1
|
Tyagi K, Sunkum A, Gupta P, Kilambi HV, Sreelakshmi Y, Sharma R. Reduced γ-glutamyl hydrolase activity likely contributes to high folate levels in Periyakulam-1 tomato. HORTICULTURE RESEARCH 2022; 10:uhac235. [PMID: 36643736 PMCID: PMC9832877 DOI: 10.1093/hr/uhac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Tomato cultivars show wide variation in nutraceutical folate in ripe fruits, yet the loci regulating folate levels in fruits remain unexplored. To decipher regulatory points, we compared two contrasting tomato cultivars: Periyakulam-1 (PKM-1) with high folate and Arka Vikas (AV) with low folate. The progression of ripening in PKM-1 was nearly similar to AV but had substantially lower ethylene emission. In parallel, the levels of phytohormones salicylic acid, ABA, and jasmonic acid were substantially lower than AV. The fruits of PKM-1 were metabolically distinct from AV, with upregulation of several amino acids. Consistent with higher °Brix, the red ripe fruits also showed upregulation of sugars and sugar-derived metabolites. In parallel with higher folate, PKM-1 fruits also had higher carotenoid levels, especially lycopene and β-carotene. The proteome analysis showed upregulation of carotenoid sequestration and folate metabolism-related proteins in PKM-1. The deglutamylation pathway mediated by γ-glutamyl hydrolase (GGH) was substantially reduced in PKM-1 at the red-ripe stage. The red-ripe fruits had reduced transcript levels of GGHs and lower GGH activity than AV. Conversely, the percent polyglutamylation of folate was much higher in PKM-1. Our analysis indicates the regulation of GGH activity as a potential target to elevate folate levels in tomato fruits.
Collapse
Affiliation(s)
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | | | | |
Collapse
|
2
|
Vadlamani G, Sukhoverkov KV, Haywood J, Breese KJ, Fisher MF, Stubbs KA, Bond CS, Mylne JS. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. PLANT COMMUNICATIONS 2022; 3:100322. [PMID: 35605193 PMCID: PMC9284294 DOI: 10.1016/j.xplc.2022.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.
Collapse
Affiliation(s)
- Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark F Fisher
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
3
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
4
|
High Hydrostatic Pressure Modulates the Folate and Ascorbic Acid Accumulation in Papaya (Carica papaya cv. Maradol) Fruit. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Xiang N, Hu J, Wen T, Brennan MA, Brennan CS, Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1694-1701. [PMID: 31803938 DOI: 10.1002/jsfa.10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Extreme temperatures are among the primary abiotic stresses that affect plant growth and development. Ascorbic acid (AsA) is an efficient antioxidant for scavenging relative oxygen species accumulated under stress. Folates play a significant role in DNA synthesis and protect plants against oxidative stress. Sweet corn (Zea mays L.), a crop grown worldwide, is sensitive to extreme temperatures at seedling stage, which may cause yield loss. This study was conducted to explore the biosynthetic regulative mechanism of AsA and folates in sweet corn seedlings under temperature stress. RESULTS The AsA and folate composition and relative gene expression in sweet corn seedlings grown under different temperature stresses (10, 25, and 40 °C) were evaluated. The imposition of temperature stress altered the AsA content mainly by modulating the expression of Zm DHAR, whose encoded enzyme dehydroascorbic reductase (DHAR) is essential in the AsA recycle pathway. Low temperature stress raised the expressions of relative genes, leading to folate accumulation. High temperature stress modulated the folate content by influencing the expression of the correspondence gene for aminodeoxychorismate synthase, Zm ADCS, as well as downstream genes that connected with DNA methylation. CONCLUSION These results provided a theoretical basis, at a genetic level, for understanding the stress responses mechanism in sweet corn seedlings, offering guidance for sweet corn cultivation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianxiang Wen
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Margaret Anne Brennan
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
6
|
Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep 2019; 9:5731. [PMID: 30952916 PMCID: PMC6451014 DOI: 10.1038/s41598-019-42146-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Abstract
Tetrahydrofolate and its derivatives, commonly known as folates, are essential for almost all living organisms. Besides acting as one-carbon donors and acceptors in reactions producing various important biomolecules such as nucleic and amino acids, as well as pantothenate, they also supply one-carbon units for methylation reactions. Plants along with bacteria, yeast and fungi synthesize folates de novo and therefore constitute a very important dietary source of folates for animals. All the major steps of folate biosynthesis and metabolism have been identified but only few have been genetically characterized in a handful of model plant species. The possible differences in the folate pathway between various plant and algal species have never been explored. In this study we present a comprehensive comparative study of folate biosynthesis and metabolism of all major land plant lineages as well as green and red algae. The study identifies new features of plant folate metabolism that might open new directions to folate research in plants.
Collapse
Affiliation(s)
- V Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.,Department of Botany and Plant Biology, Laboratory of Plant Biochemistry and Physiology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - O Bastien
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - O De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - S Lespinats
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - F Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - D Van Der Straeten
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
8
|
De Lepeleire J, Strobbe S, Verstraete J, Blancquaert D, Ambach L, Visser RGF, Stove C, Van Der Straeten D. Folate Biofortification of Potato by Tuber-Specific Expression of Four Folate Biosynthesis Genes. MOLECULAR PLANT 2018; 11:175-188. [PMID: 29277427 DOI: 10.1016/j.molp.2017.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/24/2023]
Abstract
Insufficient dietary intake of micronutrients, known as "hidden hunger", is a devastating global burden, affecting two billion people. Deficiency of folates (vitamin B9), which are known to play a central role in C1 metabolism, causes birth defects in at least a quarter million people annually. Biofortification to enhance the level of naturally occurring folates in crop plants, proves to be an efficient and cost-effective tool in fighting folate deficiency. Previously, introduction of folate biosynthesis genes GTPCHI and ADCS, proven to be a successful biofortification strategy in rice and tomato, turned out to be insufficient to adequately increase folate levels in potato tubers. Here, we provide a proof of concept that additional introduction of HPPK/DHPS and/or FPGS, downstream genes in mitochondrial folate biosynthesis, enables augmentation of folates to satisfactory levels (12-fold) and ensures folate stability upon long-term storage of tubers. In conclusion, this engineering strategy can serve as a model in the creation of folate-accumulating potato cultivars, readily applicable in potato-consuming populations suffering from folate deficiency.
Collapse
Affiliation(s)
- Jolien De Lepeleire
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Lars Ambach
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700 Wageningen, the Netherlands
| | - Christophe Stove
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700 Wageningen, the Netherlands
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Liu F, Xiang N, Hu JG, Shijuan Y, Xie L, Brennan CS, Huang W, Guo X. The manipulation of gene expression and the biosynthesis of Vitamin C, E and folate in light-and dark-germination of sweet corn seeds. Sci Rep 2017; 7:7484. [PMID: 28790401 PMCID: PMC5548755 DOI: 10.1038/s41598-017-07774-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
This study investigates the potential interrelationship between gene expression and biosynthesis of vitamin C, E and folate in sweet corn sprouts. Germination of sweet corn kernels was conducted in light and dark environments to determine if this relationship was regulated by photo-illumination. Results indicated that light and dark environments affected the DHAR, TMT and GTPCH expression and that these genes were the predominant genes of vitamin C, E and folate biosynthesis pathways respectively during the germination. Levels of vitamin C and folate increased during the germination of sweet corn seeds while vitamin E had a declining manner. Sweet corn sprouts had higher vitamin C and E levels as well as relevant gene expression levels in light environment while illumination had little influence on the folate contents and the gene expression levels during the germination. These results indicate that there might be a collaborative relationship between vitamin C and folate regulation during sweet corn seed germination, while an inhibitive regulation might exist between vitamin C and E.
Collapse
Affiliation(s)
- Fengyuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jian Guang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Yan Shijuan
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lihua Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.,Department of Wine, Food and Molecular Bioscience, Lincoln University, Canterbury, 7647, New Zealand
| | - Wenjie Huang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
10
|
Degradation and interconversion of plant pteridines during sample preparation and ultra-high performance liquid chromatography–tandem mass spectrometry. Food Chem 2016; 194:1189-98. [DOI: 10.1016/j.foodchem.2015.08.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/13/2023]
|
11
|
Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. MOLECULAR PLANT PATHOLOGY 2015; 16:616-22. [PMID: 25348251 PMCID: PMC6638506 DOI: 10.1111/mpp.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.
Collapse
Affiliation(s)
- Finni Wittek
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Basem Kanawati
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Marion Wenig
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universitaet Muenchen, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Philippe Schmitt-Kopplin
- Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
- Analytical Food Chemistry, Technische Universitaet Muenchen, Alte Akademie 10, 85354, Freising, Germany
| | - A Corina Vlot
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
12
|
Li D, Li L, Luo Z, Mou W, Mao L, Ying T. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening. PLoS One 2015; 10:e0130037. [PMID: 26053069 PMCID: PMC4460069 DOI: 10.1371/journal.pone.0130037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/15/2015] [Indexed: 12/04/2022] Open
Abstract
A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient’s biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA’s role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li Li
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, P.O. Box 6, Bet Dagan, Israel
| | - Zisheng Luo
- Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail: .
| | - Wangshu Mou
- Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Linchun Mao
- Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tiejin Ying
- Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Blancquaert D, Van Daele J, Storozhenko S, Stove C, Lambert W, Van Der Straeten D. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. PLANT MOLECULAR BIOLOGY 2013; 83:329-49. [PMID: 23771598 DOI: 10.1007/s11103-013-0091-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/09/2013] [Indexed: 05/24/2023]
Abstract
Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes.
Collapse
Affiliation(s)
- Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Blancquaert D, Storozhenko S, Van Daele J, Stove C, Visser RGF, Lambert W, Van Der Straeten D. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3899-909. [PMID: 23956417 DOI: 10.1093/jxb/ert224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Folates are important cofactors in one-carbon metabolism in all living organisms. Since only plants and micro- organisms are capable of biosynthesizing folates, humans depend entirely on their diet as a folate source. Given the low folate content of several staple crop products, folate deficiency affects regions all over the world. Folate biofortification of staple crops through enhancement of pterin and para-aminobenzoate levels, precursors of the folate biosynthesis pathway, was reported to be successful in tomato and rice. This study shows that the same strategy is not sufficient to enhance folate content in potato tubers and Arabidopsis thaliana plants and concludes that other steps in folate biosynthesis and/or metabolism need to be engineered to result in substantial folate accumulation. The findings provide a plausible explanation why, more than half a decade after the proof of concept in rice and tomato, successful folate biofortification of other food crops through enhancement of para-aminobenzoate and pterin content has not been reported thus far. A better understanding of the folate pathway is required in order to determine an engineering strategy that can be generalized to most staple crops.
Collapse
Affiliation(s)
- Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Navarrete O, Van Daele J, Stove C, Lambert W, Storozhenko S, Van Der Straeten D. Isolation and characterisation of an antifolate insensitive (afi1) mutant of Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:37-44. [PMID: 22672761 DOI: 10.1111/j.1438-8677.2012.00602.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Antifolates can impair the synthesis and/or function of folates in living organisms. Mechanisms of resistance or tolerance to antifolates have been mainly described in plants using the drug methotrexate. In this work, the antifolate trimethoprim (TMP) was used with the aim of revealing a novel mechanism of resistance. EMS mutagenised seeds from Arabidopsis were screened to isolate individuals insensitive to TMP. Genetic analysis revealed a homozygous recessive mutation that segregates with the phenotype of tolerance to 50 μm TMP. Mapping analysis localised the mutation at the end of the short arm of chromosome 3. Preliminary characterisation demonstrated up-regulation of several genes from the folate biosynthetic pathway in the TMP insensitive mutant, and a slight increase in total folate content in the mutant as compared with the Col-0 control. Moreover, sequence analysis of the DHFR (dihydrofolate reductase) genes, which encode a known target for resistance to antifolates, did not reveal any changes. This study is the first report of a stable mutant insensitive (afi1) to the antifolate trimethoprim in plants, and suggests the existence of a novel mechanism of resistance to antifolates.
Collapse
Affiliation(s)
- O Navarrete
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Schreiber KJ, Austin RS, Gong Y, Zhang J, Fung P, Wang PW, Guttman DS, Desveaux D. Forward chemical genetic screens in Arabidopsis identify genes that influence sensitivity to the phytotoxic compound sulfamethoxazole. BMC PLANT BIOLOGY 2012; 12:226. [PMID: 23176361 PMCID: PMC3541222 DOI: 10.1186/1471-2229-12-226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The sulfanilamide family comprises a clinically important group of antimicrobial compounds which also display bioactivity in plants. While there is evidence that sulfanilamides inhibit folate biosynthesis in both bacteria and plants, the complete network of plant responses to these compounds remains to be characterized. As such, we initiated two forward genetic screens in Arabidopsis in order to identify mutants that exhibit altered sensitivity to sulfanilamide compounds. These screens were based on the growth phenotype of seedlings germinated in the presence of the compound sulfamethoxazole (Smex). RESULTS We identified a mutant with reduced sensitivity to Smex, and subsequent mapping indicated that a gene encoding 5-oxoprolinase was responsible for this phenotype. A mutation causing enhanced sensitivity to Smex was mapped to a gene lacking any functional annotation. CONCLUSIONS The genes identified through our forward genetic screens represent novel mediators of Arabidopsis responses to sulfanilamides and suggest that these responses extend beyond the perturbation of folate biosynthesis.
Collapse
Affiliation(s)
- Karl J Schreiber
- Current address: Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Ryan S Austin
- Current address: Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jianfeng Zhang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Pauline Fung
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
17
|
Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crécy-Lagard V, Hanson AD. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5379-95. [PMID: 22915736 DOI: 10.1093/jxb/ers208] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | | | | | | | | | | | | |
Collapse
|