1
|
Current Proteomic and Metabolomic Knowledge of Zygotic and Somatic Embryogenesis in Plants. Int J Mol Sci 2021; 22:ijms222111807. [PMID: 34769239 PMCID: PMC8583726 DOI: 10.3390/ijms222111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Embryogenesis is the primary developmental program in plants. The mechanisms that underlie the regulation of embryogenesis are an essential research subject given its potential contribution to mass in vitro propagation of profitable plant species. Somatic embryogenesis (SE) refers to the use of in vitro techniques to mimic the sexual reproduction program known as zygotic embryogenesis (ZE). In this review, we synthesize the current state of research on proteomic and metabolomic studies of SE and ZE in angiosperms (monocots and dicots) and gymnosperms. The most striking finding was the small number of studies addressing ZE. Meanwhile, the research effort focused on SE has been substantial but disjointed. Together, these research gaps may explain why the embryogenic induction stage and the maturation of the somatic embryo continue to be bottlenecks for efficient and large-scale regeneration of plants. Comprehensive and integrative studies of both SE and ZE are needed to provide the molecular foundation of plant embryogenesis, information which is needed to rationally guide experimental strategies to solve SE drawbacks in each species.
Collapse
|
2
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|
3
|
Aguilar-Hernández V, Loyola-Vargas VM. Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1658. [PMID: 30524454 PMCID: PMC6262180 DOI: 10.3389/fpls.2018.01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is a cell differentiation process by which a somatic cell changes its genetic program and develops into an embryonic cell. Investigating this process with various explant sources in vitro has allowed us to trace somatic embryo development from germination to plantlets and has led to the generation of new technologies, including genetic transformation, endangered species conservation, and synthetic seed production. A transcriptome data comparison from different stages of the developing somatic embryo has revealed a complex network controlling the somatic cell's fate, suggesting that an interconnected network acts at the protein level. Here, we discuss the current progress on SE using proteomic-based data, focusing on changing patterns of proteins during the establishment of the somatic embryo. Despite the advanced proteomic approaches available so far, deciphering how the somatic embryo is induced is still in its infancy. The new proteomics techniques that lead to the quantification of proteins with different abundances during the induction of SE are opening this area of study for the first time. These quantitative differences can elucidate the different pathways involved in SE induction. We envisage that the application of these proteomic technologies can be pivotal to identifying proteins critical to the process of SE, demonstrating the cellular localization, posttranslational modifications, and turnover protein events required to switch from a somatic cell to a somatic embryo cell and providing new insights into the molecular mechanisms underlying SE. This work will help to develop biotechnological strategies for mass production of quality crop material.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Victor Aguilar-Hernández, orcid.org/0000-0001-8239-4047
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
4
|
|
5
|
Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:61-76. [PMID: 28330564 DOI: 10.1016/j.plantsci.2017.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/17/2017] [Accepted: 01/28/2017] [Indexed: 05/22/2023]
Abstract
Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii.
Collapse
Affiliation(s)
- Lucyna Domżalska
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Jan J Rybczyński
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Anna Mikuła
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland.
| |
Collapse
|
6
|
Alwael HA, Naik PM, Al-Khayri JM. Synchronization of Somatic Embryogenesis in Date Palm Suspension Culture Using Abscisic Acid. Methods Mol Biol 2017; 1637:215-226. [PMID: 28755348 DOI: 10.1007/978-1-4939-7156-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic embryogenesis is considered the most effective method for commercial propagation of date palm. However, the limitation of obtaining synchronized development of somatic embryos remains an impediment. The synchronization of somatic embryo development is ideal for the applications to produce artificial seeds. Abscisic acid (ABA) is associated with stress response and influences in vitro growth and development. This chapter describes an effective method to achieve synchronized development of somatic embryos in date palm cell suspension culture. Among the ABA concentrations tested (0, 1, 10, 50, 100 μM), the best synchronized growth was obtained in response to 50-100 μM. Here we provide a comprehensive protocol for in vitro plant regeneration of date palm starting with shoot-tip explant, callus initiation and growth, cell suspension establishment, embryogenesis synchronization with ABA treatment, somatic embryo germination, and rooting as well as acclimatized plantlet establishment.
Collapse
Affiliation(s)
- Hussain A Alwael
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia.
| | - Poornananda M Naik
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia
| |
Collapse
|
7
|
Domżalska L, Mikuła A, Rybczyński JJ. Protein extraction from Ca-alginate encapsulated plant material for comparative proteomic analysis. Protein Expr Purif 2016; 126:55-61. [PMID: 27235574 DOI: 10.1016/j.pep.2016.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The extensive use of encapsulation material in biotechnology drove the need to develop analytical techniques for this type of material. This study focuses on the specific problems of protein extraction from Ca-alginate encapsulated plant material. Proteomics is one of the fast-developing analysis categories, specifically for stress resistance and developmental changes in plant material. Sample preparation is a critical step in a two-dimensional gel electrophoresis proteome approach and is essential for good results. The aim was to avoid preliminary manipulations and get good quality material for comparative proteome analysis technique 2DE. The phenol extraction method and the complex method with preliminary TCA precipitation, SDS buffer and phenol phase were compared with respect to the efficiency and quality of the resulting 2DE gel. The most appropriate method turned out to be the TCA/phenol method with the phenol fractioning technique adapted to the gentian cell suspension. It resulted in a high protein concentration and good quality sample that could be analyzed using the standard separation procedures of 2DE and spectrometric identification with high efficiency. The work presented here confirms the possibility of obtaining a sufficient protein sample for effective proteomic analysis from a small number of capsules.
Collapse
Affiliation(s)
- Lucyna Domżalska
- Laboratory of Plant Biotechnology, Department of Experimental Plant Biology, Polish Academy of Sciences Botanical Garden Center of Biodiversity Conservation in Powsin, 2 Prawdziwka St., 02-973, Warsaw, Poland.
| | - Anna Mikuła
- Laboratory of Plant Biotechnology, Department of Experimental Plant Biology, Polish Academy of Sciences Botanical Garden Center of Biodiversity Conservation in Powsin, 2 Prawdziwka St., 02-973, Warsaw, Poland
| | - Jan J Rybczyński
- Laboratory of Plant Biotechnology, Department of Experimental Plant Biology, Polish Academy of Sciences Botanical Garden Center of Biodiversity Conservation in Powsin, 2 Prawdziwka St., 02-973, Warsaw, Poland
| |
Collapse
|
8
|
Lu XJ, Zhang XL, Mei M, Liu GL, Ma BB. Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteomics 2016; 133:76-85. [DOI: 10.1016/j.jprot.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
|
9
|
Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought) Tolerance in Date Palm (Phoenix dactylifera L.). Int J Genomics 2015; 2015:407165. [PMID: 26167472 PMCID: PMC4488584 DOI: 10.1155/2015/407165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 11/21/2022] Open
Abstract
This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000) and salinity stress conditions (16 g/L NaCl) for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.
Collapse
|
10
|
Niemenak N, Kaiser E, Maximova SN, Laremore T, Guiltinan MJ. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:49-60. [PMID: 25889873 DOI: 10.1016/j.jplph.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses.
Collapse
Affiliation(s)
- Nicolas Niemenak
- Laboratory of Plant Physiology, Department of Biological Science, Higher Teachers Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.
| | - Edward Kaiser
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| | - Tatiana Laremore
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
11
|
Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions. Int J Mol Sci 2015; 16:4713-30. [PMID: 25739084 PMCID: PMC4394444 DOI: 10.3390/ijms16034713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low temperature dehydration. Kinesin-1 is present in all major lineages, but it is rarely detected in seed desiccation tolerance of woody species. These observations provide new insight into the proteome of seeds in deep dormancy under different desiccation conditions.
Collapse
|
12
|
Chandrasekaran U, Xu W, Liu A. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci 2014; 4:33. [PMID: 25061509 PMCID: PMC4109380 DOI: 10.1186/2045-3701-4-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/12/2014] [Indexed: 02/28/2023] Open
Abstract
Background The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the “genome-phenome challenge”. Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. Results After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 μM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. Conclusions Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing castor bean agricultural and bioenergy use.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Aizhong Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| |
Collapse
|
13
|
Sghaier-Hammami B, Saidi MN, Castillejo MA, Jorrín-Novo JV, Namsi A, Drira N, Gargouri-Bouzid R. Proteomics analysis of date palm leaves affected at three characteristic stages of brittle leaf disease. PLANTA 2012; 236:1599-1613. [PMID: 22843243 DOI: 10.1007/s00425-012-1713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
Proteomics analysis has been performed in leaf tissue from field date palm trees showing the brittle leaf disease (BLD) or maladie des feuilles cassantes, the main causal agent of the date palm decline in south Tunisia. To study the evolution of the disease, proteins from healthy and affected leaves taken at three disease stages (S1, S2 and S3) were trichloroacetic acid acetone extracted and subjected to two-dimensional gel electrophoresis (5-8 pH range). Statistical analysis showed that the protein abundance profile is different enough to differentiate the affected leaves from the healthy ones. Fifty-eight variable spots were successfully identified by matrix-assisted laser desorption ionization time of flight, 60 % of which corresponded to chloroplastic ones being involved in the photosynthesis electronic chain and ATP synthesis, metabolic pathways implicated in the balance of the energy, and proteases. Changes in the proteome start at early disease stage (S1), and are greatest at S2. In addition to the degradation of the ribulose-1.5-bisphosphate carboxylase oxygenase in affected leaflets, proteins belonging to the photosynthesis electronic chain and ATP synthesis decreased following the disease, reinforcing the relationship between BLD and manganese deficiency. The manganese-stabilizing proteins 33 kDa, identified in the present work, can be considered as protein biomarkers of the disease, especially at early disease step.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Route de Soukra km 4, B.P. 1171, 3018, Sfax, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
14
|
M. Al-Khay J, M. Al-Bahr A. Effect of Abscisic Acid and Polyethylene Glycol on the Synchronization of Somatic Embryo Development in Date Palm (Phoenix dactylifera L.). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/biotech.2012.318.325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Almeida AM, Parreira JR, Santos R, Duque AS, Francisco R, Tomé DFA, Ricardo CP, Coelho AV, Fevereiro P. A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. PHYSIOLOGIA PLANTARUM 2012; 146:236-49. [PMID: 22497501 DOI: 10.1111/j.1399-3054.2012.01633.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Medicago truncatula is a model legume, whose genome is currently being sequenced. Somatic embryogenesis (SE) is a genotype-dependent character and not yet fully understood. In this study, a proteomic approach was used to compare the induction and expression phases of SE of both the highly embryogenic line M9-10a of M. truncatula cv. Jemalong and its non-embryogenic predecessor line, M9. The statistical analysis between the lines revealed 136 proteins with significant differential expression (P < 0.05). Of these, 5 had a presence/absence pattern in M9 vs M9-10a and 22 showed an at least twofold difference in terms of spot volume, were considered of particular relevance to the SE process and therefore chosen for identification. Spots were excised in gel digested with trypsin and proteins were identified using matrix-assisted laser desorption ionization-time of flight/time of flight. Identified proteins indicated a higher adaptability of the embryogenic line toward the stress imposed by the inducing culture conditions. Also, some proteins were shown to have a dual pattern of expression: peroxidase, pyrophosphatase and aspartate aminotransferase. These proteins showed higher expression during the induction phases of the M9 line, whereas in the embryogenic line had higher expression at stages coinciding with embryo formation.
Collapse
Affiliation(s)
- André M Almeida
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Al-Bahrany AM, Al-Khayri JM. In vitro Responses of Date Palm Cell Suspensions under Osmotic Stress Induced by Sodium, Potassium and Calcium Salts at Different Exposure Durations. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajpp.2012.120.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
The date palm (Phoenix dactylifera L.) micropropagation using completely mature female flowers. C R Biol 2012; 335:194-204. [DOI: 10.1016/j.crvi.2012.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022]
|
18
|
Kutschera U, Briggs WR. Root phototropism: from dogma to the mechanism of blue light perception. PLANTA 2012; 235:995-1011. [PMID: 22293854 DOI: 10.1007/s00425-011-1554-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/04/2011] [Indexed: 05/21/2023]
Abstract
In roots, the "hidden half" of all land plants, gravity is an important signal that determines the direction of growth in the soil. Hence, positive gravitropism has been studied in detail. However, since the 19th century, the response of roots toward unilateral light has also been analyzed. Based on studies on white mustard (Sinapis alba) seedlings, botanists have concluded that all roots are negatively phototropic. This "Sinapis-dogma" was refuted in a seminal study on root phototropism published a century ago, where it was shown that less then half of the 166 plant species investigated behave like S. alba, whereas 53% displayed no phototropic response at all. Here we summarize the history of research on root phototropism, discuss this phenomenon with reference to unpublished data on garden cress (Lepidium sativum) seedlings, and describe the effects of blue light on the negative bending response in Thale cress (Arabidopsis thaliana). The ecological significance of root phototropism is discussed and the relationships between gravi- and phototropism are outlined, with respect to the starch-statolith-theory of gravity perception. Finally, we present an integrative model of gravi- and blue light perception in the root tip of Arabidopsis seedlings. This hypothesis is based on our current view of the starch-statolith-concept and light sensing via the cytoplasmic red/blue light photoreceptor phytochrome A and the plasma membrane-associated blue light receptor phototropin-1. Open questions and possible research agendas for the future are summarized.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | | |
Collapse
|
19
|
Al-Bahrany AM, Al-Khayri JM. Optimizing In vitro Cryopreservation of Date Palm (Phoenix dactylifera L.). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/biotech.2012.59.66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Balbuena TS, Jo L, Pieruzzi FP, Dias LLC, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EIS. Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. PHYTOCHEMISTRY 2011; 72:302-11. [PMID: 21276992 DOI: 10.1016/j.phytochem.2010.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/30/2010] [Accepted: 12/06/2010] [Indexed: 05/09/2023]
Abstract
Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes, oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed.
Collapse
Affiliation(s)
- Tiago S Balbuena
- Department of Botany, Institute of Biosciences, University of Sao Paulo, 05422-970 Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H. The use of chemometrics to analyse protein patterns from gel electrophoresis. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Balbuena TS, Dias LLC, Martins MLB, Chiquieri TB, Santa-Catarina C, Floh EIS, Silveira V. Challenges in proteome analyses of tropical plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1677-04202011000200001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome sequencing of various organisms allow global analysis of gene expression, providing numerous clues on the biological function and involvement in the biological processes studied. Proteomics is a branch of molecular biology and biotechnology that has undergone considerable development in the post-genomic era. Despite the recent significant advancements in proteomics techniques, still there is much to be improved. Due to peculiarities to the plant kingdom, proteomics approaches require adaptations, so as to improve efficiency and accuracy of results in plants. Data generated by proteomics can substantially contribute to the understanding and monitoring of plant physiological events and development of biotechnological strategies. Especially for tropical species, challenges are even greater, in the light of the abundance of secondary metabolites, as well as of the lack of complete genome sequences. This review discusses current topics in proteomics concerning challenges and perspectives, with emphasis on the proteomics of tropical plant species.
Collapse
|