these proteins were predicted to have multiple transmembrane domains. To examine the UDP-galactose transporter activity of the OsUGTs, we introduced the OsUGTs' expression vectors into UDP-galactose transporter activity-deficient Lec8 cells. Our results showed that transfection with OsUGT1, 2 and 3 resulted in recovery of the deficit phenotype of Lec8 cells, but transfection with OsUGT4 did not. The results of an in vitro nucleotide sugar transport assay of OsUGTs, carried out with a yeast expression system, suggested that OsUGT4 is a UDP-glucose transporter rather than a UDP-galactose transporter. Although plants have multiple UDP-galactose transporter genes, phylogenic analysis indicates that plant UDP-galactose transporter genes are not necessarily evolutionary related to each other.
Collapse
Affiliation(s)
- Junichi Seino
- Glyco-chain Functions Laboratory, RIKEN-FRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|