1
|
Zhang F, Wang Y, Song X, Wen Y, Wang H, Zhang Y. The hydroxytyrosol-typed phenylpropanoidglycosides: A phenylpropanoid glycoside family with significant biological activity. Fitoterapia 2024; 178:106155. [PMID: 39089596 DOI: 10.1016/j.fitote.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hydroxytyrosol-typed phenylpropanoid glycosides (HPGs), composed of phenylethanol and various complex oligosaccharides, are widespread and abundant in different plant, and have a diverse range of biological activities. All HPGs reported previously have been isolated from natural sources, and most of them showed significant bioactivities, such as anti-inflamatory, anti-cancer, cytoprotection, neuro-protective effects, enzyme-inhibitory, anti-microbial effects, and cardiovascular activity. The goal of this review is to summarize the structures of HPGs reported over the past few decades, as well as to introduce their pharmacological effects. We also introduce the possible relationship between the structures of HPGs and their source plants, as well as the structure-activity relationships of some important activities. This review will serve as a resource for future research into this class of compounds, and demonstrate their potential value.
Collapse
Affiliation(s)
- Feixun Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yiping Wang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yingming Wen
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Hong Wang
- College of Bioengineering, Beijing Polytechnic, No. 9 Liangshuihe 1st Street, Beijing 100176, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China; Glycobiology and Glycotechnology Research center, College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, China; College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
2
|
Rosa Júnior IA, Almeida DDS, Napolitano HB, Peixoto JDC, Rosseto LP, Hungria Pinto EM, Dias LD, Fajemiroye JO, Costa EA, Vieira RP, Martins JLR. Evaluation of Gastroprotective Activity of the Methanolic Extract of Justicia pectoralis Jacq. (Acanthaceae). Nutrients 2024; 16:1430. [PMID: 38794668 PMCID: PMC11123913 DOI: 10.3390/nu16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Justicia pectoralis Jacq. is traditionally applied in folk medicine in Brazil and in several Latin American countries. The leaves are used in tea form, especially in the treatment of respiratory disorders, acting as an expectorant. It also has activity in gastrointestinal disorders, and it is anti-inflammatory, antioxidant, sedative, and estrogenic, among others. AIMS To investigate the gastroprotective activity of the methanol extract of the leaves of Justicia pectoralis Jacq. (MEJP) in different experimental models of gastric ulcers. MATERIALS AND METHODS The adult leaves of Justicia pectoralis Jacq. were collected and cultivated in beds, with an approximate spacing of 40 × 40 cm, organic fertilization, irrigation with potable water and without shelter from light. The MEJP was prepared from the dried and pulverized leaves and concentrated under reduced pressure in a rotary evaporator. For the experimental model of gastric ulcer, Swiss male albino mice were used. The inputs used in the experiment were MEJP at three different concentrations (250, 500 and 1000 mg/kg p.o.), cimetidine (50 mg/kg p.o.), indomethacin (50 mg/kg s.c.) and vehicle (10 mL/kg p.o.). RESULTS MEJP (250, 500 and 1000 mg/kg p.o.) demonstrated gastroprotective activity, with levels of protection of 45.65%, 44.80% and 40.22%, respectively, compared to the control (vehicle). Compared with cimetidine (48.29%), MEJP showed similar gastroprotective activity. CONCLUSIONS This study demonstrated the gastroprotective activity of MEJP and contributes to validate the traditional use the species for gastric disorders and provides a pharmacological basis for its clinical potential.
Collapse
Affiliation(s)
- Ismael Aureliano Rosa Júnior
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Instituto de Ciência, Tecnologia e Qualidade—ICTQ, Anápolis 75023-085, GO, Brazil
| | - Dionys de Souza Almeida
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Campus Street, Goiânia 74001-97, GO, Brazil; (D.d.S.A.); (E.A.C.)
| | - Hamilton Barbosa Napolitano
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Campus Central, State University of Goiás, Anápolis 75132-400, GO, Brazil
| | - Josana de Castro Peixoto
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Campus Central, State University of Goiás, Anápolis 75132-400, GO, Brazil
| | - Lucimar Pinheiro Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
| | - Emerith Mayra Hungria Pinto
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Campus Central, State University of Goiás, Anápolis 75132-400, GO, Brazil
| | - Lucas Danilo Dias
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
| | - James Oluwagbamigbe Fajemiroye
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Campus Street, Goiânia 74001-97, GO, Brazil; (D.d.S.A.); (E.A.C.)
| | - Elson Alves Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Campus Street, Goiânia 74001-97, GO, Brazil; (D.d.S.A.); (E.A.C.)
| | - Rodolfo P. Vieira
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
- Postgraduate Program in Human Movement and Rehabilitation, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil
| | - José Luis Rodrigues Martins
- Postgraduate Program in Pharmaceutical Sciences, Pharmacology and Therapeutics, Evangelical University of Goiás—Unievangélica, University Avenue Km 3,5, Anápolis 75083-515, GO, Brazil; (I.A.R.J.); (H.B.N.); (J.d.C.P.); (L.P.R.); (E.M.H.P.); (L.D.D.); (J.O.F.); (R.P.V.)
| |
Collapse
|
3
|
Dos Santos Bezerra WA, Tavares CP, Lima VAS, da Rocha CQ, da Silva Vaz Junior I, Michels PAM, Costa Junior LM, Dos Santos Soares AM. In silico and In vitro Assessment of Dimeric Flavonoids (Brachydins) on Rhipicephalus microplus Glutathione S-transferase. Med Chem 2024; 20:912-919. [PMID: 38847259 DOI: 10.2174/0115734064298481240517072216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Rhipicephalus microplus, an important cattle ectoparasite, is responsible for a substantial negative impact on the economy due to productivity loss. The emergence of resistance to widely used commercial acaricides has sparked efforts to explore alternative products for tick control. METHODS To address this challenge, innovative solutions targeting essential tick enzymes, like glutathione S-transferase (GST), have gained attention. Dimeric flavonoids, particularly brachydins (BRAs), have demonstrated various biological activities, including antiparasitic effects. The objectives of this study were to isolate four dimeric flavonoids from Fridericia platyphylla roots and to evaluate their potential as inhibitors of R. microplus GST. RESULTS In vitro assays confirmed the inhibition of R. microplus GST by BRA-G, BRA-I, BRA-J, and BRA-K with IC50 values of 0.075, 0.079, 0.075, and 0.058 mg/mL, respectively, with minimal hemolytic effects. Molecular docking of BRA-G, BRA-I, BRA-J, and BRA-K in a threedimensional model of R. microplus GST revealed predicted interactions with MolDock Scores of - 142.537, -126.831, -108.571, and -123.041, respectively. Both in silico and in vitro analyses show that brachydins are potential inhibitors of R. microplus GST. CONCLUSION The findings of this study deepen our understanding of GST inhibition in ticks, affirming its viability as a drug target. This knowledge contributes to the advancement of treatment modalities and strategies for improved tick control.
Collapse
Affiliation(s)
- Wallyson André Dos Santos Bezerra
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia - Bionorte, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Caio Pavão Tavares
- Laboratório de Controle de Parasitos, Departamento de Patologia, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Victor Antônio Silva Lima
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Itabajara da Silva Vaz Junior
- Faculdade de Veterinária, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paul A M Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Livio Martins Costa Junior
- Laboratório de Química de Produtos Naturais, Departamento de Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Alexandra Martins Dos Santos Soares
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia - Bionorte, Universidade Federal do Maranhão, São Luís, MA, Brazil
- Laboratório de Bioquímica Vegetal, Departamento de Engenharia Química, Universidade Federal do Maranhão, São Luís, MA, Brazil
| |
Collapse
|
4
|
Samy MN, Mahmoud BK, Hamed ANE, Sugimoto S, Matsunami K, Kamel MS. Isolation and structural characterization of phytoconstituents from leaves of Bignonia binata. Nat Prod Res 2024; 38:43-51. [PMID: 35876051 DOI: 10.1080/14786419.2022.2103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Phytochemical investigation of Bignonia binata leaves led to the isolation of three new compounds: including a glycoside of simple alcohol, namely binatoside (2), 3,4-dihydroxy-N-methyl piperidin-2-one (7), and a phenyl ethanoid glycoside, namely bignanoside C (8), alongside with five known compounds; including a glycoside of simple alcohol; (2S) propane-1,2-diol 1-O-(6-O-caffeoy1)-β-D-glucopyranoside (1), phenyl ethanoids; leucosceptoside A (3) and plantainoside C (4), and iridoids; ipolamiide (5) and strictoloside (6). The structure of the isolated compounds was elucidated by various spectroscopic methods, including 1 D and 2 D NMR experiments, HR-ESI-MS as well as by comparison with the literature.
Collapse
Affiliation(s)
- Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
5
|
do Nascimento JR, de Matos Monteiro Lira BS, do Nascimento MO, Lopes GLN, Ferreira GM, de Souza Nunes GC, Gonçalves RS, Carvalho ALM, Vilegas W, da Rocha CQ. Innovative Microemulsion Loaded with Unusual Dimeric Flavonoids from Fridericia platyphylla (Cham.) L.G. Lohmann Roots. AAPS PharmSciTech 2023; 24:212. [PMID: 37848719 DOI: 10.1208/s12249-023-02655-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.
Collapse
Affiliation(s)
| | | | | | | | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- Institut of Biosciences, Coastal Campus of São Vicente, Paulista State University-UNESP, São Vicente, São Paulo, Brazil
| | | |
Collapse
|
6
|
Unusual dimeric flavonoids from Fridericia prancei (Bignoniaceae) and their taxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Câmara Neto JF, Campelo MDS, Cerqueira GS, de Miranda JAL, Guedes JAC, de Almeida RR, Soares SDA, Gramosa NV, Zocolo GJ, Vieira ÍGP, Ricardo NMPS, Ribeiro MENP. Gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill against ethanol-induced gastric ulcer in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115191. [PMID: 35292374 DOI: 10.1016/j.jep.2022.115191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of mushrooms in medicine is quite old and the first report about the use of genus Agaricus in treatment of ulcers occurred in Byzantine period. This mushroom is widely consumed as food, tea, food supplements, as well as nutraceutical and cosmeceutical applications, being cultivated and appreciated in several countries such as Brazil, Korea, Japan and China. AIM OF THE STUDY This study aimed to characterize the chemical profile and the potential gastroprotective effect of hydroalcoholic extract from Agaricus blazei Murill (HEAb). MATERIALS AND METHODS The extract was chemically characterized by elemental analysis, UPLC-QTOF-MSE, Nuclear Magnetic Resonance (NMR) and high-performance liquid chromatography (HPLC) techniques to elucidate the metabolites present in the extract. The quantification of phenolic compounds and the in vitro antioxidant activities were performed and the gastroprotective effect of this extract was evaluated against ethanol-induced gastric ulcer model. HEAb was administered by gavage at 5, 25 and 50 mg kg-1 and N-acetylcysteine at 300 mg kg-1 (positive control). Furthermore, the pathways of nitric oxide (NO), Cyclic Guanylate Monophosphate (cGMP), prostaglandins (PGs) and the involvement of ATP-sensitive K+ Channels were modulated. RESULTS Mannitol, malic acid, pyroglutamic acid, L-agaritine and L-valine were putatively identified by UPLC-QTOF-MSE in HEAb. In addition, it was possible to identify mannitol by the intense signals in the NMR spectra, being still quantified as the main compound in the extract by HPLC. The contents of total phenols and flavonoids corroborated with the good antioxidant activity of HEAb. This study observed that HEAb at 25 and 50 mg kg-1 had gastroprotection effect demonstrated by the reduction of histopathological parameters and the reduction of mastocytosis in the stomach of mice. CONCLUSIONS In this study was possible to conclude that HEAb has gastroprotective effect related to the involvement of NO and PG pathways in the ethanol-induced gastric ulcer model in mice.
Collapse
Affiliation(s)
- João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Gilberto Santos Cerqueira
- Núcleo de Ensino e Pesquisa em Microscopia e Processamento de Imagens, Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| | - João Antônio Leal de Miranda
- Núcleo de Ensino e Pesquisa em Microscopia e Processamento de Imagens, Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | | | - Raimundo Rafael de Almeida
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Nilce Viana Gramosa
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical. Rua Dra. Sara Mesquita, 2270 - Pici, CEP 60020-181, Fortaleza, CE, Brasil
| | - Ícaro Gusmão Pinto Vieira
- Parque de Desenvolvimento Tecnológico, Universidade Federal do Ceará, Avenida do Contorno, CEP 60455-970, Fortaleza, CE, Brasil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, CEP 60440-900, Brasil.
| |
Collapse
|
8
|
A Review of the Phytochemistry and Pharmacological Properties of the Genus Arrabidaea. Pharmaceuticals (Basel) 2022; 15:ph15060658. [PMID: 35745577 PMCID: PMC9227117 DOI: 10.3390/ph15060658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Arrabidaea, consisting of ~170 species, belongs to the family Bignoniaceae, distributed around the Neotropics and temperate zone. The center of diversity of the family is in Brazil, where 56 genera and about 340 species exist. Most species of the genus Arrabidaea are traditionally utilized as diuretics and antiseptics, as well as for treating intestinal colic, diarrhea, kidney stones, rheumatoid arthritis, wounds, and enterocolitis. The genus is chemically diverse with different substance classes; most of them are triterpenes, phenolic acids, and flavonoids, and they exhibit valuable pharmacological properties, such as antitumor, antioxidant, leishmanicidal, trypanocidal, anti-inflammatory, and healing properties. This review presents information on the chemical constituents isolated from seven Arrabidaea species, and the pharmacological activities of the extracts, fractions and pure substances isolated since 1994, obtained from electronic databases. The various constituents present in the different species of this genus demonstrate a wide pharmacological potential for the development of new therapeutic agents, however its potential has been underestimated.
Collapse
|
9
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
10
|
Antiproliferative Activity of Two Unusual Dimeric Flavonoids, Brachydin E and Brachydin F, Isolated from Fridericia platyphylla (Cham.) L.G.Lohmann: In Vitro and Molecular Docking Evaluation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3319203. [PMID: 35187163 PMCID: PMC8856817 DOI: 10.1155/2022/3319203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Despite the breakthrough in the development of anticancer therapies, plant-derived chemotherapeutics continue to be the basis of treatment for most types of cancers. Fridericia platyphylla is a shrub found in Brazilian cerrado biome which has cytotoxic, anti-inflammatory, and analgesic properties. The aim of this study was to investigate the antiproliferative potential of the crude hydroethanolic extract, subfraction (containing 59.3% of unusual dimeric flavonoids Brachydin E and 40.7% Brachydin F), as well as Brachydin E and Brachydin F isolated from F. platyphylla roots. The cytotoxic activity was evaluated in glioblastoma, lung, prostate, and colorectal human tumor cell lines. The crude hydroethanolic extract did not present cytotoxic activity, but its subfraction presented lower IC50 values for glioblastoma (U-251) and prostate adenocarcinoma (PC-3) cell lines. Brachydins E and F significantly reduced cell viability, proliferation, and clonogenic potential of PC-3, inducing them to the process of regulated cell death. In silico studies have indicated nuclear receptors as targets for Brachydins E and F, and molecular docking has pointed out their binding into glucocorticoid receptor (GR) ligand pocket. Targeting GR pathway has been described as a therapeutic strategy, especially for prostate cancer. These results suggest that Brachydin E and Brachydin F are promising compounds to be further explored for their antitumor effects.
Collapse
|
11
|
de Oliveira LCB, Nunes HL, Ribeiro DL, do Nascimento JR, da Rocha CQ, de Syllos Cólus IM, Serpeloni JM. Aglycone flavonoid brachydin A shows selective cytotoxicity and antitumoral activity in human metastatic prostate (DU145) cancer cells. Cytotechnology 2021; 73:761-774. [PMID: 34776627 DOI: 10.1007/s10616-021-00495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
In prostate cancer, flavonoids possess a wide variety of anticancer effects, focused on the antioxidant/pro-oxidant activity, inactivation of the androgen receptor, cell cycle arrest, apoptosis induction, metastasis inhibition, among others. This current research investigated the antitumoral in vitro activity of Brachydin A (BrA), a dimeric flavonoid isolated from Fridericia platyphylla, in human castration-resistant prostate cancer DU145. It was compared BrA selective effects in tumor prostate DU145 cells with non-tumor prostate epithelial PNT2 cells. Cell viability experiments (resazurin, neutral red, MTT, and LDH release assays) showed that BrA was sevenfold more cytotoxic to tumor cells than non-tumor prostate cells, with IC50 values of 77.7 µM and 10.7 µM for PNT2 and DU145 cells, respectively. Furthermore, BrA induced necrosis and apoptosis (triple fluorescence staining assay) without interfering with oxidative stress (CM-H2DCFDA) in DU145 cells. Also, BrA (15.36 µM) reduced cell proliferation on clonogenic assay (DU145 cells) but no change in cell number and protein content was observed when cell growth curve assay was used. Wound healing and transwell assays were used for checking the effects of BrA on cell migration and invasion, and BrA impaired these processes in PNT2 (wound healing) and DU145 cells (transwell). Our results inspire further studies to test BrA as a novel chemotherapeutic drug and to evaluate its effects on drug-resistant metastatic cancer cells.
Collapse
Affiliation(s)
| | - Higor Lopes Nunes
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903 Brazil
| | | | - Cláudia Quintino da Rocha
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, 65080-805 Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, 86057-970 Brazil.,Laboratório de Mutagênese e Oncogenética, Departamento de Biologia Geral, Universidade Estadual de Londrina - UEL, Rodovia Celso Garcia Cid - PR 445 Km 380 Cx. Postal 10.011 - Campus Universitário, Londrina, PR CEP: 86057-970 Brazil
| |
Collapse
|
12
|
In Vitro Anti-Inflammatory Activity in Arthritic Synoviocytes of A. brachypoda Root Extracts and Its Unusual Dimeric Flavonoids. Molecules 2020; 25:molecules25215219. [PMID: 33182470 PMCID: PMC7665123 DOI: 10.3390/molecules25215219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Arrabidaea brachypoda is a plant commonly used for the treatment of kidney stones, arthritis and pain in traditional Brazilian medicine. Different in vitro and in vivo activities, ranging from antinociceptive to anti-Trypanosoma cruzi, have been reported for the dichloromethane root extract of Arrabidaea brachypoda (DCMAB) and isolated compounds. This work aimed to assess the in vitro anti-inflammatory activity in arthritic synoviocytes of the DCMAB, the hydroethanolic extract (HEAB) and three dimeric flavonoids isolated from the DCMAB. These compounds, brachydin A (1), B (2) and C (3), were isolated both by medium pressure liquid and high-speed counter current chromatography. Their quantification was performed by mass spectrometry on both DCMAB and HEAB. IL-1β activated human fibroblast-like synoviocytes were incubated with both extracts and isolated compounds to determine the levels of pro-inflammatory cytokine IL-6 by enzyme-linked immunosorbent assay (ELISA). DCMAB inhibited 30% of IL-6 release at 25 µg/mL, when compared with controls while HEAB was inactive. IC50 values determined for 2 and 3 were 3-fold higher than 1. The DCMAB activity seems to be linked to higher proportions of compounds 2 and 3 in this extract. These observations could thus explain the traditional use of A. brachypoda roots in the treatment of osteoarthritis.
Collapse
|
13
|
Neuenschwander A, Rocha VPC, Bastos TM, Marcourt L, Morin H, da Rocha CQ, Grimaldi GB, de Sousa KAF, Borges JN, Rivara-Minten E, Wolfender JL, Soares MBP, Queiroz EF. Production of Highly Active Antiparasitic Compounds from the Controlled Halogenation of the Arrabidaea brachypoda Crude Plant Extract. JOURNAL OF NATURAL PRODUCTS 2020; 83:2631-2640. [PMID: 32902988 DOI: 10.1021/acs.jnatprod.0c00433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Direct halogenation of phenolic compounds present in the CH2Cl2 extract of the roots of Arrabidaea brachypoda was investigated to enhance chemodiversity. The approach is based on eco-friendly reactions using NaBr, NaI, and NaCl in aqueous media to generate multiple "unnatural" halogenated natural products from crude extracts. The halogenation reactions, monitored by UHPLC-PDA-ELSD-MS, were optimized to generate mono-, di-, or trihalogenated derivatives. To isolate these compounds, the reactions were scaled up and the halogenated analogues were isolated by semipreparative HPLC-UV and fully characterized by NMR and HR-MS data. All of the original 16 halogenated derivatives were evaluated for their antiparasitic activities against the parasites Leishmania amazonensis and Trypanosoma cruzi. Compounds presenting selective antiparasitic activities against one or both parasites with IC50 values comparable to the reference were identified.
Collapse
Affiliation(s)
- Alexandra Neuenschwander
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Vinicius P C Rocha
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Tanira M Bastos
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Laurence Marcourt
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Hugo Morin
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Cláudia Q da Rocha
- Laboratório de Produtos Naturais, Centro de Ciência Exatas e Tecnologia, Departamento de Química, Avenida dos Portugueses 1966, Bacanga, São Luís, Maranhão, MA 65080-805, Brazil
| | - Gabriela B Grimaldi
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Karoline A F de Sousa
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Jadson N Borges
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Elisabeth Rivara-Minten
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Milena B P Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia. Instituto Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal, Salvador, BA 40296-710, Brazil
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Nunes HL, Tuttis K, Serpeloni JM, Nascimento JRD, da Rocha CQ, Silva VAO, Lengert AVH, Reis RM, de Syllos Cólus IM. Characterization of the invitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:547-558. [PMID: 32590922 DOI: 10.1080/15287394.2020.1784339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Brachydins (Br) A, B, and C are flavonoids extracted from Fridericia platyphylla (Cham.) L.G. Lohmann roots (synonym Arrabidaea brachypoda), whose extract previously exhibited cytotoxic and antitumor activity. In vitro cell culture of human prostate tumor cell line (PC-3) was used to determine cell viability as evidenced by MTT, neutral red, and LDH release using nine concentrations (0.24 to 30.72 µM) of each brachydin. A triple-fluorescent staining assay assessed the mechanism resulting in cell death. Genomic instability and protein expression were evaluated using comet assay and western blot analysis, respectively. The pro-oxidant status was analyzed using the5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) probe. The IC50 values for brachydins BrA, BrB, and BrC were 23.41, 4.28, and 4.44 µM, respectively, and all compounds induced apoptosis and necrosis. BrB and BrC increased p21 levels indicating a possible G1 cell cycle arrest. BrA (6 µM) and BrB (3.84 µM) decreased phospho-AKT (AKT serine/threonine kinase) expression, which also influenced cell cycle and proliferation. BrA, BrB, and BrC elevated cleaved PARP (poly (ADP-ribose) polymerase), a protein related to DNA repair and induction of apoptotic processes. Therefore, this study determined the IC50 values of brachydins in the PC-3 cell line as well as the influence on cell proliferation and cell death processes, such as apoptosis and necrosis, indicating the proteins involved in these processes. ABBREVIATIONS ANOVA: Analysis of Variance; BrA: Brachydin A; BrB: Brachydin B; BrC: Brachydin C; CGEN: Genetic Heritage Management Council; CID: Compound identification number; CM-H2DCFDA, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester; CO2: Carbon dioxide; DMSO: Dimethyl sulfoxide; DNA: Deoxyribonucleic acid; DTT: Dithiothreitol; DXR: Doxorubicin; ECL: Chemiluminescence; EDTA: Ethylenediaminetetraacetic acid; FBS: Fetal bovine serum; H2O2: Hydrogen peroxide; HRMS: High-Resolution Mass Spectrometry; IC50: Half maximal inhibitory concentration; LDH: Lactate dehydrogenase; MTT, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; Na3VO4: Sodium Orthovanadate; NaOH: Sodium hydroxide; NCBI: National Center for Biotechnology Information; NMR: Nuclear Magnetic Resonance; PBS: Phosphate buffer saline; PCR: Polymerase chain reaction; PSMF: Phenylmethylsulfonyl fluoride; RPMI: Roswell Park Memorial Institute Medium; SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide gel electrophoresis; STR: Short tandem repeat; TBS-T: Tris-buffered saline and Polysorbate 20; UPHLC: Ultra-Performance Liquid Chromatography.
Collapse
Affiliation(s)
- Higor Lopes Nunes
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Katiuska Tuttis
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Juliana Mara Serpeloni
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | | | - Claudia Quintino da Rocha
- Departamento De Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão , São Luís, Maranhão, Brasil
| | | | | | - Rui Manuel Reis
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos , Barretos, São Paulo, Brasil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ilce Mara de Syllos Cólus
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| |
Collapse
|
15
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
16
|
Ribeiro GAC, da Rocha CQ, Veloso WB, Dantas LMF, Richter EM, da Silva IS, Tanaka AA. Flow-through amperometric methods for detection of the bioactive compound quercetin: performance of glassy carbon and screen-printed carbon electrodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
de Sousa Andrade LM, de Oliveira ABM, Leal ALAB, de Alcântara Oliveira FA, Portela AL, de Sousa Lima Neto J, de Siqueira-Júnior JP, Kaatz GW, da Rocha CQ, Barreto HM. Antimicrobial activity and inhibition of the NorA efflux pump of Staphylococcus aureus by extract and isolated compounds from Arrabidaea brachypoda. Microb Pathog 2019; 140:103935. [PMID: 31857236 DOI: 10.1016/j.micpath.2019.103935] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Arrabidaea brachypoda is a native shrub of the Brazilian Cerrado widely used in the folk medicine for treatment of renal diseases and articular pains. This study aimed to, first, evaluate the antimicrobial activity of both extracts and isolated molecules Brachydins BR-A and BR-B obtained from the flowers of A. brachypoda against Staphylococcus aureus, Escherchia coli and Candida albicans species. A second objective was to investigate if these natural products were able to potentiate the Norfloxacin activity against the strain Staphylococcus aureus SA1199-B that overexpress the norA gene encoding the NorA efflux pump. Extracts and isolated compounds were analyzed by HPLC-PDA and LC-ESI-MS respectively. Minimal inhibitory concentrations of Norfloxacin or Ethidium Bromide (EtBr) were determined in the presence or absence of ethanolic extract, dichloromethane fraction, as well as BR-A or BR-B by microdilution method. Only BR-B showed activity against Candida albicans. Addition of ethanolic extract, dichloromethane fraction or BR-B to the growth media at sub-inhibitory concentrations enhanced the activity of both Norfloxacin and EtBr against S. aureus SA1199-B, indicating that these natural products and its isolated compound BR-B were able to modulate the fluoroquinolone-resistance possibly by inhibition of NorA. Moreover, BR-B inhibited the EtBr efflux in the SA1199-B strain confirming that it is a NorA inhibitor. Isolated BR-B was able to inhibit an important mechanism of multidrug-resistance very prevalent in S. aureus strains, thus its use in combination with Norfloxacin could be considered as an alternative for the treatment of infections caused by S. aureus strains overexpressing norA.
Collapse
Affiliation(s)
| | | | | | | | - Ana Lurdes Portela
- Laboratory of Advanced Studies in Phytomedicines, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Glenn William Kaatz
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cláudia Quintino da Rocha
- Laboratory of Advanced Studies in Phytomedicines, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | |
Collapse
|
18
|
Serpeloni JM, Specian AFL, Ribeiro DL, Benício LM, Nunes HL, Franchi LP, Rocha CQ, Vilegas W, Varanda EA, Cólus IMS. Fridericia platyphylla (Cham.) L.G. Lohmann root extract exerts cytotoxic and antiproliferative effects on gastric tumor cells and downregulates BCL-XL, BIRC5, and MET genes. Hum Exp Toxicol 2019; 39:338-354. [DOI: 10.1177/0960327119888261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fridericia platyphylla (Cham.) L.G. Lohmann (FP) has cytotoxic, anti-inflammatory, and analgesic properties. We aimed to characterize the cytotoxic and antiproliferative effects of FP extract on normal (GAS) and tumor-derived (ACP02 and HepG2) cell lines. The effective concentrations (EC50s) by tetrazolium bromide assay (MTT) were 56.16, 43.68, and 42.57 µg mL−1 and 69.38, 41.73, and 52.39 µg mL−1 by neutral red assay for GAS, ACP02, and HepG2 cells, respectively. The extract decreased nuclear division indices, which was not reflected in cell proliferation curves. Flow cytometric analyses showed that even 30 µg mL−1 extract (shown to be noncytotoxic by MTT assay) increased the sub-G1 population, indicating cell death due to apoptosis and necrosis. A cytokinesis-block micronucleus cytome assay showed that 30 µg mL−1 of the extract increased the frequency of nuclear buds in tumor cells. Real-time quantitative polymerase chain reaction showed CCND1 upregulation in doxorubicin-treated GAS cells and BCL-XL, BIRC5, and MET downregulation in 5 or 30 µg mL−1 in FP extract-treated ACP02 cells. In conclusion, FP extract modulated apoptosis- and cell cycle-related genes and presented selective cytotoxicity toward tumor cells that deserves further investigation by testing other cell types. Our results demonstrated that even medicinal plants exert adverse effects depending on the extract concentrations used and tissues investigated.
Collapse
Affiliation(s)
- JM Serpeloni
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - AFL Specian
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - DL Ribeiro
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - LM Benício
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - HL Nunes
- Laboratory of Mutagenesis and Oncogenetics, Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - LP Franchi
- Laboratory of Cytogenetics and Mutagenesis, Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), Ribeirão Preto, Brazil
| | - CQ Rocha
- Laboratory of Advanced Studies in Phytomedicines, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís, Brazil
| | - W Vilegas
- Campus Litoral Paulista, São Paulo State University (UNESP), São Vicente, Brazil
| | - EA Varanda
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - IMS Cólus
- Laboratory of Mutagenesis, Department of Biological Sciences, Faculty of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
19
|
Utility of dry load injection for an efficient natural products isolation at the semi-preparative chromatographic scale. J Chromatogr A 2019; 1598:85-91. [DOI: 10.1016/j.chroma.2019.03.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
|
20
|
Xue Z, Shi G, Fang Y, Liu X, Zhou X, Feng S, Zhao L. Protective effect of polysaccharides from Radix Hedysari on gastric ulcers induced by acetic acid in rats. Food Funct 2019; 10:3965-3976. [DOI: 10.1039/c9fo00433e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The potential anti-gastric ulcer effects of Hedysarum polysaccharides (HPS-50 and HPS-80) were explored in rats.
Collapse
Affiliation(s)
- Zhiyuan Xue
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Gengen Shi
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Yaoyao Fang
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xiaohua Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xianglin Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Shilan Feng
- School of Pharmacy
- Lanzhou University
- Lanzhou
- P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
21
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
22
|
de Oliveira AF, da Luz BB, Werner MFDP, Iacomini M, Cordeiro LMC, Cipriani TR. Gastroprotective activity of a pectic polysaccharide fraction obtained from infusion of Sedum dendroideum leaves. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 41:7-12. [PMID: 29519322 DOI: 10.1016/j.phymed.2018.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 01/02/2025]
Abstract
BACKGROUND Sedum dendroideum, popularly known in Brazil as balsam, is traditionally used as a wound healing agent, to treat gastritis, and several other health problems. Some studies have shown that plant polysaccharides may have gastroprotective properties. PURPOSE Considering the popular use of S. dendroideum and the gastroprotective activity of polysaccharides, the objective of this work was to obtain, to characterize, and to evaluate the gastroprotective activity of a polysaccharide fraction from this plant. METHODS Polysaccharides of S. dendroideum were extracted with water by infusion, fractionated by freeze-thawing process and dialyzed at a 100 kDa cut-off membrane, and characterized by monosaccharide composition and NMR analysis. The gastroprotective activity of the pectic polysaccharide fraction RSBAL was evaluated in the ethanol-induced ulcer model in rats, followed by determination of the mucus and glutathione levels in the gastric tissue. RESULTS RSBAL was constituted by a homogalacturonan and a homogalacturonan branched by side chains of arabinans and type II arabinogalactans. It reduced ethanol-induced gastric ulcers in rats, preserving mucus and glutathione levels in the stomach. CONCLUSION This study demonstrated that polysaccharides could be related to the pharmacological activity of S. dendroideum.
Collapse
Affiliation(s)
- Ana Flávia de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná CP 19046, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | | | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná CP 19046, Brazil
| | - Lucimara M C Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná CP 19046, Brazil
| | - Thales Ricardo Cipriani
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, Paraná CP 19046, Brazil.
| |
Collapse
|
23
|
Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC) Bureau. Int J Mol Sci 2017; 18:ijms18112304. [PMID: 29099043 PMCID: PMC5713273 DOI: 10.3390/ijms18112304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Arrabidaea brachypoda (DC) Bureau is a medicinal plant found in Brazil. Known as “cipó-una”, it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB) and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10–100 mg/kg) in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1), TRPA1 (transient receptor potential ankyrin 1), TRPM8 (transient receptor potential melastatin 8), and ASIC (acid-sensing ion channel), as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg) in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.
Collapse
|
24
|
In vitro toxicological assessment of Arrabidaea brachypoda (DC.) Bureau: Mutagenicity and estrogenicity studies. Regul Toxicol Pharmacol 2017; 90:29-35. [DOI: 10.1016/j.yrtph.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
25
|
Parvan M, Sajjadi SE, Minaiyan M. Protective Effect of Two Extracts of Cydonia oblonga Miller (Quince) Fruits on Gastric Ulcer Induced by Indomethacin in Rats. Int J Prev Med 2017; 8:58. [PMID: 28900537 PMCID: PMC5582508 DOI: 10.4103/ijpvm.ijpvm_124_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/22/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In various studies, Cydonia oblonga Miller (quince) has been reported to have many properties such as antioxidant and anti-ulcerative effects. This study has aimed to investigate the protective effects of quince aqueous extract (QAE) and quince hydroalcoholic extract (QHE) on gastric ulcer caused by indomethacin and the relevant macroscopic, histopathology, and biochemical factors in rats. METHODS Ten groups of male Wistar rats, six in each, were used in this study. These groups included: normal (distilled water), control (distilled water + indomethacin), reference (ranitidine or sucralfate + indomethacin), and test groups (QAE or QHE + indomethacin) treated with three increasing doses (200, 500, and 800 mg/kg). Extracts and drugs were given orally to rats 1 h before injecting the indomethacin (25 mg/kg, intraperitoneally). Six hours later, the abdomen of rats was exposed, its pylorus was legated, gastric acid content was extracted, and its pH and the amount of pepsin secreted were measured by Anson method. Then, histopathology indices, ulcer area, ulcer index, and myeloperoxidase (MPO) activity were measured in gastric mucus. RESULTS Both extracts of quince were effective to reduce the acidity of stomach and pepsin activity. Compared to control group, the average of enzyme activity of MPO was significantly declined in all treated groups. Control group had the highest level of gastric ulcer indices including severity, area, and index while the evaluated parameters had decreased in all extract treated groups although it seems that QAE was somewhat more effective. CONCLUSIONS Protective effect of QAE and QHE on gastric ulcer was done by undermining offensive factors including decreasing the secretion of gastric acid and pepsin activity and by strengthening the protective factors of gastric mucus including antioxidant capacity.
Collapse
Affiliation(s)
- Morteza Parvan
- Department of Pharmacology and Toxciology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sayed-Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|