1
|
Sengupta S, Chanda P, Manna B, Ghosh A, Datta S. Rational Engineering of a β-Glucosidase (H0HC94) from Glycosyl Hydrolase Family I (GH1) to Improve Catalytic Performance on Cellobiose. J Phys Chem B 2024; 128:8628-8640. [PMID: 39221646 DOI: 10.1021/acs.jpcb.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The conversion of lignocellulosic feedstocks by cellulases to glucose is a critical step in biofuel production. β-Glucosidases catalyze the final step in cellulose breakdown, producing glucose, and are often the rate-limiting step in biomass hydrolysis. The specific activity of most natural and engineered β-glucosidase is higher on the artificial substrate p-nitrophenyl β-d-glucopyranoside (pNPGlc) than on the natural substrate, cellobiose. We report an engineered β-glucosidase (Q319A H0HC94) with a 1.8-fold higher specific activity (366.3 ± 36 μmol/min/mg), a 1.5-fold increase in kcat (340.8 ± 27 s-1), and a 3-fold increase in catalytic efficiency (236.65 mM-1 s-1) over H0HC94 (WT) on cellobiose. Molecular dynamic simulations and protein structure network analysis indicate that the Q319A H0HC94 active site pocket is significantly remodeled compared to the WT, leading to changes in enzyme conformation, better accessibility of cellobiose inside the active site pocket, and higher enzymatic activity. This study shows the impact of rational engineering of a nonconserved residue to increase β-glucosidase substrate accessibility and catalytic efficiency by reducing crowding interaction between cellobiose and active site pocket residues near the gatekeeper region and increasing pocket volume and surface area. Thus, rational engineering of previously characterized enzymes could be an excellent strategy to improve cellulose hydrolysis.
Collapse
Affiliation(s)
- Sauratej Sengupta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Pinaki Chanda
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Bharat Manna
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Raheja Y, Singh V, Sharma G, Tsang A, Chadha BS. A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass. Bioprocess Biosyst Eng 2024; 47:567-582. [PMID: 38470501 DOI: 10.1007/s00449-024-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The present study reports a highly thermostable β-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular β-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified β-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of β-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of β-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal β-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant β-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted β-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
3
|
SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii. Protein J 2022; 41:381-393. [PMID: 35674860 DOI: 10.1007/s10930-022-10060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.
Collapse
|
5
|
Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis. Int J Biol Macromol 2018; 115:1094-1102. [PMID: 29723622 DOI: 10.1016/j.ijbiomac.2018.04.156] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Beta-glucosidase (BGL) is an important industrial enzyme for food, waste and biofuel processing. Jeotgalibacillus is an understudied halophilic genus, and no beta-glucosidase from this genus has been reported. A novel beta-glucosidase gene (1344 bp) from J. malaysiensis DSM 28777T was cloned and expressed in E. coli. The recombinant protein, referred to as BglD5, consists of a total 447 amino acids. BglD5 purified using a Ni-NTA column has an apparent molecular mass of 52 kDa. It achieved the highest activity at pH 7 and 65 °C. The activity and stability were increased when CaCl2 was supplemented to the enzyme. The enzyme efficiently hydrolyzed salicin and (1 → 4)-beta-glycosidic linkages such as in cellobiose, cellotriose, cellotetraose, cellopentose, and cellohexanose. Similar to many BGLs, BglD5 was not active towards polysaccharides such as Avicel, carboxymethyl cellulose, Sigmacell cellulose 101, alpha-cellulose and xylan. When BglD5 blended with Cellic® Ctec2, the total sugars saccharified from oil palm empty fruit bunches (OPEFB) was enhanced by 4.5%. Based on sequence signatures and tree analyses, BglD5 belongs to the Glycoside Hydrolase family 1. This enzyme is a novel beta-glucosidase attributable to its relatively low sequence similarity with currently known beta-glucosidases, where the closest characterized enzyme is the DT-Bgl from Anoxybacillus sp. DT3-1.
Collapse
|
6
|
Yang J, Yang J, Du J, Feng Y, Chai X, Xiao M, Wang Y, Gao X. General survey of Fructus Psoraleae from the different origins and chemical identification of the roasted from raw Fructus Psoraleae. J Food Drug Anal 2018; 26:807-814. [PMID: 29567252 PMCID: PMC9322240 DOI: 10.1016/j.jfda.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/27/2022] Open
Abstract
Fructus Psoraleae, a traditional Chinese medicine, is widely used for preventing and treating various diseases such as vitiligo, osteoporosis and psoriasis. Coumarin, such as psoralenoside, isopsoralenoside, psoralen and isopsoralen, are important compounds in Fructus Psoraleae. In our study, ultra performance liquid chromatography coupled with diode array detector was employed for an excellent method validation for simultaneous quantification of psoralenoside, isopsoralenoside, psoralen and isopsoralen, which was further applied in performing general survey of Fructus Psoraleae from the different origins and chemical identification of the roasted from raw Fructus Psoraleae in the light of illuminating the transformed rule of psoralenoside and isopsoralenoside. There is a reciprocal relationship between (iso)psoralenoside and (iso)psoralen, and the total content remains balance in Fructus Psoraleae from the different origins. In addition, we found that (iso)psoralenoside in the powder of the raw Fructus Psoraleae could be easily transformed into (iso)psoralen in methanol aqueous solution, especially above 50% water, rather than the roasted one. Thus, we proposed a hypothesis that transformation between (iso)psoralenoside and (iso)psoralen was hindered by inactivation of β-glucosidase in the process of roasting Fructus Psoraleae, which was further verified by observing transformation of (iso)psoralenoside under the different conditions, such as temperature, pH and β-glucosidase. Therefore, we developed a feasible method to distinguish the roasted from raw Fructus Psoraleae by observing conversion from (iso)psoralenoside to (iso)psoralen in 50% methanol aqueous solution. In summary, these results pave the way for elevating quality standard for Fructus Psoraleae and distinguishing the salt-processed from raw Fructus Psoraleae.
Collapse
Affiliation(s)
- Junjun Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Jing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Jie Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Xin Chai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Mingming Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
- Corresponding author. Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 312 An Shan Xi Road, Nankai District, Tianjin 300193, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193,
China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457,
China
- Corresponding author. Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 312 An Shan Xi Road, Nankai District, Tianjin 300193, China. E-mail addresses: (Y. Wang), (X. Gao)
| |
Collapse
|