1
|
Nishimura T, Makigawa S, Sun J, Kodama K, Sugiyama H, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y, Shindo M. Design and synthesis of strong root gravitropism inhibitors with no concomitant growth inhibition. Sci Rep 2023; 13:5173. [PMID: 36997582 PMCID: PMC10063617 DOI: 10.1038/s41598-023-32063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Herein, we describe a highly potent gravitropic bending inhibitor with no concomitant growth inhibition. Previously, we reported that (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) selectively inhibits root gravitropic bending of lettuce radicles at 5 μM. Based on the structure-activity relationship study of ku-76 as a lead compound, we designed and synthesized various C4-substituted analogs of ku-76. Among the analogs, 4-phenylethynyl analog exhibited the highest potency for gravitropic bending inhibition, which was effective at only 0.01 μM. Remarkably, 4-phenylethynyl analog is much more potent than the known inhibitor, NPA. Substitution in the para position on the aromatic ring of 4-phenylethynyl group was tolerated without diminished activity. In addition, evaluation using Arabidopsis indicated that 4-phenylethynyl analog inhibits gravitropism by affecting auxin distribution in the root tips. Based on the effects on Arabidopsis phenotypes, 4-phenylethynyl analog may be a novel inhibitor that differs in action from the previously reported auxin transport inhibitors.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Saki Makigawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Jun Sun
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kozue Kodama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiromi Sugiyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
- Department of Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| |
Collapse
|
2
|
Gou X, Tian D, Wei J, Ma Y, Zhang Y, Chen M, Ding W, Wu B, Tang J. New Drimane Sesquiterpenes and Polyketides from Marine-Derived Fungus Penicillium sp. TW58-16 and Their Anti-Inflammatory and α-Glucosidase Inhibitory Effects. Mar Drugs 2021; 19:md19080416. [PMID: 34436259 PMCID: PMC8398500 DOI: 10.3390/md19080416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Marine fungi-derived natural products represent an excellent reservoir for the discovery of novel lead compounds with biological activities. Here, we report the identification of two new drimane sesquiterpenes (1 and 2) and six new polyketides (3–8), together with 10 known compounds (9–18), from a marine-derived fungus Penicillium sp. TW58-16. The planar structures of these compounds were elucidated by extensive 1D and 2D NMR, which was supported by HR-ESI-MS data. The absolute configurations of these compounds were determined by experimental and calculated electronic circular dichroism (ECD), and their optical rotations compared with those reported. Evaluation of the anti-inflammatory activity of compounds 1–18 revealed that compound 5 significantly inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) in RAW264.7 cells, correlating with the inhibition of expression of inducible nitric oxide synthase (iNOS). In addition, we revealed that compounds 1, 3–6, 14, 16, and 18 showed strong α-glucosidase inhibitory effects with inhibition rates of 35.4%, 73.2%, 55.6%, 74.4%, 32.0%, 36.9%, 88.0%, and 91.1%, respectively, which were comparable with or even better than that of the positive control, acarbose. Together, our results illustrate the potential of discovering new marine-based therapeutic agents against inflammation and diabetes mellitus.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Danmei Tian
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Jihua Wei
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Yihan Ma
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Yixue Zhang
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
| | - Mei Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Wenjuan Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan 316021, China; (J.W.); (Y.M.); (Y.Z.)
- Correspondence: (B.W.); (J.T.); Tel.: +86-580-2092258 (B.W.); +86-20-85221559 (J.T.)
| | - Jinshan Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (X.G.); (D.T.); (M.C.); (W.D.)
- Correspondence: (B.W.); (J.T.); Tel.: +86-580-2092258 (B.W.); +86-20-85221559 (J.T.)
| |
Collapse
|
3
|
Shindo M, Makigawa S, Kodama K, Sugiyama H, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y. Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. PHYTOCHEMISTRY 2020; 179:112508. [PMID: 32905916 DOI: 10.1016/j.phytochem.2020.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Previously, we found (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) to be a selective inhibitor of root gravitropic bending of lettuce radicles at 5 μM, with no concomitant growth inhibition, and revealed the structure-activity relationship in this inhibitory activity. The conformation of ku-76 is flexible owing to the open-chain structure of pentan-2,4-dienoic acid with freely rotating single bonds, and the (2Z)-alkene moiety may be isomerized by external factors. To develop more potent inhibitors and obtain insight into the target biomolecules, various analogues of ku-76, fixed through conformation and/or configuration, were synthesized and evaluated. Stereochemical fixation was effective in improving the potency of gravitropic bending inhibition. Finally, we found highly potent conformational and/or configurational analogues (ku-257, ku-294 and ku-308), that did not inhibit root growth. The inhibition of root curvature by these analogues was comparable to that of naptalam.
Collapse
Affiliation(s)
- Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| | - Saki Makigawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kozue Kodama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiromi Sugiyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|