1
|
Moffi Biang AE, Messi LM, Le Doux Kamto E, Simo LM, Lavedan P, Vedrenne M, Mbing JN, Pegnyemb DE, Haddad M, Noté OP. Triterpenoid saponins and others glycosides from the stem barks of Pancovia turbinata Radlk. Carbohydr Res 2021; 508:108393. [PMID: 34273843 DOI: 10.1016/j.carres.2021.108393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
In our continuing search of saponins from the plant of Sapindaceae family, phytochemical investigation of the stem barks of Pancovia turbinata Radlk., led to the isolation and structural characterization of two new triterpenoid saponins, named turbinatosides A-B (1-2), one new farnesyl glycoside, named turbinoside A (3), one new coumarin glucoside, named panturboside A (4), together with a known saponin (5). The structures of the new compounds were established, using extensive analysis of NMR techniques, mainly 1D NMR (1H, 13C, and DEPT) and 2D NMR (COSY, NOESY, HSQC, HSQC-TOCSY and HMBC) experiments, HRESIMS and by comparison with the literature data, as 3-O-β-d-xylopyranosyl-(1 → 3)-α-l-arabinopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosylhederagenin 28-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosylhederagenin 28-O-β-d-xylopyranosyl-(1 → 4)-β-d-glucopyranosyl ester (2), 1-O-{β-d-glucopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranosyl}-(2E,6E)-farnes-1,12-diol (3), and 5-O-β-d-glucopyranosyl-5,6,7-trihydroxy-8-methoxycoumarin (4), respectively. Our findings highlight the presence of -3Rha-2Ara-3hederagenin oligosaccharidic sequence usually described in saponins from Sapindoideae subfamily of Sapindaceae family, as well as farnesol glycosides, and represent therefore a valuable contribution to the chemotaxonomy of the Sapindoideae subfamily.
Collapse
Affiliation(s)
- Armand Emmanuel Moffi Biang
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon; Institut de Recherches Médicales et D'études des Plantes Médicinales Du Cameroun (IMPM), B.P. 13033, Yaoundé, Cameroon
| | - Lin Marcellin Messi
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon; Institut de Recherche Agricole pour le Développement (IRAD), BP 2067, Yaoundé, Cameroon; UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France.
| | - Eutrophe Le Doux Kamto
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon
| | - Line Made Simo
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon
| | | | | | - Josephine Ngo Mbing
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon
| | - Dieudonné Emmanuel Pegnyemb
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon
| | - Mohamed Haddad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Olivier Placide Noté
- Laboratoire de Pharmacochimie des Substances Naturelles, Département de Chimie Organique, Faculté de Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroon; UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France.
| |
Collapse
|
2
|
Petit B, Mitaine-Offer AC, Fischer J, Schüffler A, Delaude C, Miyamoto T, Tanaka C, Thines E, Lacaille-Dubois MA. Anti-phytopathogen terpenoid glycosides from the root bark of Chytranthus macrobotrys and Radlkofera calodendron. PHYTOCHEMISTRY 2021; 188:112797. [PMID: 34023719 DOI: 10.1016/j.phytochem.2021.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Chytranthus macrobotrys and Radlkofera calodendron are two Sapindaceae characterized by a lack of phytochemical data. Both root barks from the two Sapindaceae species were processed by ethanol extraction followed by the isolation of their primary constituents by liquid chromatography. This process yielded four previously undescribed terpenoid glycosides together with eight known analogues. Extracts and isolated compounds from C. macrobotrys and R. calodendron were then screened for antimicrobial activity against fifteen phytopathogens. The biological screening also involved extracts and pure compounds from Blighia unijugata and Blighia welwitschii, two Sapindaceae previously studied by our group. Phytopathogens were chosen based on their economic impact on agriculture worldwide. The selection was composed primarily of fungal species including; Pyricularia oryzae, Gaeumannomyces graminis var. tritici, Zymoseptoria tritici, Fusarium oxysporum, Botrytis cinerea, Pythium spp., Trichoderma spp. and Rhizoctonia solani. Furthermore, pure terpenoid glycosides were tested for the first time against wood-inhabiting phytopathogens such as; Phaeomoniella chlamydospora, Phaeoacremonium minimum, Fomitiporia mediterranea, Eutype lata and Xylella fastidiosa. Raw extracts exhibited different levels of activity dependent on the organism. Some pure compounds, including 3-O-α-L-arabinopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin (α-hederin), 3-O-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin (macranthoside A) and 3-O-α-L-arabinopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin (clemontanoside C), exhibited significant growth inhibitions on Pyricularia oryzae, Gaeumannomyces graminis var. tritici, Fomitiporia mediterranea and Zymoseptoria tritici. Monodesmoside triterpene saponins, in particular, exhibited MIC (IC100) values as low as 25 μg/ml and IC50 values as low as 10 μg/ml against these phytopathogens. Structure-activity relationships, as well as plant-microbe interactions, were discussed.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France.
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung GmbH (IBWF), Kaiserslautern, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff-Forschung GmbH (IBWF), Kaiserslautern, Germany
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, 4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung GmbH (IBWF), Kaiserslautern, Germany
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| |
Collapse
|
3
|
Bando M, Kawasaki Y, Nagata O, Okada Y, Ikuta D, Ikeuchi K, Yamada H. β-Selective Glycosylation Using Axial-Rich and 2-O-Rhamnosylated Glucosyl Donors Controlled by the Protecting Pattern of the Second Sugar. Chem Pharm Bull (Tokyo) 2021; 69:124-140. [PMID: 33390514 DOI: 10.1248/cpb.c20-00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein, we describe two counterexamples of the previously reported β/α-selectivity of 96/4 for glycosylation using ethyl 2-O-[2,3,4-tris-O-tert-butyldimethylsilyl (TBS)-α-L-rhamnopyranosyl]-3,4,6-tris-O-TBS-thio-β-D-glucopyranoside as the glycosyl donor. Furthermore, we investigated the effects of protecting group on the rhamnose moieties in the glycosylation with cholestanol and revealed that β-selectivity originated from the two TBS groups at the 3-O and 4-O positions of rhamnose. In contrast, the TBS group at the 2-O position of rhamnose hampered the β-selectivity. Finally, the β/α-selectivity during the glycosylation was enhanced to ≥99/1. The results obtained herein suggest that the protecting groups on the sugar connected to the 2-O of a glycosyl donor with axial-rich conformation can control the stereoselectivity of glycosylation.
Collapse
Affiliation(s)
- Masafumi Bando
- School of Science and Technology, Kwansei Gakuin University
| | - Yuri Kawasaki
- School of Science and Technology, Kwansei Gakuin University
| | - Osamu Nagata
- School of Science and Technology, Kwansei Gakuin University
| | - Yasunori Okada
- School of Science and Technology, Kwansei Gakuin University
| | - Daiki Ikuta
- School of Science and Technology, Kwansei Gakuin University
| | | | | |
Collapse
|
4
|
Messi LM, Noté OP, Mbing JN, Vansteelandt M, Lavedan P, Vedrenne M, Pegnyemb DE, Haddad M. Farnesyl glycosides and one new triterpenoid saponin from the roots of Lecaniodiscus cupanioides Planch. ex Benth. Carbohydr Res 2020; 495:108092. [DOI: 10.1016/j.carres.2020.108092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022]
|
5
|
Petit B, Mitaine-Offer AC, Fernández FR, Papini AM, Delaude C, Miyamoto T, Tanaka C, Rovero P, Lacaille-Dubois MA. Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. PHYTOCHEMISTRY 2020; 176:112392. [PMID: 32512361 DOI: 10.1016/j.phytochem.2020.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) in a multifactorial autoimmune disease in which reliable biomarkers are needed for therapeutic monitoring and diagnosis. Autoantibodies (autoAbs) are known biomarker candidates although their detection in biological fluids requires a thorough characterization of their associated antigens. Over the past twenty years, a reverse chemical-based approach aiming to screen putative autoantigens has underlined the role of glycans, in particular glucose, in MS. Despite the progress achieved, a lack of consensus regarding the nature of innate antigens as well as difficulties proposing new synthetic glucose-based structures have proved to be obstacles. Here is proposed a strategy to extend the current methodology to the field of natural glycosides, in order to dramatically increase the diversity of glycans that could be tested. Triterpene saponins from the Sapindaceace family represent an optimal starting material as their abundant description in the literature has revealed a prevalence of glucose-based oligosaccharides. Blighia welwitschii (Sapindaceae) was thus selected as a case study and twelve triterpene saponins were isolated and characterized. Their structures were elucidated on the basis of 1D and 2D NMR as well as mass spectrometry, revealing seven undescribed compounds. A selection of natural glycosides exhibiting various oligosaccharide moieties were then tested as antigens in enzyme-linked immunosorbent assay (ELISA) to recognize IgM antibodies (Abs) in MS patients' sera. Immunoassay results indicated a correlation between the glycan structures and their antibody recognition capacity, allowing the determination of structure-activity relationships that were coherent with previous studies. This approach might help to identify sugar epitopes putatively involved in MS pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France.
| | - Feliciana Real Fernández
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Laboratory of Chemical Biology, EA 4505 PeptLab@UCP, University of Cergy Pontoise, 95031, Cergy, Pontoise Cedex, France
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| |
Collapse
|
6
|
Hao DC, Xiao PG. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. CHINESE HERBAL MEDICINES 2020; 12:104-117. [PMID: 36119793 PMCID: PMC9476761 DOI: 10.1016/j.chmed.2020.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
The worldwide botanical and medicinal culture diversity are astonishing and constitute a Pierian spring for innovative drug R&D. Here, the latest awareness and the perspectives of pharmacophylogeny and pharmacophylogenomics, as well as their expanding utility in botanical drug R&D, are systematically summarized and highlighted. Chemotaxonomy is based on the fact that closely related plants contain the same or similar chemical profiles. Correspondingly, it is better to combine morphological characters, DNA markers and chemical markers in the inference of medicinal plant phylogeny. Medicinal plants within the same phylogenetic groups may have the same or similar therapeutic effects, thus forming the core of pharmacophylogeny. Here we systematically review and comment on the versatile applications of pharmacophylogeny in (1) looking for domestic resources of imported drugs, (2) expanding medicinal plant resources, (3) quality control, identification and expansion of herbal medicines, (4) predicting the chemical constituents or active ingredients of herbal medicine and assisting in the identification and determination of chemical constituents, (5) the search for new drugs sorting out, and (6) summarizing and improving herbal medicine experiences, etc. Such studies should be enhanced within the context of deeper investigations of molecular biology and genomics of traditional medicinal plants, phytometabolites and metabolomics, and ethnomedicine-based pharmacological activity, thus enabling the sustainable conservation and utilization of traditional medicinal resources.
Collapse
Affiliation(s)
- Da-cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
- Corresponding author.
| | - Pei-gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Pertuit D, Kapundu M, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delaude C, Lacaille-Dubois MA. Triterpenoid Saponins From the Stem Bark of Pentaclethra eetveldeana. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19863947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two previously undescribed triterpenoid saponins together with 4 known ones were isolated from the stem bark of Pentaclethra eetveldeana De Wild. & Th. Dur. Their structures were elucidated by spectroscopic methods including 1D and 2D NMR experiments in combination with mass spectrometry as 3- O-β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyloleanolic acid and 3- O-β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosylhederagenin.
Collapse
Affiliation(s)
- David Pertuit
- Laboratoire de Pharmacognosie, PEPITE EA 4267, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon Cedex, France
| | - Mpuza Kapundu
- Centre d’études des Substances Naturelles d’Origine Végétale, Faculté des Sciences Pharmaceutiques, Université de Kinshasa, République Démocratique du Congo
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, PEPITE EA 4267, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie B-6, Liège, Belgium
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, PEPITE EA 4267, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon Cedex, France
| |
Collapse
|
8
|
Petit B, Mitaine-Offer AC, Delaude C, Miyamoto T, Tanaka C, Lacaille-Dubois MA. Hederagenin glycosides from the fruits of Blighia unijugata. PHYTOCHEMISTRY 2019; 162:260-269. [PMID: 31031211 DOI: 10.1016/j.phytochem.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
A phytochemical investigation of Blighia unijugata led to the isolation of eleven hederagenin glycosides. Among these compounds, six are previously undescribed, two are described in their native forms for the first time and three are known whereas firstly isolated from Blighia unijugata. The structure of the undescribed compounds was elucidated on the basis of 2D NMR and mass spectrometry analyses as 3-O-β-D-xylopyranosyl-(1 → 3)-α-L-arabinopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-β-D-xylopyranosyl-(1 → 3)-α-L-arabinopyranosyl-(1 → 4)-3-O-acetyl-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-β-D-glucopyranosyl-(1 → 3)-α-L-arabinopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-3-O-acetyl-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin, 3-O-α-L-arabinopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl ester, 3-O-α-L-arabinopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin 28-O-β-D-glucopyranosyl ester and 3-O-β-D-xylopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin 28-O-β-D-glucopyranosyl ester. These results revealed the existence of several conserved structural features that could be used as chemotaxonomic markers for the Blighia genus such as the glycosidic sequence 3-O-α-L-arabinopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl, the occurrence of 3-O-acetylated β-D-glucopyranosyl units and the systematic presence of hederagenin as aglycone.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon Cedex, France
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon Cedex, France.
| |
Collapse
|
9
|
Abstract
Two undescribed triterpenoid saponins together with 5 known ones were isolated from the root bark of Haplocoelum congolanum Hauman. Their structures were elucidated by spectroscopic methods including one-dimensional and two-dimensional nuclear magnetic resonance experiments in combination with mass spectrometry as 3- O-(4- O-[3-hydroxy-3-methylglutaryl])-α-l-arabinopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-α-l-arabinopyranosyloleanolic acid and 3- O-α-l-arabinofuranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-α-l-arabinopyranosyloleanolic acid.
Collapse
|