1
|
Koyukan B, Arikan-Abdulveli B, Yildiztugay E, Ozfidan-Konakci C. The regulatory roles of a plant neurotransmitter, acetylcholine, on growth, PSII photochemistry and antioxidant systems in wheat exposed to cadmium and/or mercury stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124978. [PMID: 39303933 DOI: 10.1016/j.envpol.2024.124978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Heavy metals increase in nature due to anthropogenic activities and negatively impact the growth, progress, and efficiency of plants. Among the toxic metal pollutants that can cause dangerous effects when accumulated by plants, mercury (Hg) and cadmium (Cd) were investigated in this study. These metals typically inhibit important enzymes and halt their functioning, thereby adversely affecting the capability of plants to achieve photosynthesis, respiration, and produce quality crops. Acetylcholine (ACh) serves as a potent neurotransmitter present in both primitive and advanced plant species. Its significant involvement in diverse metabolic processes, particularly in regulating growth and adaptation to stress, is well recognized. For this aim, effects of acetylcholine (ACh1, 10 μM; ACh2, 100 μM) were survey in Triticum aestivum under Hg and/or Cd stress (Hg, 50 μM; Cd, 100 μM). Wheat seedlings exhibited a growth retardation of about 24% under Hg or Cd stress. Combined stress conditions (Cd+Hg) resulted in a decrease in RWC by approximately 16%. Two different doses of ACh treatment to stressed plants positively affected growth parameters and regulated the water relations. Gas exchange was limited in stress groups, and the photochemical quantum competency of PSII (Fv/Fm) was suppressed. Cd+ACh1 and Cd+ACh2 treatments resulted in approximately 2-fold and 1.5-fold improvement in stomatal conductance and carbon assimilation rate, respectively. Similarly, improvement was observed with ACh treatments in wheat seedlings under Hg stress. Under Cd and/or Hg stress, high levels of H2O2 accumulated and lipid peroxidation occurred. According to our results, ACh treatment upon Cd and Hg stresses improved the activities of SOD, POX, and APX, thereby reducing oxidative damage. In conclusion, ACh treatment was found to ensure stress tolerance and limit the adverse effects caused by heavy metals.
Collapse
Affiliation(s)
- Buket Koyukan
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, TURKEY.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, TURKEY.
| | - Evren Yildiztugay
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, TURKEY.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, TURKEY.
| |
Collapse
|
2
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
3
|
Sarangle Y, Bamel K, Purty RS. Role of acetylcholine and acetylcholinesterase in improving abiotic stress resistance/tolerance. Commun Integr Biol 2024; 17:2353200. [PMID: 38827581 PMCID: PMC11141473 DOI: 10.1080/19420889.2024.2353200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Abiotic stress that plants face may impact their growth and limit their productivity. In response to abiotic stress, several endogenous survival mechanisms get activated, including the synthesis of quaternary amines in plants. Acetylcholine (ACh), a well-known quaternary amine, and its components associated with cholinergic signaling are known to contribute to a variety of physiological functions. However, their role under abiotic stress is not well documented. Even after several studies, there is a lack of a comprehensive understanding of how cholinergic components mitigate abiotic stress in plants. Acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE) belongs to the GDSL lipase/acylhydrolase protein family and has been found in several plant species. Several studies have demonstrated that GDSL members are involved in growth, development, and abiotic stress. This review summarizes all the possible mitigating effects of the ACh-AChE system on abiotic stress tolerance and will try to highlight all the progress made so far in this field.
Collapse
Affiliation(s)
- Yashika Sarangle
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Kiran Bamel
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
4
|
Elkelish A, Alhudhaibi AM, Hossain AS, Haouala F, Alharbi BM, El-Banna MF, Rizk A, Badji A, AlJwaizea NI, Sayed AAS. Alleviating chromium-induced oxidative stress in Vigna radiata through exogenous trehalose application: insights into growth, photosynthetic efficiency, mineral nutrient uptake, and reactive oxygen species scavenging enzyme activity enhancement. BMC PLANT BIOLOGY 2024; 24:460. [PMID: 38797833 PMCID: PMC11129419 DOI: 10.1186/s12870-024-05152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Rizk
- Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Studies, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Makerere University Regional Centre for Crop Improvement, Makerere University, Kampala, 7062, Uganda.
| | - Nada Ibrahim AlJwaizea
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
5
|
Wu C, Yang Y, Wang Y, Zhang W, Sun H. Colonization of root endophytic fungus Serendipita indica improves drought tolerance of Pinus taeda seedlings by regulating metabolome and proteome. Front Microbiol 2024; 15:1294833. [PMID: 38559354 PMCID: PMC10978793 DOI: 10.3389/fmicb.2024.1294833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
Pinus taeda is an important forest tree species for plantations because of its rapid growth and high yield of oleoresins. Although P. taeda plantations distribute in warm and wet southern China, drought, sometime serious and long time, often occurs in the region. To explore drought tolerance of P. taeda and usage of beneficial microorganisms, P. taeda seedlings were planted in pots and were inoculated with root endophytic fungus Serendipita indica and finally were treated with drought stress for 53 d. Metabolome and proteome of their needles were analyzed. The results showed that S. indica inoculation of P. taeda seedlings under drought stress caused great changes in levels of some metabolites in their needles, especially some flavonoids and organic acids. Among them, the levels of eriocitrin, trans-aconitic acid, vitamin C, uric acid, alpha-ketoglutaric acid, vitamin A, stachydrine, coumalic acid, itaconic acid, calceolarioside B, 2-oxoglutaric acid, and citric acid were upregulated more than three times in inoculated seedlings under drought stress, compared to those of non-inoculated seedlings under drought stress. KEGG analysis showed that some pathways were enriched in inoculated seedlings under drought stress, such as flavonoid biosynthesis, ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism. Proteome analysis revealed some specific differential proteins. Two proteins, namely, H9X056 and H9VDW5, only appeared in the needles of inoculated seedlings under drought stress. The protein H9VNE7 was upregulated more than 11.0 times as that of non-inoculated seedlings under drought stress. In addition, S. indica inoculation increased enrichment of water deficient-inducible proteins (such as LP3-1, LP3-2, LP3-3, and dehydrins) and those involved in ribosomal structures (such as A0A385JF23). Meanwhile, under drought stress, the inoculation caused great changes in biosynthesis and metabolism pathways, mainly including phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, and 2-oxocarboxylic acid metabolism. In addition, there were positive relationships between accumulation of some metabolites and enrichment of proteins in P. taeda under drought stress. Altogether, our results showed great changes in metabolome and proteome in inoculated seedlings under drought stress and provided a guideline to further study functions of metabolites and proteins, especially those related to drought stress.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yujie Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wenying Zhang
- College of Agricultural Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
6
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
7
|
Senousy HH, Hamoud YA, Abu-Elsaoud AM, Mahmoud Al zoubi O, Abdelbaky NF, Zia-ur-Rehman M, Usman M, Soliman MH. Algal Bio-Stimulants Enhance Salt Tolerance in Common Bean: Dissecting Morphological, Physiological, and Genetic Mechanisms for Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3714. [PMID: 37960071 PMCID: PMC10648064 DOI: 10.3390/plants12213714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing 210098, China
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Omar Mahmoud Al zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Nessreen F. Abdelbaky
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| | - Muhammad Zia-ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
8
|
Alamer KH. Exogenous Hydrogen Sulfide Supplementation Alleviates the Salinity-Stress-Mediated Growth Decline in Wheat ( Triticum aestivum L.) by Modulating Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:3464. [PMID: 37836204 PMCID: PMC10574924 DOI: 10.3390/plants12193464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The impact of the exogenous supplementation of hydrogen sulfide (20 and 50 µM HS) on growth, enzyme activity, chlorophyll pigments, and tolerance mechanisms was studied in salinity-stressed (100 mM NaCl) wheat. Salinity significantly reduced height, fresh and dry weight, chlorophyll, and carotenoids. However, the supplementation of HS (at both concentrations) increased these attributes and also mitigated the decline to a considerable extent. The exogenous supplementation of HS reduced the accumulation of hydrogen peroxide (H2O2) and methylglyoxal (MG), thereby reducing lipid peroxidation and increasing the membrane stability index (MSI). Salinity stress increased H2O2, MG, and lipid peroxidation while reducing the MSI. The activity of nitrate reductase was reduced due to NaCl. However, the supplementation of HS alleviated the decline with obvious effects being seen due to 50 µM HS. The activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) was assayed and the content of reduced glutathione (GSH) increased due to salt stress and the supplementation of HS further enhanced their activity. A decline in ascorbic acid due to salinity stress was alleviated due to HS treatment. HS treatment increased the endogenous concentration of HS and nitric oxide (NO) under normal conditions. However, under salinity stress, HS supplementation resulted in a reduction in HS and NO as compared to NaCl-treated plants. In addition, proline and glycine betaine increased due to HS supplementation. HS treatment reduced sodium levels, while the increase in potassium justified the beneficial role of applied HS in improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
9
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Yao XC, Meng LF, Zhao WL, Mao GL. Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1090366. [PMID: 36890891 PMCID: PMC9987590 DOI: 10.3389/fpls.2023.1090366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Salt stress directly affects the growth of plants. The limitation of leaf grow is among the earliest visible effects of salt stress. However, the regulation mechanism of salt treatments on leaf shape has not been fully elucidated. We measured the morphological traits and anatomical structure. In combination with transcriptome analysis, we analyzed differentially expressed genes (DEGs) and verified the RNA-seq data by qRT-PCR. Finally, we analyzed correlation between leaf microstructure parameters and expansin genes. We show that the leaf thickness, the width, and the leaf length significantly increased at elevated salt concentrations after salt stress for 7 days. Low salt mainly promoted the increase in leaves length and width, but high salt concentration accelerated the leaf thickness. The anatomical structure results indicated that palisade mesophyll tissues contribute more to leaf thickness than spongy mesophyll tissues, which possibly contributed to the increase in leaf expansion and thickness. Moreover, a total of 3,572 DEGs were identified by RNA-seq. Notably, six of the DEGs among 92 identified genes concentrated on cell wall synthesis or modification were involved in cell wall loosening proteins. More importantly, we demonstrated that there was a strong positive correlation between the upregulated EXLA2 gene and the thickness of the palisade tissue in L. barbarum leaves. These results suggested that salt stress possibly induced the expression of EXLA2 gene, which in turn increased the thickness of L. barbarum leaves by promoting the longitudinal expansion of cells of the palisade tissue. This study lays a solid knowledge for revealing the underlying molecular mechanisms of leaf thickening in L. barbarum in response to salt stresses.
Collapse
|
11
|
Li C, Li Y, Chu P, Hao-hao Z, Wei Z, Cheng Y, Liu X, Zhao F, Li YJ, Zhang Z, Zheng Y, Mu Z. Effects of salt stress on sucrose metabolism and growth in Chinese rose ( Rosa chinensis). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Caihua Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yuhuan Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Peiyu Chu
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zhao Hao-hao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Zunmiao Wei
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Cheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Xianxian Liu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Fengzhou Zhao
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yan-jun Li
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhiwen Zhang
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Yi Zheng
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhongsheng Mu
- Economic Crop Research Laboratory, Economic Crops Institute, Jilin Academy of Agricultural Sciences, Changchun, PR China
- Laboratory of Economic Crops, Agricultural College, Heilongjiang Bayi Agriculture University, Daqing, PR China
| |
Collapse
|
12
|
Qin C, Shen J, Ahanger MA. Supplementation of nitric oxide and spermidine alleviates the nickel stress-induced damage to growth, chlorophyll metabolism, and photosynthesis by upregulating ascorbate-glutathione and glyoxalase cycle functioning in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1039480. [PMID: 36388564 PMCID: PMC9646532 DOI: 10.3389/fpls.2022.1039480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Experiments were conducted to evaluate the role of exogenously applied nitric oxide (NO; 50 µM) and spermidine (Spd; 100 µM) in alleviating the damaging effects of Ni (1 mM NiSO46H2O) toxicity on the growth, chlorophyll metabolism, photosynthesis, and mineral content in tomato. Ni treatment significantly reduced the plant height, dry mass, and the contents of glutamate 1-semialdehyde, δ-amino levulinic acid, prototoporphyrin IX, Mg-prototoporphyrin IX, total chlorophyll, and carotenoids; however, the application of NO and Spd alleviated the decline considerably. Supplementation of NO and Spd mitigated the Ni-induced decline in photosynthesis, gas exchange, and chlorophyll fluorescence parameters. Ni caused oxidative damage, while the application of NO, Spd, and NO+Spd significantly reduced the oxidative stress parameters under normal and Ni toxicity. The application of NO and Spd enhanced the function of the antioxidant system and upregulated the activity of glyoxalase enzymes, reflecting significant reduction of the oxidative effects and methylglyoxal accumulation. Tolerance against Ni was further strengthened by the accumulation of proline and glycine betaine due to NO and Spd application. The decrease in the uptake of essential mineral elements such as N, P, K, and Mg was alleviated by NO and Spd. Hence, individual and combined supplementation of NO and Spd effectively alleviates the damaging effects of Ni on tomato.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi, China
| | - Jie Shen
- Department of Life Sciences, University of Changzhi, Changzhi, China
| | | |
Collapse
|
13
|
Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gibberellins are amongst the main plant growth regulators. Discovered over a century ago, the interest in gibberellins research is growing due to their current and potential applications in crop production and their role in the responses to environmental stresses. In the present review, the current knowledge on gibberellins’ homeostasis and modes of action is outlined. Besides this, the complex interrelations between gibberellins and other plant growth regulators are also described, providing an intricate network of interactions that ultimately drives towards precise and specific gene expression. Thus, genes and proteins identified as being involved in gibberellin responses in model and non-model species are highlighted. Furthermore, the molecular mechanisms governing the gibberellins’ relation to stress responses are also depicted. This review aims to provide a comprehensive picture of the state-of-the-art of the current perceptions of the interactions of gibberellins with other phytohormones, and their responses to plant stresses, thus allowing for the identification of the specific mechanisms involved. This knowledge will help us to improve our understanding of gibberellins’ biology, and might help increase the biotechnological toolbox needed to refine plant resilience, particularly under a climate change scenario.
Collapse
|
14
|
Zhang W, Zhao XY, Wu J, Jin L, Lv J, Gao B, Liu P. Screening and Verification of Molecular Markers and Genes Related to Salt-Alkali Tolerance in Portunus trituberculatus. Front Genet 2022; 13:755004. [PMID: 35211153 PMCID: PMC8861530 DOI: 10.3389/fgene.2022.755004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Salt-alkali tolerance is one of the important breeding traits of Portunus trituberculatus. Identification of molecular markers linked to salt-alkali tolerance is prerequisite to develop such molecular marker-assisted breeding. In this study, Bulked Segregant Analysis (BSA) was used to screen molecular markers associated with salt-alkali tolerance trait in P. trituberculatus. Two DNA mixing pools with significant difference in salt-alkali tolerance were prepared and 94.83G of high-quality sequencing data was obtained. 855 SNPs and 1051 Indels were firstly selected as candidate markers by BSA analysis, out of which, 20 markers were further selected via △index value (close to 0 or 1) and eight of those were successfully verified. In addition, based on the located information of the markers in genome, eight candidate genes related to salt-alkali tolerance were anchored including ubiquitin-conjugating enzyme, aspartate-tRNA ligase, vesicle-trafficking protein, and so on. qPCR results showed that the expression patterns of all these genes changed significantly after salt-alkali stress, suggesting that they play certain roles in salt-alkali adaptation. Our results will provide applicable markers for molecular marker-assisted breeding and help to clarify the mechanisms of salt-alkali adaptation of P. trituberculatus.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of marine technology and environment, Dalian Ocean University, Dalian, China
| | - Xiao Yan Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ling Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Hajihashemi S, Skalicky M, Brestic M, Pavla V. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:160-170. [PMID: 34800820 DOI: 10.1016/j.plaphy.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Sodium nitroprusside (SNP), which produces nitric oxide (NO) has the well-documented potential to alleviate the adverse effects of various abiotic stressors such as salinity. The present study aimed at investigating how the application of SNP can ameliorate the adverse effects of salt stress and boost tolerance in Raphanus sativus. Salt stress induced by application of 100 or 200 mM NaCl significantly decreased photosynthetic pigments and chlorophyll fluorescence, followed by a significant reduction in carbohydrate content. SNP treatment increased salt-tolerance in plants by inhibiting the adverse effect of salinity on the photosynthetic apparatus and the accumulation of sugars. Salt stress was accompanied by a reduction in total antioxidant power (FRAP), accumulation of damaging levels of H2O2, lipid peroxidation, and reduction in protein, while SNP enhanced FRAP, reduced H2O2 and lipid peroxidation, and restored protein abundance. SNP treatment also increased hypocotyl growth of salt-stressed plants, accompanied by improvement in anatomical structure. Cross sections of the hypocotyl showed increased diameter of the central cylinder and thickness of the casparian strip in the SNP-treated plants under stress conditions. Indeed, the observed improvement in the growth of hypocotyl and leaves of salt-stressed radish plants treated with SNP, in parallel with improved physiology and anatomical features, suggested that NO can regulate diverse mechanisms to effectively increase salt tolerance.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-6361, Iran.
| | - Milan Skalicky
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Vachova Pavla
- Department of Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500, Prague, Czech Republic
| |
Collapse
|
16
|
Al-Mushhin AAM, Qari SH, Fakhr MA, Alnusairi GSH, Alnusaire TS, ALrashidi AA, Latef AAHA, Ali OM, Khan AA, Soliman MH. Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane Stability via the Upregulation of Stress Responsive Genes in Chenopodium quinoa L. PLANTS (BASEL, SWITZERLAND) 2021; 10:2416. [PMID: 34834781 PMCID: PMC8623490 DOI: 10.3390/plants10112416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
Myo-inositol has gained a central position in plants due to its vital role in physiology and biochemistry. This experimental work assessed the effects of salinity stress and foliar application of myo-inositol (MYO) on growth, chlorophyll content, photosynthesis, antioxidant system, osmolyte accumulation, and gene expression in quinoa (Chenopodium quinoa L. var. Giza1). Our results show that salinity stress significantly decreased growth parameters such as plant height, fresh and dry weights of shoot and root, leaf area, number of leaves, chlorophyll content, net photosynthesis, stomatal conductance, transpiration, and Fv/Fm, with a more pronounced effect at higher NaCl concentrations. However, the exogenous application of MYO increased the growth and photosynthesis traits and alleviated the stress to a considerable extent. Salinity also significantly reduced the water potential and water use efficiency in plants under saline regime; however, exogenous application of myo-inositol coped with this issue. MYO significantly reduced the accumulation of hydrogen peroxide, superoxide, reduced lipid peroxidation, and electrolyte leakage concomitant with an increase in the membrane stability index. Exogenous application of MYO up-regulated the antioxidant enzymes' activities and the contents of ascorbate and glutathione, contributing to membrane stability and reduced oxidative damage. The damaging effects of salinity stress on quinoa were further mitigated by increased accumulation of osmolytes such as proline, glycine betaine, free amino acids, and soluble sugars in MYO-treated seedlings. The expression pattern of OSM34, NHX1, SOS1A, SOS1B, BADH, TIP2, NSY, and SDR genes increased significantly due to the application of MYO under both stressed and non-stressed conditions. Our results support the conclusion that exogenous MYO alleviates salt stress by involving antioxidants, enhancing plant growth attributes and membrane stability, and reducing oxidative damage to plants.
Collapse
Affiliation(s)
- Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sameer H. Qari
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Marwa A. Fakhr
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application (SRTA-city), New Borg El-Arab City 21934, Egypt
| | - Ghalia S. H. Alnusairi
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (G.S.H.A.); (T.S.A.)
| | - Taghreed S. Alnusaire
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; (G.S.H.A.); (T.S.A.)
| | - Ayshah Aysh ALrashidi
- Department of Biology, Faculty of Science, University of Hail, Hail 81411, Saudi Arabia;
| | | | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amir Abdullah Khan
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
17
|
Xu Z, Wang M, Ren T, Li K, Li Y, Marowa P, Zhang C. Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:816-830. [PMID: 34530326 DOI: 10.1016/j.plaphy.2021.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 05/24/2023]
Abstract
Apocynum venetum is a traditional Chinese medicinal herb with tolerance to various abiotic stresses, especially, salinity. However, only a few studies have investigated the salt-tolerant mechanism of this non-halophyte under salt stress at phenotypic and physiological levels. To explore the molecular mechanism of salinity tolerance in A. venetum, the global transcriptome profiles of seedling leaves under different salt-stress durations, using 200 mM NaCl, were analyzed. De novo assembly of approximately 715 million high-quality reads and approximately 105.61 Gb sequence data was performed. In total, 2822 differentially expressed genes (DEGs) were identified. DEGs were significantly enriched in flavonoid metabolism-related pathways such as "flavonoid biosynthesis" and "phenylpropanoid biosynthesis". Most of these DEGs were downregulated under salt stress. However, genes encoding the non-selective cation channels and antioxidants were upregulated under salt stress, whereas most cell wall-related DEGs were downregulated. Consequently, the concentration of flavonoids decreased, whereas that of Na+ increased with exposure time. Thus, we hypothesized that the accumulation of Na+ in the leaves, which resulted in reduced flavonoid concentration under salt stress, directly led to a decrease in the salt tolerance of A. venetum. This was verified by overexpressing four flavonoid synthesis pathway genes in Arabidopsis. The transgenic plants showed higher salt tolerance than the wild-type plants due to the accumulation of total flavonoids. These physiological and transcriptome analyses of A. venetum revealed major molecular underpinnings contributing to the responses of A. venetum to salt stress, thereby improving our understanding of the molecular mechanisms underlying salt tolerance in A. venetum and plants in general. The findings serve as a basis for functional studies on and engineering strategies for plant salinity tolerance.
Collapse
Affiliation(s)
- Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Keyang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Prince Marowa
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, 00263, Zimbabwe.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
18
|
Wuxal amino (Bio stimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential. Saudi J Biol Sci 2021; 28:3204-3213. [PMID: 34121857 PMCID: PMC8176060 DOI: 10.1016/j.sjbs.2021.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
In the present study, ameliorative capabilities of wuxal amino (bio stimulant) under salt stress has been investigated through adaptive mechanisms and antioxidant potential in tomato plants. In the experiment, two different concentrations (2 cm L-1 and 3 cm L-1) of wuxal amino through foliar application and soil irrigation were applied to the salt (150 mM) treated tomato plants and then morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress and antioxidant enzymes activity were assessed at 60 days after planting. The results revealed that salt stress decreased the growth parameters, photosynthetic pigments, soluble sugars and soluble protein whereas, content of proline, ascorbic acid, total phenols, malondialdehyde, hydrogen peroxide and the activity of antioxidant enzymes activity increased under salt stress. Moreover, Wuxal amino application through foliar or soil to salt stressed plants improved morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Interestingly, the deleterious impact of salinity on tomato plants were significantly reduced and it can be evident from reduced MDA and H2O2 levels. These responses varied with the mode (foliar or soil) of application of Wuxal amino under different concentrations (2 cm L-1 and 3 cm L-1). It was concluded that application of Wuxal amino (2 cm L-1, foliar) and (3 cm L-1; soil) proved best and could be commercially used as eco-friendly tool for the protection of tomato plants grown under salinity stress.
Collapse
|
19
|
Abbasi-Vineh MA, Sabet MS, Karimzadeh G. Identification and Functional Analysis of Two Purple Acid Phosphatases AtPAP17 and AtPAP26 Involved in Salt Tolerance in Arabidopsis thaliana Plant. FRONTIERS IN PLANT SCIENCE 2021; 11:618716. [PMID: 33679819 PMCID: PMC7928345 DOI: 10.3389/fpls.2020.618716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/31/2020] [Indexed: 05/06/2023]
Abstract
Tolerance to salinity is a complex genetic trait including numerous physiological processes, such as metabolic pathways and gene networks; thereby, identification of genes indirectly affecting, as well as those directly influencing, is of utmost importance. In this study, we identified and elucidated the functional characterization of AtPAP17 and AtPAP26 genes, as two novel purple acid phosphatases associated with high-salt tolerance in NaCl-stressed conditions. Here, the overexpression of both genes enhanced the expression level of AtSOS1, AtSOS2, AtSOS3, AtHKT1, AtVPV1, and AtNHX1 genes, involving in the K+/Na+ homeostasis pathway. The improved expression of the genes led to facilitating intracellular Na+ homeostasis and decreasing the ion-specific damages occurred in overexpressed genotypes (OEs). An increase in potassium content and K+/Na+ ratio was observed in OE17 and OE26 genotypes as well; however, lower content of sodium accumulated in these plants at 150 mM NaCl. The overexpression of these two genes resulted in the upregulation of the activity of the catalase, guaiacol peroxidase, and ascorbate peroxidase. Consequently, the overexpressed plants showed the lower levels of hydrogen peroxide where the lowest amount of lipid peroxidation occurred in these lines. Besides the oxidation resistance, the boost of the osmotic regulation through the increased proline and glycine-betaine coupled with a higher content of pigments and carbohydrates resulted in significantly enhancing biomass production and yield in the OEs under 150 mM NaCl. High-salt stress was also responsible for a sharp induction on the expression of both PAP17 and PAP26 genes. Our results support the hypothesis that these two phosphatases are involved in plant responses to salt stress by APase activity and/or non-APase activity thereof. The overexpression of PAP17 and PAP26 could result in increasing the intracellular APase activity in both OEs, which exhibited significant increases in the total phosphate and free Pi content compared to the wild-type plants. Opposite results witnessed in mutant genotypes (Mu17, Mu26, and DM), associating with the loss of AtPAP17 and AtPAP26 functions, clearly confirmed the role of these two genes in salt tolerance. Hence, these genes can be used as candidate genes in molecular breeding approaches to improve the salinity tolerance of crop plants.
Collapse
Affiliation(s)
- Mohammad Ali Abbasi-Vineh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|