1
|
Yu Y, Zhang J, Kong X, Kang W, Xing R, Chen Y. Comprehensive site- and structure-specific profiling of N-glycosylation of edible bird's nest (EBN) proteome using label-free quantitative glycoproteomics. Food Chem 2025; 469:142535. [PMID: 39732071 DOI: 10.1016/j.foodchem.2024.142535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively. Eight N-glycoproteins were common to both types, comprising 288 intact N-glycopeptides and 235 N-glycans. The results showed a relatively high abundance of terminally sialylated and core fucosylated N-glycans in EBN. Moreover, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, it was observed that EBN N-glycoproteins predominantly participated in neurodegeneration-multiple illness, cell adhesion molecules, TNF signaling, and TGF-beta signaling pathways. These findings provide insights into EBN glycoprotein site-specific N-glycosylation and its biological roles and processes.
Collapse
Affiliation(s)
- Yue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China; Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| | - Xiabing Kong
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
2
|
Schoberer J, Shin YJ, Vavra U, Veit C, Strasser R. Analysis of Protein Glycosylation in the ER. Methods Mol Biol 2024; 2772:221-238. [PMID: 38411817 DOI: 10.1007/978-1-0716-3710-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Treffon P, Rossi J, Gabellini G, Trost P, Zaffagnini M, Vierling E. Quantitative Proteome Profiling of a S-Nitrosoglutathione Reductase (GSNOR) Null Mutant Reveals a New Class of Enzymes Involved in Nitric Oxide Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787435. [PMID: 34956283 PMCID: PMC8695856 DOI: 10.3389/fpls.2021.787435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a short-lived radical gas that acts as a signaling molecule in all higher organisms, and that is involved in multiple plant processes, including germination, root growth, and fertility. Regulation of NO-levels is predominantly achieved by reaction of oxidation products of NO with glutathione to form S-nitrosoglutathione (GSNO), the principal bioactive form of NO. The enzyme S-nitrosoglutathione reductase (GSNOR) is a major route of NADH-dependent GSNO catabolism and is critical to NO homeostasis. Here, we performed a proteomic analysis examining changes in the total leaf proteome of an Arabidopsis thaliana GSNOR null mutant (hot5-2/gsnor1-3). Significant increases or decreases in proteins associated with chlorophyll metabolism and with redox and stress metabolism provide insight into phenotypes observed in hot5-2/gsnor1-3 plants. Importantly, we identified a significant increase in proteins that belong to the aldo-keto reductase (AKR) protein superfamily, AKR4C8 and 9. Because specific AKRs have been linked to NO metabolism in mammals, we expressed and purified A. thaliana AKR4C8 and 9 and close homologs AKR4C10 and 11 and determined that they have NADPH-dependent activity in GSNO and S-nitroso-coenzyme A (SNO-CoA) reduction. Further, we found an increase of NADPH-dependent GSNO reduction activity in hot5-2/gsnor1-3 mutant plants. These data uncover a new, NADPH-dependent component of NO metabolism that may be integrated with NADH-dependent GSNOR activity to control NO homeostasis in plants.
Collapse
Affiliation(s)
- Patrick Treffon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Giuseppe Gabellini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Improved Production of Recombinant Myrosinase in Pichia pastoris. Int J Mol Sci 2021; 22:ijms222111889. [PMID: 34769315 PMCID: PMC8585081 DOI: 10.3390/ijms222111889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The effect of the deletion of a 57 bp native signal sequence, which transports the nascent protein through the endoplasmic reticulum membrane in plants, on improved AtTGG1 plant myrosinase production in Pichia pastoris was studied. Myrosinase was extracellularly produced in a 3-liter laboratory fermenter using α-mating factor as the secretion signal. After the deletion of the native signal sequence, both the specific productivity (164.8 U/L/h) and volumetric activity (27 U/mL) increased more than 40-fold compared to the expression of myrosinase containing its native signal sequence in combination with α-mating factor. The deletion of the native signal sequence resulted in slight changes in myrosinase properties: the optimum pH shifted from 6.5 to 7.0 and the maximal activating concentration of ascorbic acid increased from 1 mM to 1.5 mM. Kinetic parameters toward sinigrin were determined: 0.249 mM (Km) and 435.7 U/mg (Vmax). These results could be applied to the expression of other plant enzymes.
Collapse
|
5
|
Liu C, Niu G, Li X, Zhang H, Chen H, Hou D, Lan P, Hong Z. Comparative Label-Free Quantitative Proteomics Analysis Reveals the Essential Roles of N-Glycans in Salt Tolerance by Modulating Protein Abundance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:646425. [PMID: 34276718 PMCID: PMC8283305 DOI: 10.3389/fpls.2021.646425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/02/2021] [Indexed: 06/01/2023]
Abstract
Many pieces of evidence show that the adaptive response of plants to salt stress requires the maturation of N-glycan on associated proteins. However, it is still little known about the salt-responsive glycoproteins that function in this process. In the present study, we identified salt-responsive glycoproteins in wild-type (WT) Arabidopsis and two mutants defective in N-glycan maturation, mns1 mns2 and cgl1. A total of 97 proteins with abundance changes of >1.5- or <0.67-fold were identified against salt stress by label-free liquid chromatography coupled mass spectrometry (LC-MS/MS) quantitative analyses. A comparison of differentially abundant glycoproteins (DAGs) indicated the substrate preferences regulated by MNS1/MNS2 and CGL1. In addition, the DAGs in mns1 mns2 hardly form functional regulatory networks in STRING analysis. Comparably, the regulatory network in cgl1 was visible and shared overlapping with that in WT. Such difference may supply the evidence to partially explain the lower salt sensitivity of mutant cgl1 than mns1 mns2. We further confirmed that two N-glycosylation clients, peroxidases PRX32 and PRX34, were involved in the salt stress response since the double mutants showed enhanced salt sensitivity. Together, our study provided proteomic evidence that N-glycans are crucial for modulating stress-responsive protein levels, and several novel glycoproteins responsible for salt stress tolerance in Arabidopsis were listed. Data are available via ProteomeXchange with identifier PXD006893.
Collapse
Affiliation(s)
- Chuanfa Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaowen Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Huawei Chen
- Research Center for Proteome Analysis, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Mocniak LE, Elkin K, Bollinger JM. Lifetimes of the Aglycone Substrates of Specifier Proteins, the Autonomous Iron Enzymes That Dictate the Products of the Glucosinolate-Myrosinase Defense System in Brassica Plants. Biochemistry 2020; 59:2432-2441. [PMID: 32516526 DOI: 10.1021/acs.biochem.0c00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specifier proteins (SPs) are components of the glucosinolate-myrosinase defense system found in plants of the order Brassicales (brassicas). Glucosinolates (GLSs) comprise at least 150 known S-(β-d-glucopyranosyl)thiohydroximate-O-sulfonate compounds, each with a distinguishing side chain linked to the central carbon. Following tissue injury, the enzyme myrosinase (MYR) promiscuously hydrolyzes the common thioglycosidic linkage of GLSs to produce unstable aglycone intermediates, which can readily undergo a Lossen-like rearrangement to the corresponding organoisothiocyanates. The known SPs share a common protein architecture but redirect the breakdown of aglycones to different stable products: epithionitrile (ESP), nitrile (NSP), or thiocyanate (TFP). The different effects of these products on brassica consumers motivate efforts to understand the defense response in chemical detail. Experimental analysis of SP mechanisms is challenged by the instability of the aglycones and would be facilitated by knowledge of their lifetimes. We developed a spectrophotometric method that we used to monitor the rearrangement reactions of the MYR-generated aglycones from nine GLSs, discovering that their half-lives (t1/2) vary by a factor of more than 50, from <3 to 150 s (22 °C). The t1/2 of the sinigrin-derived allyl aglycone (34 s), which can form the epithionitrile product (1-cyano-2,3-epithiopropane) in the presence of ESP, proved to be sufficient to enable spatial and temporal separation of the MYR and ESP reactions. The results confirm recent proposals that ESP is an autonomous iron-dependent enzyme that intercepts the unstable aglycone rather than a direct effector of MYR. Knowledge of aglycone lifetimes will enable elucidation of how the various SPs reroute aglycones to different products.
Collapse
Affiliation(s)
| | - Kyle Elkin
- Pasture Systems and Watershed Management Research Unit, United States Department of Agriculture Agricultural Research Service, Building 3702 Curtin Road, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
7
|
Feng X, Li X, Yang X, Zhu P. Fine mapping and identification of the leaf shape gene BoFL in ornamental kale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1303-1312. [PMID: 31996972 DOI: 10.1007/s00122-020-03551-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/23/2020] [Indexed: 05/27/2023]
Abstract
BoFL, a candidate gene conferring the feathered-leaved trait in ornamental kale, is located in a 374.532-kb region on chromosome C9. Leaf shape is an important economic trait in ornamental kale (Brassica oleracea var. acephala). Identifying the genes that influence leaf shape would provide insight into the mechanism underlying leaf development. In this study, we constructed F1, F2, BC1P1, BC1P2, and F2:3 populations from a cross between a feathered-leaved inbred line, F0819, and a smooth-leaved inbred line, S0835, of ornamental kale. Genetic analysis showed that the feathered-leaved trait was controlled by a semi-dominant gene, BoFL. Using bulked segregant analysis sequencing, we mapped the BoFL gene to a 4.17-Mb interval on chromosome C9. Next, we narrowed down the candidate region to 374.532-kb by fine-scale mapping between the two flanking markers INDEL940 and INDEL5443. We identified 38 genes in the candidate region, among which only Bo9g184610 showed significant variation in expression level between the two parental lines. Sequencing of the gene in the parental lines identified three single-nucleotide polymorphism (SNP) differences, containing two nonsynonymous and one synonymous SNPs, which resulted in coding variations of an aspartate and a phenylalanine residue in F0819, but an alanine and a leucine residue in S0835. A cleaved amplified polymorphic sequence (CAPS) marker, CAPS4610, corresponding to the first nonsynonymous SNP co-segregated with the leaf shape trait. We thus speculated that the gene conferring the feathered-leaved trait is BoALG10, a homolog of ALG10, which encodes an alpha-1,2-glucosyltransferase in Arabidopsis thaliana. This work will be useful for understanding the mechanism of leaf development and provides important information for the breeding of kale with novel leaf shapes.
Collapse
Affiliation(s)
- Xin Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xin Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xinru Yang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
8
|
Soh WT, Demir F, Dall E, Perrar A, Dahms SO, Kuppusamy M, Brandstetter H, Huesgen PF. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease. Anal Chem 2020; 92:2961-2971. [PMID: 31951383 PMCID: PMC7075662 DOI: 10.1021/acs.analchem.9b03604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Bottom-up
mass spectrometry-based proteomics utilizes proteolytic
enzymes with well characterized specificities to generate peptides
amenable for identification by high-throughput tandem mass spectrometry.
Trypsin, which cuts specifically after the basic residues lysine and
arginine, is the predominant enzyme used for proteome digestion, although
proteases with alternative specificities are required to detect sequences
that are not accessible after tryptic digest. Here, we show that the
human cysteine protease legumain exhibits a strict substrate specificity
for cleavage after asparagine and aspartic acid residues during in-solution
digestions of proteomes extracted from Escherichia
coli, mouse embryonic fibroblast cell cultures, and Arabidopsis thaliana leaves. Generating peptides
highly complementary in sequence, yet similar in their biophysical
properties, legumain (as compared to trypsin or GluC) enabled complementary
proteome and protein sequence coverage. Importantly, legumain further
enabled the identification and enrichment of protein N-termini not
accessible in GluC- or trypsin-digested samples. Legumain cannot cleave
after glycosylated Asn residues, which enabled the robust identification
and orthogonal validation of N-glycosylation sites based on alternating
sequential sample treatments with legumain and PNGaseF and vice versa.
Taken together, we demonstrate that legumain is a practical, efficient
protease for extending the proteome and sequence coverage achieved
with trypsin, with unique possibilities for the characterization of
post-translational modification sites.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Department of Biosciences , University of Salzburg , 5020 Salzburg , Austria
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Elfriede Dall
- Department of Biosciences , University of Salzburg , 5020 Salzburg , Austria
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Sven O Dahms
- Department of Biosciences , University of Salzburg , 5020 Salzburg , Austria
| | - Maithreyan Kuppusamy
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Hans Brandstetter
- Department of Biosciences , University of Salzburg , 5020 Salzburg , Austria
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , 52428 Jülich , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Medical Faculty and University Hospital , University of Cologne , 50931 Cologne , Germany.,Institute for Biochemistry, Faculty of Mathematics and Natural Sciences , University of Cologne , 50674 Cologne , Germany
| |
Collapse
|
9
|
Bhat R, Vyas D. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Crit Rev Biotechnol 2019; 39:508-523. [PMID: 30939944 DOI: 10.1080/07388551.2019.1576024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucosinolate-myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate-myrosinase system from an ecological and nutraceutical perspective.
Collapse
Affiliation(s)
- Rohini Bhat
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| | - Dhiraj Vyas
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| |
Collapse
|
10
|
Du H, Chen L, Zhan N, Mu J, Ren B, Zuo J. A new insight to explore the regulation between S-nitrosylation and N-glycosylation. PLANT DIRECT 2019; 3:e00110. [PMID: 31245758 PMCID: PMC6508853 DOI: 10.1002/pld3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is a signal molecule in plants and animals. Arabidopsis GSNO reductase1 (AtGSNOR1) catalyzes metabolism of S-nitrosoglutathione (GSNO) which is a major biologically active NO species. The GSNOR1 loss-of-function mutant gsnor1-3 overaccumulates GSNO with inherent high S-nitrosylation level and resistance to the oxidative stress inducer paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride). Here, we report the characterization of dgl1-3 as a genetic suppressor of gsnor1-3. DGL1 encodes a subunit of the oligosaccharyltransferse (OST) complex which catalyzes the formation of N-glycosidic bonds in N-glycosylation. The fact that dgl1-3 repressed the paraquat resistance of gsnor1-3 meanwhile gsnor1-3 rescued the embryo-lethal and post-embryonic development defect of dgl1-3 reminded us the possibility that S-nitrosylation and N-glycosylation crosstalk with each other through co-substrates. By enriching glycoproteins in gsnor1-3 and mass spectrometry analysis, TGG2 (thioglucoside glucohydrolase2) was identified as one of co-substrates with high degradation rate and elevated N-glycosylation level in gsnor1-3 ost3/6. The S-nitrosylation and N-glycosylation profiles were also modified in dgl1-3 and gsnor1-3. Thereby, we propose a linkage between S-nitrosylation and N-glycosylation through co-substrates.
Collapse
Affiliation(s)
- Hu Du
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ni Zhan
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinye Mu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Bo Ren
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing)Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
11
|
Liu C, Niu G, Zhang H, Sun Y, Sun S, Yu F, Lu S, Yang Y, Li J, Hong Z. Trimming of N-Glycans by the Golgi-Localized α-1,2-Mannosidases, MNS1 and MNS2, Is Crucial for Maintaining RSW2 Protein Abundance during Salt Stress in Arabidopsis. MOLECULAR PLANT 2018; 11:678-690. [PMID: 29409894 DOI: 10.1016/j.molp.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Asparagine (Asn/N)-linked glycans are important for protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotes. The maturation of glycoproteins involves the trimming of mannosyl residues by mannosidases and addition of other sugar molecules to three-branched N-glycans in the Golgi. However, the biological importance of Golgi-mediated mannose trimming is not fully understood. Here, we show that abolishment of two functionally redundant mannosidases, MNS1 and MNS2, responsible for α-1,2-mannose trimming on the A and C branches of plant N-glycans lead to severe root growth inhibition under salt stress conditions in Arabidopsis. In contrast, mutants with defects in the biosynthesis of the oligosaccharide precursor displayed enhanced salt tolerance in the absence of mannose trimming. However, mutation in EBS3, which is required for the formation of the branched N-glycan precursor, suppressed the salt-sensitive phenotype of mns1 mns2 double mutant. Interestingly, we observed that cellulose biosynthesis was compromised in mns1 mns2 roots under high salinity. Consistently, abundance of a membrane anchored endo-β-1,4-endoglucanase (RSW2/KOR) that plays a key role in cellulose biosynthesis and its mutant variant rsw2-1 were modulated by α-1,2-mannose trimming under salt stress. Overexpression of RSW2 could partially rescue the salt-sensitive phenotype of mns1 mns2. Taken together, these results suggest that MNS1/2-mediated mannose trimming of N-glycans is crucial in modulating glycoprotein abundance to withstand salt stress in plants.
Collapse
Affiliation(s)
- Chuanfa Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huchen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Fugen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 201602, China.
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
12
|
Veit C, König J, Altmann F, Strasser R. Processing of the Terminal Alpha-1,2-Linked Mannose Residues From Oligomannosidic N-Glycans Is Critical for Proper Root Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:1807. [PMID: 30574158 PMCID: PMC6291467 DOI: 10.3389/fpls.2018.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/20/2018] [Indexed: 05/02/2023]
Abstract
N-glycosylation is an essential protein modification that plays roles in many diverse biological processes including protein folding, quality control and protein interactions. Despite recent advances in characterization of the N-glycosylation and N-glycan processing machinery our understanding of N-glycosylation related processes in plant development is limited. In Arabidopsis thaliana, failure of mannose trimming from oligomannosidic N-glycans in the endoplasmic reticulum (ER) and cis/medial-Golgi leads to a defect in root development in the mns123 triple mutant. Here, we show that the severe root phenotype of mns123 is restored in asparagine-linked glycosylation (ALG)-deficient plants with distinct defects in the biosynthesis of the lipid-linked oligosaccharide precursor. The root growth of these ALG-deficient plants is not affected by the α-mannosidase inhibitor kifunensine. Genetic evidence shows that the defect is uncoupled from the glycan-dependent ER-associated degradation (ERAD) pathway that removes misfolded glycoproteins with oligomannosidic N-glycans from the ER. Restoration of mannose trimming using a trans-Golgi targeted α-mannosidase suppresses the defect of mns123 roots. These data suggest that processing of terminal mannose residues from oligomannosidic N-glycans is important for an unknown late-Golgi or post-Golgi process that is implicated in proper root formation.
Collapse
Affiliation(s)
- Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Richard Strasser,
| |
Collapse
|
13
|
Abstract
Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum. In plants, the N-glycans play a pivotal role for protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.
Collapse
|
14
|
Abstract
Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.
Collapse
Affiliation(s)
- Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
15
|
Xu SL, Medzihradszky KF, Wang ZY, Burlingame AL, Chalkley RJ. N-Glycopeptide Profiling in Arabidopsis Inflorescence. Mol Cell Proteomics 2016; 15:2048-54. [PMID: 27067053 DOI: 10.1074/mcp.m115.056101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/20/2023] Open
Abstract
This study presents the first large-scale analysis of plant intact glycopeptides. Using wheat germ agglutinin lectin weak affinity chromatography to enrich modified peptides, followed by electron transfer dissociation (ETD)(1) fragmentation tandem mass spectrometry, glycan compositions on over 1100 glycopeptides from 270 proteins found in Arabidopsis inflorescence tissue were characterized. While some sites were only detected with a single glycan attached, others displayed up to 16 different glycoforms. Among the identified glycopeptides were four modified in nonconsensus glycosylation motifs. While most of the modified proteins are secreted, membrane, endoplasmic reticulum (ER), or Golgi-localized proteins, surprisingly, N-linked sugars were detected on a protein predicted to be cytosolic or nuclear.
Collapse
Affiliation(s)
- Shou-Ling Xu
- From the ‡Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; §Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Katalin F Medzihradszky
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Zhi-Yong Wang
- From the ‡Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Alma L Burlingame
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Robert J Chalkley
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
16
|
Lannoo N, Van Damme EJM. Review/N-glycans: The making of a varied toolbox. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:67-83. [PMID: 26398792 DOI: 10.1016/j.plantsci.2015.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/23/2023]
Abstract
Asparagine (N)-linked protein glycosylation is one of the most crucial, prevalent, and complex co- and post-translational protein modifications. It plays a pivotal role in protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) as well as in protein sorting, protein function, and in signal transduction. Furthermore, glycosylation modulates many important biological processes including growth, development, morphogenesis, and stress signaling processes. As a consequence, aberrant or altered N-glycosylation is often associated with reduced fitness, diseases, and disorders. The initial steps of N-glycan synthesis at the cytosolic side of the ER membrane and in the lumen of the ER are highly conserved. In contrast, the final N-glycan processing in the Golgi apparatus is organism-specific giving rise to a wide variety of carbohydrate structures. Despite our vast knowledge on N-glycans in yeast and mammals, the modus operandi of N-glycan signaling in plants is still largely unknown. This review will elaborate on the N-glycosylation biosynthesis pathway in plants but will also critically assess how N-glycans are involved in different signaling cascades, either active during normal development or upon abiotic and biotic stresses.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
17
|
Abstract
N-linked glycosylation is one of the most prevalent cotranslational protein modifications in plants. It is initiated by a conserved process in the endoplasmic reticulum and subsequently involves a series of different N-glycan maturation steps that take place in the ER and Golgi apparatus. Despite our vast knowledge on the different processing steps we still understand very little about the role of characteristic glycoforms present on individual plant glycoproteins. Here, we describe convenient tools that allow the fast and reliable characterization of N-glycosylation on plant glycoproteins. The presented protocols can be adopted to other plant species and to the characterization of N-glycans from different glycoproteins.
Collapse
|
18
|
Liebminger E, Grass J, Altmann F, Mach L, Strasser R. Characterizing the link between glycosylation state and enzymatic activity of the endo-β1,4-glucanase KORRIGAN1 from Arabidopsis thaliana. J Biol Chem 2013; 288:22270-80. [PMID: 23782689 PMCID: PMC3829318 DOI: 10.1074/jbc.m113.475558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/12/2013] [Indexed: 01/24/2023] Open
Abstract
Defects in N-glycosylation and N-glycan processing frequently cause alterations in plant cell wall architecture, including changes in the structure of cellulose, which is the most abundant plant polysaccharide. KORRIGAN1 (KOR1) is a glycoprotein enzyme with an essential function during cellulose biosynthesis in Arabidopsis thaliana. KOR1 is a membrane-anchored endo-β1,4-glucanase and contains eight potential N-glycosylation sites in its extracellular domain. Here, we expressed A. thaliana KOR1 as a soluble, enzymatically active protein in insect cells and analyzed its N-glycosylation state. Structural analysis revealed that all eight potential N-glycosylation sites are utilized. Individual elimination of evolutionarily conserved N-glycosylation sites did not abolish proper KOR1 folding, but mutations of Asn-216, Asn-324, Asn-345, and Asn-567 resulted in considerably lower enzymatic activity. In contrast, production of wild-type KOR1 in the presence of the class I α-mannosidase inhibitor kifunensine, which abolished the conversion of KOR1 N-glycans into complex structures, did not affect the activity of the enzyme. To address N-glycosylation site occupancy and N-glycan composition of KOR1 under more natural conditions, we expressed a chimeric KOR1-Fc-GFP fusion protein in leaves of Nicotiana benthamiana. Although Asn-108 and Asn-133 carried oligomannosidic N-linked oligosaccharides, the six other glycosylation sites were modified with complex N-glycans. Interestingly, the partially functional KOR1 G429R mutant encoded by the A. thaliana rsw2-1 allele displayed only oligomannosidic structures when expressed in N. benthamiana, indicating its retention in the endoplasmic reticulum. In summary, our data indicate that utilization of several N-glycosylation sites is important for KOR1 activity, whereas the structure of the attached N-glycans is not critical.
Collapse
Affiliation(s)
- Eva Liebminger
- From the Departments of Applied Genetics and Cell Biology and
| | - Josephine Grass
- Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- From the Departments of Applied Genetics and Cell Biology and
| | | |
Collapse
|
19
|
Farid A, Malinovsky FG, Veit C, Schoberer J, Zipfel C, Strasser R. Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. PLANT PHYSIOLOGY 2013; 162:24-38. [PMID: 23493405 PMCID: PMC3641206 DOI: 10.1104/pp.113.215509] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/13/2013] [Indexed: 05/18/2023]
Abstract
Asparagine-linked glycosylation of proteins is an essential cotranslational and posttranslational protein modification in plants. The central step in this process is the transfer of a preassembled oligosaccharide to nascent proteins in the endoplasmic reticulum by the oligosaccharyltransferase (OST) complex. Despite the importance of the catalyzed reaction, the composition and the function of individual OST subunits are still ill defined in plants. Here, we report the function of the highly conserved OST subunit OST3/6. We have identified a mutant in the OST3/6 gene that causes overall underglycosylation of proteins and affects the biogenesis of the receptor kinase EF-TU RECEPTOR involved in innate immunity and the endo-β-1,4-glucanase KORRIGAN1 required for cellulose biosynthesis. Notably, the ost3/6 mutation does not affect mutant variants of the receptor kinase BRASSINOSTEROID-INSENSITIVE1. OST3/6 deficiency results in activation of the unfolded protein response and causes hypersensitivity to salt/osmotic stress and to the glycosylation inhibitor tunicamycin. Consistent with its role in protein glycosylation, OST3/6 resides in the endoplasmic reticulum and interacts with other subunits of the OST complex. Together, our findings reveal the importance of Arabidopsis (Arabidopsis thaliana) OST3/6 for the efficient glycosylation of specific glycoproteins involved in different physiological processes and shed light on the composition and function of the plant OST complex.
Collapse
|