1
|
Cooper AJL, Denton TT. ω-Amidase and Its Substrate α-Ketoglutaramate (the α-Keto Acid Analogue of Glutamine) as Biomarkers in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1660-1680. [PMID: 39523108 DOI: 10.1134/s000629792410002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
A large literature exists on the biochemistry, chemistry, metabolism, and clinical importance of the α-keto acid analogues of many amino acids. However, although glutamine is the most abundant amino acid in human tissues, and transamination of glutamine to its α-keto acid analogue (α-ketoglutaramate; KGM) was described more than seventy years ago, little information is available on the biological importance of KGM. Herein, we summarize the metabolic importance of KGM as an intermediate in the glutamine transaminase - ω-amidase (GTωA) pathway for the conversion of glutamine to anaplerotic α-ketoglutarate. We describe some properties of KGM, notably its occurrence as a lactam (2-hydroxy-5-oxoproline; 99.7% at pH 7.2), and its presence in normal tissues and body fluids. We note that the concentration of KGM is elevated in the cerebrospinal fluid of liver disease patients and that the urinary KGM/creatinine ratio is elevated in patients with an inborn error of the urea cycle and in patients with citrin deficiency. Recently, of the 607 urinary metabolites measured in a kidney disease study, KGM was noted to be one of five metabolites that was most significantly associated with uromodulin (a potential biomarker for tubular functional mass). Finally, we note that KGM is an intermediate in the breakdown of nicotine in certain organisms and is an important factor in nitrogen homeostasis in some microorganisms and plants. In conclusion, we suggest that biochemists and clinicians should consider KGM as (i) a key intermediate in nitrogen metabolism in all branches of life, and (ii) a biomarker, along with ω-amidase, in several diseases.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Travis T Denton
- LiT Biosciences, Spokane, WA, 99202-5029, USA. ARRAY(0x5d17383a0090)
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| |
Collapse
|
2
|
Unkefer PJ, Knight TJ, Martinez RA. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. PLANT PHYSIOLOGY 2023; 191:715-728. [PMID: 36303326 PMCID: PMC9806585 DOI: 10.1093/plphys/kiac501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A metabolite of ammonium assimilation was previously theorized to be involved in the coordination of the overall nitrate response in plants. Here we show that 2-hydroxy-5-oxoproline, made by transamination of glutamine, the first product of ammonium assimilation, may be involved in signaling a plant's ammonium assimilation status. In leaves, 2-hydroxy-5-oxoproline met four foundational requirements to be such a signal. First, when it was applied to foliage, enzyme activities of nitrate reduction and ammonium assimilation increased; the activities of key tricarboxylic acid cycle-associated enzymes that help to supply carbon skeletons for amino acid synthesis also increased. Second, its leaf pools increased as nitrate availability increased. Third, the pool size of its precursor, Gln, reflected ammonium assimilation rather than photorespiration. Fourth, it was widely conserved among monocots, dicots, legumes, and nonlegumes and in plants with C3 or C4 metabolism. Made directly from the first product of ammonium assimilation, 2-hydroxy-5-oxoproline acted as a nitrate uptake stimulant. When 2-hydroxy-5-oxoproline was provided to roots, the plant's nitrate uptake rate approximately doubled. Plants exogenously provided with 2-hydroxy-5-oxoproline to either roots or leaves accumulated greater biomass. A model was constructed that included the proposed roles of 2-hydroxy-5-oxoproline as a signal molecule of ammonium assimilation status in leaves, as a stimulator of nitrate uptake by roots and nitrate downloading from the xylem. In summary, a glutamine metabolite made in the ω-amidase pathway stimulated nitrate uptake by roots and was likely to be a signal of ammonium assimilation status in leaves. A chemical synthesis method for 2-hydroxy-5-oxoproline was also developed.
Collapse
|
3
|
Willems P, Ndah E, Jonckheere V, Van Breusegem F, Van Damme P. To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:778804. [PMID: 35069635 PMCID: PMC8770321 DOI: 10.3389/fpls.2021.778804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Alternative translation initiation is a widespread event in biology that can shape multiple protein forms or proteoforms from a single gene. However, the respective contribution of alternative translation to protein complexity remains largely enigmatic. By complementary ribosome profiling and N-terminal proteomics (i.e., riboproteogenomics), we provide clear-cut evidence for ~90 N-terminal proteoform pairs shaped by (alternative) translation initiation in Arabidopsis thaliana. Next to several cases additionally confirmed by directed mutagenesis, identified alternative protein N-termini follow the enzymatic rules of co-translational N-terminal protein acetylation and initiator methionine removal. In contrast to other eukaryotic models, N-terminal acetylation in plants cannot generally be considered as a proxy of translation initiation because of its posttranslational occurrence on mature proteolytic neo-termini (N-termini) localized in the chloroplast stroma. Quantification of N-terminal acetylation revealed differing co- vs. posttranslational N-terminal acetylation patterns. Intriguingly, our data additionally hints to alternative translation initiation serving as a common mechanism to supply protein copies in multiple cellular compartments, as alternative translation sites are often in close proximity to cleavage sites of N-terminal transit sequences of nuclear-encoded chloroplastic and mitochondrial proteins. Overall, riboproteogenomics screening enables the identification of (differential localized) N-terminal proteoforms raised upon alternative translation.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Elvis Ndah
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Condori-Apfata JA, Batista-Silva W, Medeiros DB, Vargas JR, Valente LML, Pérez-Díaz JL, Fernie AR, Araújo WL, Nunes-Nesi A. Downregulation of the E2 Subunit of 2-Oxoglutarate Dehydrogenase Modulates Plant Growth by Impacting Carbon-Nitrogen Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:798-814. [PMID: 33693904 PMCID: PMC8484937 DOI: 10.1093/pcp/pcab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 05/04/2023]
Abstract
In Arabidopsis thaliana, two genes encode the E2 subunit of the 2-oxoglutarate dehydrogenase (2-OGDH), a multimeric complex composed of three subunits. To functionally characterize the isoforms of E2 subunit, we isolated Arabidopsis mutant lines for each gene encoding the E2 subunit and performed a detailed molecular and physiological characterization of the plants under controlled growth conditions. The functional lack of expression of E2 subunit isoforms of 2-OGDH increased plant growth, reduced dark respiration and altered carbohydrate metabolism without changes in the photosynthetic rate. Interestingly, plants from e2-ogdh lines also exhibited reduced seed weight without alterations in total seed number. We additionally observed that downregulation of 2-OGDH activity led to minor changes in the levels of tricarboxylic acid cycle intermediates without clear correlation with the reduced expression of specific E2-OGDH isoforms. Furthermore, the e2-ogdh mutant lines exhibited a reduction by up to 25% in the leaf total amino acids without consistent changes in the amino acid profile. Taken together, our results indicate that the two isoforms of E2 subunit play a similar role in carbon-nitrogen metabolism, in plant growth and in seed weight.
Collapse
Affiliation(s)
- Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam Golm 14476, Germany
| | - Jonas Rafael Vargas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Luiz M Lopes Valente
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jorge Luis Pérez-Díaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Alisdair R Fernie
- * Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- * Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| |
Collapse
|
5
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
6
|
Alkaloids of Delphinium grandiflorum and their implication to H2O2-induced cardiomyocytes injury. Bioorg Med Chem 2021; 37:116113. [DOI: 10.1016/j.bmc.2021.116113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
|
7
|
The metabolic importance of the overlooked asparaginase II pathway. Anal Biochem 2020; 644:114084. [PMID: 33347861 DOI: 10.1016/j.ab.2020.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022]
Abstract
The asparaginase II pathway consists of an asparagine transaminase [l-asparagine + α-keto acid ⇆ α-ketosuccinamate + l-amino acid] coupled to ω-amidase [α-ketosuccinamate + H2O → oxaloacetate + NH4+]. The net reaction is: l-asparagine + α-keto acid + H2O → oxaloacetate + l-amino acid + NH4+. Thus, in the presence of a suitable α-keto acid substrate, the asparaginase II pathway generates anaplerotic oxaloacetate at the expense of readily dispensable asparagine. Several studies have shown that the asparaginase II pathway is important in photorespiration in plants. However, since its discovery in rat tissues in the 1950s, this pathway has been almost completely ignored as a conduit for asparagine metabolism in mammals. Several mammalian transaminases can catalyze transamination of asparagine, one of which - alanine-glyoxylate aminotransferase type 1 (AGT1) - is important in glyoxylate metabolism. Glyoxylate is a precursor of oxalate which, in the form of its calcium salt, is a major contributor to the formation of kidney stones. Thus, transamination of glyoxylate with asparagine may be physiologically important for the removal of potentially toxic glyoxylate. Asparaginase has been the mainstay treatment for certain childhood leukemias. We suggest that an inhibitor of ω-amidase may potentiate the therapeutic benefits of asparaginase treatment.
Collapse
|
8
|
Ning DL, Wu T, Xiao LJ, Ma T, Fang WL, Dong RQ, Cao FL. Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis. Gigascience 2020; 9:giaa006. [PMID: 32101299 PMCID: PMC7043058 DOI: 10.1093/gigascience/giaa006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/22/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Juglans sigillata, or iron walnut, belonging to the order Juglandales, is an economically important tree species in Asia, especially in the Yunnan province of China. However, little research has been conducted on J. sigillata at the molecular level, which hinders understanding of its evolution, speciation, and synthesis of secondary metabolites, as well as its wide adaptability to its plateau environment. To address these issues, a high-quality reference genome of J. sigillata would be useful. FINDINGS To construct a high-quality reference genome for J. sigillata, we first generated 38.0 Gb short reads and 66.31 Gb long reads using Illumina and Nanopore sequencing platforms, respectively. The sequencing data were assembled into a 536.50-Mb genome assembly with a contig N50 length of 4.31 Mb. Additionally, we applied BioNano technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with scaffold N50 length of 16.43 Mb and contig N50 length of 4.34 Mb. To obtain a chromosome-level genome assembly, we constructed 1 Hi-C library and sequenced 79.97 Gb raw reads using the Illumina HiSeq platform. We anchored ∼93% of the scaffold sequences into 16 chromosomes and evaluated the quality of our assembly using the high contact frequency heat map. Repetitive elements account for 50.06% of the genome, and 30,387 protein-coding genes were predicted from the genome, of which 99.8% have been functionally annotated. The genome-wide phylogenetic tree indicated an estimated divergence time between J. sigillata and Juglans regia of 49 million years ago on the basis of single-copy orthologous genes. CONCLUSIONS We provide the first chromosome-level genome for J. sigillata. It will lay a valuable foundation for future research on the genetic improvement of J. sigillata.
Collapse
Affiliation(s)
- De-Lu Ning
- Central South University of Forestry and Technology, 498 Shaoshan South Rd, Changsha 410004, China
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
| | - Tao Wu
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
- Yunnan Laboratory for Conservation of Rare, Endangered & Endemic Forest Plants, Public Key Laboratory of the State Forestry Administration; Yunnan Provincial Key Laboratory of Cultivation and Exploitation of Forest Plants, 2 Lan'an Rd, Kunming 650201, China
| | - Liang-Jun Xiao
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
| | - Ting Ma
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
| | - Wen-Liang Fang
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
| | - Run-Quan Dong
- Institute of Economic Forest, Yunnan Academy of Forestry and Grassland, 2 Lan'an Rd, Kunming 650201, China
| | - Fu-Liang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Rd, Nanjing 210037, China
| |
Collapse
|
9
|
Liu J, Zhang Y, Feng K, Liu X, Li J, Li C, Zhang P, Yu Q, Liu J, Shen G, He L. Amidase, a novel detoxifying enzyme, is involved in cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:31-38. [PMID: 31973868 DOI: 10.1016/j.pestbp.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Amidase is an important hydrolytic enzyme in detoxification metabolism. Amidase hydrolyzes a wide variety of nonpeptide carbon‑nitrogen bonds by attacking a cyano group or carbonyl carbon. However, little is known about the relationship between amidase and insecticides. In this study, the amidase activity was significantly higher in cyflumetofen-resistant strain (CyR) than in the susceptible strain (SS) of Tetranychus cinnabarinus, and diethyl-phosphoramidate (an amidase inhibitor) significantly decreased cyflumetofen resistance in T. cinnabarinus. More importantly, an amidase gene, TcAmidase01, was identified in T. cinnabarinus, and the TcAmidase01 overexpression was detected in both two cyflumetofen-resistant strains (CyR and YN-CyR), indicating that it is involved in cyflumetofen resistance in mites. A phylogenetic analysis showed that TcAmidase01 was clustered with deaminated glutathione amidases, which possess hydrolytic activity. The recombinant TcAmidase01 protein showed amidase activity toward succinamate, and the activity could be inhibited by cyflumetofen. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis provided evidence that recombinant TcAmidase01 could decompose cyflumetofen by hydrolysis, and the potential metabolites (2-(4-(tert-butyl) phenyl)-2-cyanoacetate and 2-(trifluoromethyl) benzoic acid) were identified. These results show that TcAmidase01 contribute to cyflumetofen-resistance in T. cinnabarinus by hydrolyzing cyflumetofen, and this is the first study to suggest that amidase has a role in insecticides resistance in arthropods.
Collapse
Affiliation(s)
- Jialu Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Yichao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Xinyang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Chuanzhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Qian Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Jie Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Wang R, Yang L, Han X, Zhao Y, Zhao L, Xiang B, Zhu Y, Bai Y, Wang Y. Overexpression of AtAGT1 promoted root growth and development during seedling establishment. PLANT CELL REPORTS 2019; 38:1165-1180. [PMID: 31161264 DOI: 10.1007/s00299-019-02435-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis photorespiratory gene AtAGT1 is important for the growth and development of root, the non-photosynthetic organ, and it is involved in a complex metabolic network and salt resistance. AtAGT1 in Arabidopsis encodes an aminotransferase that has a wide range of donor:acceptor combinations, including Asn:glyoxylate. Although it is one of the photorespiratory genes, its encoding protein has been suggested to function also in roots to metabolize Asn. However, experimental data are still lacking. In this study, we investigated experimentally the function of AtAGT1 in roots and our results uncovered its importance in root development during seedling establishment after seed germination. Overexpression of AtAGT1 in roots promoted both the growth of primary root and outgrowth of lateral roots. To further elucidate the molecular mechanisms underlying, amino acid content and gene expression in roots were analyzed, and results revealed that AtAGT1 is involved in a complex metabolic network and salt resistance of roots.
Collapse
Affiliation(s)
- Rui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaofang Han
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhong Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ling Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Beibei Xiang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Anshan Road 312, Tianjin, 300193, China
| | - Yerong Zhu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanling Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Romero-Rodríguez MC, Jorrín-Novo JV, Castillejo MA. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. J Proteomics 2018; 197:60-70. [PMID: 30408563 DOI: 10.1016/j.jprot.2018.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 11/15/2022]
Abstract
By using two complementary proteomics, gel-based and gel-free (shotgun) approaches, the protein profiles of the non-orthodox forest tree species Quercus ilex seeds during germination and early seedling growth have been compared. Proteins were extracted from embryo axis, radicle and shoot tissues at different developmental stages. Proteins were subjected to one- and two-dimensional gel electrophoresis. A multivariate analysis (PCA) revealed that SDS-PAGE clearly separated germination (0-24 h post-imbibition), postgermination (72-216 h post-imbibition) and early seedling growth stages (2 weeks post-imbibition). Image analysis of the two-dimensional gels revealed a total of 732 spots, 103 of which were significantly variable among developmental stages. After MALDI-TOF/TOF MS analysis, 90 spots were identified, belonging to six main functional categories: carbohydrate, amino acids, energy, and protein metabolism, biosynthesis of secondary metabolites, and redox processes. The gel-based approach disclosed important metabolic changes that occurred in the holm oak seed after the germination. However, few proteins were significantly altered during the germination period (from 0 h to 24 h post imbibition) and, because of that, a further shotgun analysis was therefore used to analyse changes in the protein profile during seed germination. Up to 1250 proteins could be confidently identified, with 153 being variable. They belonged to the main functional categories of carbohydrate, amino acids and secondary metabolism, protein degradation, and responses to abiotic stress. The accumulation of proteases and amino acids metabolism proteins in mature seeds can be reflecting the production of energy from the mobilization of storage proteins to start germination. These results, therefore, corroborate the hypothesis that the mature non-orthodox seeds of Q. ilex have all the machinery necessary for rapidly resuming metabolic activities and starting the germination process, in contrast to that occurs in orthodox seeds, which metabolic activity ceases in mature dry seeds. The use of a genus-specific database combined with the public Viridiplantae database improved the quality and quantity of protein identification in this orphan species. In addition, both proteomics approaches (gel-based and shotgun) were complementary, with shotgun increasing by over two-fold the coverage of the proteome analysed. Both approaches provided similar results and supported the same conclusions on the metabolic switch experienced by the seed upon germination. SIGNIFICANCE: The optimal seed germination is a prerequisite for successful seedling establishment and plant vigour, being of great relevance in the case of crops and commercial woody plants. By using a complementary gel-based and gel-free proteomic strategy we have study the protein profiles of the non-orthodox forest tree species Quercus ilex seeds during germination and early seedling growth. The contribution of this work is of great importance, due to the complemented proteomic approaches giving similar clues to the metabolic state of the mature Q. ilex seed before the germination starts, and the metabolic switch experienced by the imbibed acorn until the seedling is established.
Collapse
Affiliation(s)
- María Cristina Romero-Rodríguez
- Agroforestry and Plant Biochemistry, Proteomics, and Systems Biology Research Group, Department of Biochemistry and Molecular Biology- ETSIAM, University of Cordoba, UCO-CeiA3, Spain; Centro Multidisciplinario de Investigaciones Tecnológicas, Dirección General de Investigación Científica y Tecnológica, Universidad Nacional de Asunción, Paraguay; Departamento de Química Biológica, Dirección de Investigaciones, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Paraguay.
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics, and Systems Biology Research Group, Department of Biochemistry and Molecular Biology- ETSIAM, University of Cordoba, UCO-CeiA3, Spain
| | - María Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics, and Systems Biology Research Group, Department of Biochemistry and Molecular Biology- ETSIAM, University of Cordoba, UCO-CeiA3, Spain.
| |
Collapse
|
12
|
Comparative proteomic analysis reveals the adaptation of Herpetospermum pedunculosum to an altitudinal gradient in the Tibetan Plateau. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
García-Calderón M, Pérez-Delgado CM, Credali A, Vega JM, Betti M, Márquez AJ. Genes for asparagine metabolism in Lotus japonicus: differential expression and interconnection with photorespiration. BMC Genomics 2017; 18:781. [PMID: 29025409 PMCID: PMC5639745 DOI: 10.1186/s12864-017-4200-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asparagine is a very important nitrogen transport and storage compound in plants due to its high nitrogen/carbon ratio and stability. Asparagine intracellular concentration depends on a balance between asparagine biosynthesis and degradation. The main enzymes involved in asparagine metabolism are asparagine synthetase (ASN), asparaginase (NSE) and serine-glyoxylate aminotransferase (SGAT). The study of the genes encoding for these enzymes in the model legume Lotus japonicus is of particular interest since it has been proposed that asparagine is the principal molecule used to transport reduced nitrogen within the plant in most temperate legumes. RESULTS A differential expression of genes encoding for several enzymes involved in asparagine metabolism was detected in L. japonicus. ASN is encoded by three genes, LjASN1 was the most highly expressed in mature leaves while LjASN2 expression was negligible and LjASN3 showed a low expression in this organ, suggesting that LjASN1 is the main gene responsible for asparagine synthesis in mature leaves. In young leaves, LjASN3 was the only ASN gene expressed although at low levels, while all the three genes encoding for NSE were highly expressed, especially LjNSE1. In nodules, LjASN2 and LjNSE2 were the most highly expressed genes, suggesting an important role for these genes in this organ. Several lines of evidence support the connection between asparagine metabolic genes and photorespiration in L. japonicus: a) a mutant plant deficient in LjNSE1 showed a dramatic decrease in the expression of the two genes encoding for SGAT; b) expression of the genes involved in asparagine metabolism is altered in a photorespiratory mutant lacking plastidic glutamine synthetase; c) a clustering analysis indicated a similar pattern of expression among several genes involved in photorespiratory and asparagine metabolism, indicating a clear link between LjASN1 and LjSGAT genes and photorespiration. CONCLUSIONS The results obtained in this paper indicate the existence of a differential expression of asparagine metabolic genes in L. japonicus and point out the crucial relevance of particular genes in different organs. Moreover, the data presented establish clear links between asparagine and photorespiratory metabolic genes in this plant.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Carmen M Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Alfredo Credali
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - José M Vega
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain.
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| |
Collapse
|
14
|
Hariharan VA, Denton TT, Paraszcszak S, McEvoy K, Jeitner TM, Krasnikov BF, Cooper AJL. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites. BIOLOGY 2017; 6:biology6020024. [PMID: 28358347 PMCID: PMC5485471 DOI: 10.3390/biology6020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Many enzymes make "mistakes". Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain "mistakes" of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.
Collapse
Affiliation(s)
- Vivek A Hariharan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University, College of Pharmacy, Spokane, WA 99210-1495, USA.
| | - Sarah Paraszcszak
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Kyle McEvoy
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Thomas M Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Boris F Krasnikov
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| |
Collapse
|
15
|
Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:643-656. [PMID: 28011718 PMCID: PMC5441925 DOI: 10.1093/jxb/erw467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Serine:glyoxylate aminotransferase (SGAT) converts glyoxylate and serine to glycine and hydroxypyruvate during photorespiration. Besides this, SGAT operates with several other substrates including asparagine. The impact of this enzymatic promiscuity on plant metabolism, particularly photorespiration and serine biosynthesis, is poorly understood. We found that elevated SGAT activity causes surprisingly clear changes in metabolism and interferes with photosynthetic CO2 uptake and biomass accumulation of Arabidopsis. The faster serine turnover during photorespiration progressively lowers day-time leaf serine contents and in turn induces the phosphoserine pathway. Transcriptional upregulation of this additional route of serine biosynthesis occurs already during the day but particularly at night, efficiently counteracting night-time serine depletion. Additionally, higher SGAT activity results in an increased use of asparagine as the external donor of amino groups to the photorespiratory pathway but does not alter leaf asparagine content at night. These results suggest leaf SGAT activity needs to be dynamically adjusted to ensure (i) variable flux through the photorespiratory pathway at a minimal consumption of asparagine and (ii) adequate serine levels for other cellular metabolism.
Collapse
Affiliation(s)
- Katharina Modde
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Alexandra Florian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Klaudia Michl
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Golm, Germany
| | - Hermann Bauwe
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße, Rostock, Germany
| |
Collapse
|
16
|
Gaufichon L, Rothstein SJ, Suzuki A. Asparagine Metabolic Pathways in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:675-89. [PMID: 26628609 DOI: 10.1093/pcp/pcv184] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 05/03/2023]
Abstract
Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.
Collapse
Affiliation(s)
- Laure Gaufichon
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Steven J Rothstein
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario, Canada N1G 2W1
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
17
|
Impact of the Disruption of ASN3-Encoding Asparagine Synthetase on Arabidopsis Development. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 2016; 48:1209-20. [DOI: 10.1007/s00726-015-2156-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/13/2015] [Indexed: 01/12/2023]
|
19
|
Pandurangan S, Pajak A, Rintoul T, Beyaert R, Hernández-Sebastià C, Brown DCW, Marsolais F. Soybean seeds overexpressing asparaginase exhibit reduced nitrogen concentration. PHYSIOLOGIA PLANTARUM 2015; 155:126-137. [PMID: 25898948 DOI: 10.1111/ppl.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/18/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
In soybean seed, a correlation has been observed between the concentration of free asparagine at mid-maturation and protein concentration at maturity. In this study, a Phaseolus vulgaris K+ -dependent asparaginase cDNA, PvAspG2, was expressed in transgenic soybean under the control of the embryo specific promoter of the β-subunit of β-conglycinin. Three lines were isolated having high expression of the transgene at the transcript, protein and enzyme activity levels at mid-maturation, with a 20- to 40-fold higher asparaginase activity in embryo than a control line expressing β-glucuronidase. Increased asparaginase activity was associated with a reduction in free asparagine levels as a percentage of total free amino acids, by 11-18%, and an increase in free aspartic acid levels, by 25-60%. Two of the lines had reduced nitrogen concentration in mature seed as determined by nitrogen analysis, by 9-13%. Their levels of extractible globulins were reduced by 11-30%. This was accompanied by an increase in oil concentration, by 5-8%. The lack of change in nitrogen concentration in the third transgenic line was correlated with an increase in free glutamic acid levels by approximately 40% at mid-maturation.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Agnieszka Pajak
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Tara Rintoul
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Cinta Hernández-Sebastià
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Daniel C W Brown
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| |
Collapse
|
20
|
ω-Amidase: an underappreciated, but important enzyme in l-glutamine and l-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Amino Acids 2015; 48:1-20. [DOI: 10.1007/s00726-015-2061-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/24/2015] [Indexed: 12/29/2022]
|
21
|
Ellens KW, Richardson LGL, Frelin O, Collins J, Ribeiro CL, Hsieh YF, Mullen RT, Hanson AD. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. PHYTOCHEMISTRY 2015; 113:160-169. [PMID: 24837359 DOI: 10.1016/j.phytochem.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
S-Adenosylmethionine is converted enzymatically and non-enzymatically to methylthioadenosine, which is recycled to methionine (Met) via a salvage pathway. In plants and bacteria, enzymes for all steps in this pathway are known except the last: transamination of α-ketomethylthiobutyrate to give Met. In mammals, glutamine transaminase K (GTK) and ω-amidase (ω-Am) are thought to act in tandem to execute this step, with GTK forming α-ketoglutaramate, which ω-Am hydrolyzes. Comparative genomics indicated that GTK and ω-Am could function likewise in plants and bacteria because genes encoding GTK and ω-Am homologs (i) co-express with the Met salvage gene 5-methylthioribose kinase in Arabidopsis, and (ii) cluster on the chromosome with each other and with Met salvage genes in diverse bacteria. Consistent with this possibility, tomato, maize, and Bacillus subtilis GTK and ω-Am homologs had the predicted activities: GTK was specific for glutamine as amino donor and strongly preferred α-ketomethylthiobutyrate as amino acceptor, and ω-Am strongly preferred α-ketoglutaramate. Also consistent with this possibility, plant GTK and ω-Am were localized to the cytosol, where the Met salvage pathway resides, as well as to organelles. This multiple targeting was shown to result from use of alternative start codons. In B. subtilis, ablating GTK or ω-Am had a modest but significant inhibitory effect on growth on 5-methylthioribose as sole sulfur source. Collectively, these data indicate that while GTK, coupled with ω-Am, is positioned to support significant Met salvage flux in plants and bacteria, it can probably be replaced by other aminotransferases.
Collapse
Affiliation(s)
- Kenneth W Ellens
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Lynn G L Richardson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Océane Frelin
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Joseph Collins
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Cintia Leite Ribeiro
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Yih-Feng Hsieh
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|