1
|
Li J, Liu X, Cao Z, Yu Q, Li M, Qin G. Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation. Int J Biol Macromol 2024; 292:139371. [PMID: 39743070 DOI: 10.1016/j.ijbiomac.2024.139371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis. PgABCG9 was expressed at high levels in the inner seed coats of pomegranate fruit, and its transcript level was negatively correlated with seed hardness. PgABCG9-transgenic Arabidopsis plants exhibited weaker growth and thinner stems than the wild-type. The number of xylem cells, xylem cell wall thickness, and lignin deposition in the PgABCG9 transgenic plants were significantly reduced. In addition, overexpression of PgABCG9 in Arabidopsis enhanced plant tolerance to exogenous monolignols. Targeted metabolite profiling revealed that the contents of metabolites involved in lignin biosynthesis, including monolignols and monolignol precursors, were also reduced in PgABCG9- transgenic plants. We found that PgABCG9 is localized to the Golgi. These findings indicate that PgABCG9 plays a negative regulatory role in lignin biosynthesis and potentially contributes to soft-seed development in pomegranate through a mechanism that includes the reduction of lignin content in the seed coat by sequestration of monolignols in intracellular compartments.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mingxia Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Yu L, Tian Y, Wang X, Cao F, Wang H, Huang R, Guo C, Zhang H, Zhang J. Genome-wide identification, phylogeny, evolutionary expansion, and expression analyses of ABC gene family in Castanea mollissima under temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109450. [PMID: 39731982 DOI: 10.1016/j.plaphy.2024.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The ATP-binding cassette (ABC) gene family comprises some of the most critical transporter proteins in plants, playing vital roles in maintaining cellular homeostasis and adapting to environmental changes. While ABC transporters have been extensively characterized in various plant species, their profile in C. mollissima remains less understood. In this study, 164 ABC genes were identified and characterized within the C. mollissima genome, and subsequently classified into eight subfamilies. Collinear analysis suggested that dispersed duplication was the primary mechanism driving the expansion of the CmABC gene family. The study also examined morphological and physiological changes in C. mollissima under temperature stress, highlighting significant decreases in photosynthetic indicators and SOD enzyme activity, while other indicators varied. Transcriptome analysis revealed distinct expression patterns of various CmABC genes under temperature stress, identifying CmABCG29c and CmABCB11e as key candidates for responding to temperature stress. This was based on their expression patterns, correlation with physiological indicators, and WGCNA analysis. The expression levels of CmABC genes measured in RT-qPCR experiments were consistent with those observed in RNA-seq analysis. This research provides a theoretical foundation for understanding the physiological and gene expression responses of C. mollissima to temperature stress.
Collapse
Affiliation(s)
- Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China.
| | - Yujuan Tian
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China
| | - Fei Cao
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China
| | - Haifen Wang
- Research Center for Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China
| | - Ruimin Huang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China
| | - Chunlei Guo
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China; Hebei Key Laboratory of Horicultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, 066600, Hebei, China
| |
Collapse
|
3
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
4
|
Jiang J, He K, Wang X, Zhang Y, Guo X, Qian L, Gao X, Liu S. Transcriptional dynamics of Fusarium pseudograminearum under high fungicide stress and the important role of FpZRA1 in fungal pathogenicity and DON toxin production. Int J Biol Macromol 2024; 276:133662. [PMID: 39025188 DOI: 10.1016/j.ijbiomac.2024.133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Fusarium pseudograminearum, the causal agent of Fusarium crown rot, poses a significant threat to cereal crops. Building upon our previous investigation of the transcriptional response of this pathogen to four key fungicides (carbendazim, phenamacril, pyraclostrobin, and tebuconazole), this study delves into the impact of elevated fungicide concentrations using RNA-seq. Global transcriptomic analysis and gene clustering revealed significant enrichment of genes involved in the ABC transporter pathway. Among these transporters, FPSE_06011 (FpZRA1), a conserved gene in eukaryotes, exhibited consistent upregulation at both low and high fungicide concentrations. Targeted deletion of FpZRA1 resulted in reduced sporulation, spore germination, and tolerance to cell wall stress, osmotic stress, and oxidative stress. Furthermore, the FpZRA1 knockout mutants exhibited decreased pathogenicity on wheat coleoptiles and reduced production of the mycotoxin deoxynivalenol (DON), as evidenced by the markedly down-regulated expression of TRI5, TRI6, and TRI10 in the RT-qPCR analysis. In summary, our findings highlight the impact of fungicide concentration on transcriptional reprogramming in F. pseudograminearum and identify FpZRA1 as a critical regulator of fungal development, stress tolerance, and pathogenicity.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Kai He
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyu Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Yuan Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuheng Gao
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China.
| |
Collapse
|
5
|
Xiao Q, Huang X, Chen Y, Zhang X, Liu X, Lu J, Mi L, Li B. Effects of N, N-bis (carboxymethyl)-L-glutamic acid and polyaspartic acid on the phytoremediation of cadmium in contaminated soil at the presence of pyrene: Biochemical properties and transcriptome analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121825. [PMID: 38996604 DOI: 10.1016/j.jenvman.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Chelator-assisted phytoremediation is an efficacious method for promoting the removal efficiency of heavy metals (HMs). The effects of N, N-bis(carboxymethyl)-L-glutamic acid (GLDA) and polyaspartic acid (PASP) on Cd uptake and pyrene removal by Solanum nigrum L. (S. nigrum) were compared in this study. Using GLDA or PASP, the removal efficiency of pyrene was over 98%. And PASP observably raised the accumulation and transport of Cd by S. nigrum compared with GLDA. Meanwhile, both GLDA and PASP markedly increased soil dehydrogenase activities (DHA) and microbial activities. DHA and microbial activities in the PASP treatment group were 1.05 and 1.06 folds of those in the GLDA treatment group, respectively. Transcriptome analysis revealed that 1206 and 1684 differentially expressed genes (DEGs) were recognized in the GLDA treatment group and PASP treatment group, respectively. Most of the DEGs found in the PASP treatment group were involved in the metabolism of carbohydrates, the biosynthesis of brassinosteroid and flavonoid, and they were up-regulated. The DEGs related to Cd transport were screened, and ABCG3, ABCC4, ABCG9 and Nramp5 were found to be relevant with the reduction of Cd stress in S. nigrum by PASP. Furthermore, with PASP treated, transcription factors (TFs) related to HMs such as WRKY, bHLH, AP2/ERF, MYB were down-regulated, while more MYB and bZIP TFs were up-regulated. These TFs associated with plant stress resistance would work together to induce oxidative stress. The above results indicated that PASP was more conducive for phytoremediation of Cd-pyrene co-contaminated soil than GLDA.
Collapse
Affiliation(s)
- Qingyun Xiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xun Huang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Shanghai Huali Integrated Circuit Manufacturing Co., LTD, Shanghai, 201317, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Jingxian Lu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Lanxin Mi
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Beibei Li
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai, 200125, China
| |
Collapse
|
6
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Wang S, Lu L, Xu M, Jiang J, Wang X, Zheng Y, Liang Y, Zhang T, Qin M, Zhu P, Xu L, Jiang Y. Near-complete de novo genome assemblies of tomato (Solanum lycopersicum) determinate cultivars Micro-Tom and M82. J Genet Genomics 2024:S1673-8527(24)00144-9. [PMID: 38897428 DOI: 10.1016/j.jgg.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Shuangshuang Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Lu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Min Xu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaofeng Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yao Zheng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yitao Liang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tianqi Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minghui Qin
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Wang Y, Liao R, Pan H, Wang X, Wan X, Han B, Song C. Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13286. [PMID: 38844388 PMCID: PMC11156492 DOI: 10.1111/1758-2229.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Ranran Liao
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xuejun Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Xiaoting Wan
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Bangxing Han
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| |
Collapse
|
9
|
Sun N, Wang Y, Kang J, Hao H, Liu X, Yang Y, Jiang X, Gai Y. Exploring the role of the LkABCG36 transporter in lignin accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112059. [PMID: 38458573 DOI: 10.1016/j.plantsci.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Lignin is a complex biopolymer formed through the condensation of three monomeric precursors known as monolignols. However, the mechanism underlying lignin precursor transport remains elusive, with uncertainty over whether it occurs through passive diffusion or an active energized process. ATP-binding cassette 36 (ABCG36) plays important roles in abiotic stress resistance. In this study, we investigated the transport functions of LkABCG36 (Larix kaempferi) for lignin precursors and the potential effects of LkABCG36 overexpression in plants. LkABCG36 enhanced the ability of tobacco (Nicotiana tabacum) bright yellow-2 (BY-2) cells to resist monolignol alcohol stress. Furthermore, LkABCG36 overexpression promoted lignin deposition in tobacco plant stem tissue. To understand the underlying mechanism, we measured the BY-2 cell ability to export lignin monomers and the uptake of monolignol precursors in inside-out (inverted) plasma membrane vesicles. We found that the transport of coniferyl and sinapyl alcohols is an ATP-dependent process. Our data suggest that LkABCG36 contributes to lignin accumulation in tobacco stem tissues through a mechanism involving the active transport of lignin precursors to the cell wall. These findings shed light on the lignin biosynthesis process, with important implications for enhancing lignin deposition in plants, potentially leading to improved stress tolerance and biomass production.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqian Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Kang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haifei Hao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China.
| |
Collapse
|
10
|
Tan C, Nie W, Liu Y, Wang Y, Yuan Y, Liu J, Chang E, Xiao W, Jia Z. Physiological response and molecular mechanism of Quercus variabilis under cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108724. [PMID: 38744084 DOI: 10.1016/j.plaphy.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.
Collapse
Affiliation(s)
- Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ya Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianfeng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ermei Chang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
11
|
Chang HF, Tseng SC, Tang MT, Hsiao SSY, Lee DC, Wang SL, Yeh KC. Physiology and molecular basis of thallium toxicity and accumulation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116290. [PMID: 38599154 DOI: 10.1016/j.ecoenv.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Mau-Tsu Tang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| |
Collapse
|
12
|
Meng HX, Wang YZ, Yao XL, Xie XR, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet. PLANT MOLECULAR BIOLOGY 2024; 114:37. [PMID: 38602592 DOI: 10.1007/s11103-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.
Collapse
Affiliation(s)
- Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Ran Xie
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
13
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
14
|
Kou X, Zhao Z, Xu X, Li C, Wu J, Zhang S. Identification and expression analysis of ATP-binding cassette (ABC) transporters revealed its role in regulating stress response in pear (Pyrus bretchneideri). BMC Genomics 2024; 25:169. [PMID: 38347517 PMCID: PMC10863237 DOI: 10.1186/s12864-024-10063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.
Collapse
Affiliation(s)
- Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Zhen Zhao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinqi Xu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Chang Li
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Wang Y, Zhang X, Yan Y, Niu T, Zhang M, Fan C, Liang W, Shu Y, Guo C, Guo D, Bi Y. GmABCG5, an ATP-binding cassette G transporter gene, is involved in the iron deficiency response in soybean. FRONTIERS IN PLANT SCIENCE 2024; 14:1289801. [PMID: 38250443 PMCID: PMC10796643 DOI: 10.3389/fpls.2023.1289801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Iron deficiency is a major nutritional problem causing iron deficiency chlorosis (IDC) and yield reduction in soybean, one of the most important crops. The ATP-binding cassette G subfamily plays a crucial role in substance transportation in plants. In this study, we cloned the GmABCG5 gene from soybean and verified its role in Fe homeostasis. Analysis showed that GmABCG5 belongs to the ABCG subfamily and is subcellularly localized at the cell membrane. From high to low, GmABCG5 expression was found in the stem, root, and leaf of young soybean seedlings, and the order of expression was flower, pod, seed stem, root, and leaf in mature soybean plants. The GUS assay and qRT-PCR results showed that the GmABCG5 expression was significantly induced by iron deficiency in the leaf. We obtained the GmABCG5 overexpressed and inhibitory expressed soybean hairy root complexes. Overexpression of GmABCG5 promoted, and inhibition of GmABCG5 retarded the growth of soybean hairy roots, independent of nutrient iron conditions, confirming the growth-promotion function of GmABCG5. Iron deficiency has a negative effect on the growth of soybean complexes, which was more obvious in the GmABCG5 inhibition complexes. The chlorophyll content was increased in the GmABCG5 overexpression complexes and decreased in the GmABCG5 inhibition complexes. Iron deficiency treatment widened the gap in the chlorophyll contents. FCR activity was induced by iron deficiency and showed an extraordinary increase in the GmABCG5 overexpression complexes, accompanied by the greatest Fe accumulation. Antioxidant capacity was enhanced when GmABCG5 was overexpressed and reduced when GmABCG5 was inhibited under iron deficiency. These results showed that the response mechanism to iron deficiency is more actively mobilized in GmABCG5 overexpression seedlings. Our results indicated that GmABCG5 could improve the plant's tolerance to iron deficiency, suggesting that GmABCG5 might have the function of Fe mobilization, redistribution, and/or secretion of Fe substances in plants. The findings provide new insights into the ABCG subfamily genes in the regulation of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yu Wang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xuemeng Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yuhan Yan
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Tingting Niu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Miao Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Fan
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wenwei Liang
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongjun Shu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Changhong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Donglin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Todd OE, Patterson EL, Westra EP, Nissen SJ, Araujo ALS, Kramer WB, Dayan FE, Gaines TA. Enhanced metabolic detoxification is associated with fluroxypyr resistance in Bassia scoparia. PLANT DIRECT 2024; 8:e560. [PMID: 38268857 PMCID: PMC10807189 DOI: 10.1002/pld3.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (Bassia scoparia). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD50 720 and 20 g ae ha-1, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [14C]-fluroxypyr ester, the herbicide formulation applied to plants, to [14C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.
Collapse
Affiliation(s)
- Olivia E. Todd
- United States Department of Agriculture – Agriculture Research Service (USDA‐ARS)Fort CollinsColoradoUSA
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Eric L. Patterson
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Eric P. Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Department of Plants, Soils & ClimateUtah State UniversityLoganUtahUSA
| | - Scott J. Nissen
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - William B. Kramer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Franck E. Dayan
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Todd A. Gaines
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
17
|
Zhang S, Xu J, Zhang Y, Cao Y. Identification and Characterization of ABCG15-A Gene Required for Exocarp Color Differentiation in Pear. Genes (Basel) 2023; 14:1827. [PMID: 37761967 PMCID: PMC10530978 DOI: 10.3390/genes14091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Exocarp color is a commercially essential quality for pear which can be divided into two types: green and russet. The occurrence of russet color is associated with deficiencies and defects in the cuticular and epidermal layers, which affect the structure of the cell wall and the deposition of suberin. Until now, the genetic basics triggering this trait have not been well understood, and limited genes have been identified for the trait. To figure out the gene controlling the trait of exocarp color, we perform a comprehensive genome-wide association study, and we describe the candidate genes. One gene encoding the ABCG protein has been verified to be associated with the trait, using an integrative analysis of the metabolomic and transcriptomic data. This review covers a variety of omics resources, which provide a valuable resource for identifying gene-controlled traits of interest. The findings in this study help to elucidate the genetic components responsible for the trait of exocarp color in pear, and the implications of these findings for future pear breeding are evaluated.
Collapse
Affiliation(s)
| | | | | | - Yufen Cao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xinghai South Street 98, Xingcheng 125100, China; (S.Z.); (J.X.); (Y.Z.)
| |
Collapse
|
18
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
19
|
Zhang J, Diao F, Hao B, Xu L, Jia B, Hou Y, Ding S, Guo W. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115128. [PMID: 37315361 DOI: 10.1016/j.ecoenv.2023.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.
Collapse
Affiliation(s)
- Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Chemistry, School of Chemistry and Environment, Inner Mongolia Normal University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lei Xu
- Service Support Center, Ecology and Environmental Department of Inner Mongolia Autonomous Region, Hohhot 010010, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shengli Ding
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
20
|
Zhang H, Zhou J, Kou X, Liu Y, Zhao X, Qin G, Wang M, Qian G, Li W, Huang Y, Wang X, Zhao Z, Li S, Wu X, Jiang L, Feng X, Zhu JK, Li L. Syntaxin of plants71 plays essential roles in plant development and stress response via regulating pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1198353. [PMID: 37342145 PMCID: PMC10277689 DOI: 10.3389/fpls.2023.1198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guochen Qin
- Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoqian Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Yang C, Xia L, Zeng Y, Chen Y, Zhang S. Hexaploid Salix rehderiana is more suitable for remediating lead contamination than diploids, especially male plants. CHEMOSPHERE 2023; 333:138902. [PMID: 37182717 DOI: 10.1016/j.chemosphere.2023.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.
Collapse
Affiliation(s)
- Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Pandey R, Sharma A, Sood H, Chauhan RS. ABC transporters mined through comparative transcriptomics associate with organ-specific accumulation of picrosides in a medicinal herb, Picrorhiza kurroa. PROTOPLASMA 2023; 260:453-466. [PMID: 35767110 DOI: 10.1007/s00709-022-01786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.
Collapse
Affiliation(s)
- Roma Pandey
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, 201310, India
| | - Ashish Sharma
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, 201310, India
| | - Hemant Sood
- Department of Biotechnology & Bioinformatics, Jaypee University of IT, Solan, HP, 173215, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
23
|
Zhang H, Zeng N, Feng Q, Xu S, Cheng J, Wang J, Zhan X. New mechanistic insights into PAHs transport across wheat root cell membrane: Evidence for ABC transporter mediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160251. [PMID: 36402320 DOI: 10.1016/j.scitotenv.2022.160251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly carcinogenic organic pollutants. Our previous results revealed that the active uptake of PAHs by plant roots is performed through H+/PAHs co-transport. However, the proteins and mechanisms of co-transport of PAHs remain unknown. We hypothesized that ABC transporters are involved in PAHs co-transport via the roots. We found a total of 47 ABC transporters with alkalinity and hydrophobicity which were up-regulated or newly expressed in the wheat roots after phenanthrene exposure. And the concentration of ABC transporters rose. There was a positive relationship between the concentration of phenanthrene and ABC transporter expression in the wheat roots. Additionally, the trend observed in the ABC transporters expression was also found in the gene expression. With energies below -6 kcal mol-1, a stable docking conformation formed between ABC transporters and PAHs. π-π stacking and van der Waals force bound PAHs to ABCB or ABCG. The binding strength of ABCB subfamily proteins with homodimers is stronger than that of ABCG subfamily proteins with single molecules. ABC transporters may transport PAHs by forming a dimer-shaped pocket, translocating it into cells, then opening it within the cells, to release the bound PAHs. These results contributed to our understanding of how ABC transporters aid plant root uptake of PAHs.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Shuangyuan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jian Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
24
|
Jiang Z, Shao Q, Li Y, Cao B, Li J, Ren Z, Qu J, Zhang Y. Noval bio-organic fertilizer containing Arthrobacter sp. DNS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. CHEMOSPHERE 2023; 313:137575. [PMID: 36563729 DOI: 10.1016/j.chemosphere.2022.137575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Herbicide atrazine restricts nutrient accumulation and thus inhibits the growth of sensitive crops. The application of organic fertilizer is a common measure that contributes to modulating abiotic tolerance of crops and providing nutrients, but its advantages in combination with atrazine degrading microorganisms as bio-organic fertilizer to alleviate atrazine stress on sensitive crops and the associated mechanisms are unknown. We investigated the beneficial effects of organic and bio-organic fertilizer (named DNBF10) containing Arthrobacter sp. DNS10 applications on growth, leaf nitrogen accumulation, root surface structure and root physiological properties of soybean seedlings exposed to 20 mg kg-1 atrazine in soil. Compared with organic fertilizer, bio-organic fertilizer DNBF10 exhibited more reduction in soil atrazine residue and plant atrazine accumulation, as well as alleviation in atrazine-induced root oxidative stress and damaged cells of soybean roots. Transcriptome analysis revealed that DNBF10 application enhanced nitrogen utilization by improving the expression of genes involved in nitrogen metabolism in soybean leaves. Besides, genes expression of cytochrome P450 and ABC transporters involved in atrazine detoxification and transport in soybean leaves were also down-regulated by DNBF10 to diminish phytotoxicity of atrazine to soybean seedlings. These results illustrate the molecular mechanism by which the application of DNBF10 alleviates soybean seedlings growth under atrazine stress, providing a step forward for mitigate the atrazine induced inhibition on soybean seedlings growth through decreasing atrazine residues as well as enhancing damaged root repair and nitrogen accumulation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Shao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheyi Ren
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
25
|
Sun N, Li C, Jiang X, Gai Y. Transcriptomic Insights into Functions of LkABCG36 and LkABCG40 in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:227. [PMID: 36678941 PMCID: PMC9860546 DOI: 10.3390/plants12020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) play crucial physiological roles in plants, such as being involved in the growth and development of organs, nutrient acquisition, response to biotic and abiotic stress, disease resistance, and the interaction of the plant with its environment. The ABCG subfamily of proteins are involved in the process of plant vegetative organ development. In contrast, the functions of the ABCG36 and ABCG40 transporters have received considerably less attention. Here, we investigated changes in the transcriptomic data of the stem tissue of transgenic tobacco (Nicotiana tabacum) with LkABCG36 and LkABCG40 (Larix kaempferi) overexpression, and compared them with those of the wild type (WT). Compared with the WT, we identified 1120 and 318 differentially expressed genes (DEGs) in the LkABCG36 and LkABCG40 groups, respectively. We then annotated the function of the DEGs against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results showed enrichment in cell wall biogenesis and hormone signal transduction functional classes in transgenic LkABCG36 tobacco. In transgenic LkABCG40 tobacco, the enrichment was involved in metabolic and biosynthetic processes, mainly those related to environmental adaptation. In addition, among these DEGs, many auxin-related genes were significantly upregulated in the LkABCG36 group, and we found key genes involved in environmental adaptation in the LkABCG40 group, including an encoding resistance protein and a WRKY transcription factor. These results suggest that LkABCG36 and LkABCG40 play important roles in plant development and environmental adaptation. LkABCG36 may promote plant organ growth and development by increasing auxin transport, whereas LkABCG40 may inhibit the expression of WRKY to improve the resistance of transgenic tobacco. Our results are beneficial to researchers pursuing further study of the functions of ABCG36 and ABCG40.
Collapse
Affiliation(s)
- Nan Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Can Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
26
|
Sariñana-Aldaco O, Benavides-Mendoza A, Robledo-Olivo A, González-Morales S. The Biostimulant Effect of Hydroalcoholic Extracts of Sargassum spp. in Tomato Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3180. [PMID: 36432908 PMCID: PMC9697018 DOI: 10.3390/plants11223180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Currently, the use of biostimulants in agriculture is a tool for mitigating certain environmental stresses. Brown algae extracts have become one of the most important categories of biostimulants in agriculture, and are derived from the different uses and positive results obtained under optimal and stressful conditions. This study aimed to examine the efficacy of a foliar application of a hydroalcoholic extract of Sargassum spp. and two controls (a commercial product based on Ascophyllum nodosum and distilled water) with regard to growth, the antioxidant system, and the expression of defense genes in tomato seedlings grown in nonsaline (0 mM NaCl) and saline (100 mM NaCl) conditions. In general, the results show that the Sargassum extract increased the growth of the seedlings at the end of the experiment (7.80%) compared to the control; however, under saline conditions, it did not modify the growth. The Sargassum extract increased the diameter of the stem at the end of the experiment in unstressed conditions by 14.85% compared to its control and in stressful conditions by 16.04% compared to its control. Regarding the accumulation of total fresh biomass under unstressed conditions, the Sargassum extract increased it by 19.25% compared to its control, and the accumulation of total dry biomass increased it by 18.11% compared to its control. Under saline conditions, the total of fresh and dry biomass did not change. Enzymatic and nonenzymatic antioxidants increased with NaCl stress and the application of algal products (Sargassum and A. nodosum), which was positively related to the expression of the defense genes evaluated. Our results indicate that the use of the hydroalcoholic extract of Sargassum spp. modulated different physiological, metabolic, and molecular processes in tomato seedlings, with possible synergistic effects that increased tolerance to salinity.
Collapse
Affiliation(s)
- Oscar Sariñana-Aldaco
- Program in Protected Agriculture, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | | | - Armando Robledo-Olivo
- Food Science & Technology Department, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| | - Susana González-Morales
- National Council for Science and Technology (CONACyT), Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| |
Collapse
|
27
|
An Identification and Expression Analysis of the ABCG Genes Related to Benzaldehyde Transportation among Three Prunus Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plants of Prunus mostly bloom in early spring, and the flowers of various species possess their individual floral scent characteristics; Prunus mume, especially, can volatilize a large amount of benzenoid compounds into the air during the flowering phase. In order to elucidate the molecular basis of the differences in the volatile capacity of aromatic substances among Prunus flowers, the endogenous and the headspace volatile components and the expression of ABCG genes were studied among P. mume, P. armeniaca, and P. persica. We detected the floral components in the three species by gas chromatography-mass spectrometry (GC-MS), and we found that benzaldehyde was the key component. Meanwhile, the volatilization efficiency of benzaldehyde in P. mume and P. armeniaca were much higher than that in P. persica. Furthermore, 130, 135, and 133 ABC family members from P. mume, P. armeniaca, and P. persica were identified, respectively. WGCNA analysis demonstrated that candidate ABCG genes were positively correlated with benzaldehyde volatilization efficiency. Moreover, quantitative Real-time PCR indicated that ABCG17 was more likely to be involved in the transmembrane transport of benzaldehyde. This study aimed to provide a theoretical basis for elucidating the transmembrane transport of benzaldehyde and to further the valuable information for fragrant flower breeding in Prunus.
Collapse
|
28
|
Wei YQ, Yuan JJ, Xiao CC, Li GX, Yan JY, Zheng SJ, Ding ZJ. RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:979-994. [PMID: 35274464 DOI: 10.1111/jipb.13247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.
Collapse
Affiliation(s)
- Yun Qi Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
New Insights into Evolution of the ABC Transporter Family in Mesostigma viride, a Unicellular Charophyte Algae. Curr Issues Mol Biol 2022; 44:1646-1660. [PMID: 35723370 PMCID: PMC9164057 DOI: 10.3390/cimb44040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.
Collapse
|
30
|
Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int J Mol Sci 2022; 23:ijms23031734. [PMID: 35163656 PMCID: PMC8836122 DOI: 10.3390/ijms23031734] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.
Collapse
|
31
|
Wang P, Yang L, Sun J, Yang Y, Qu Y, Wang C, Liu D, Huang L, Cui X, Liu Y. Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 12:752683. [PMID: 35069616 PMCID: PMC8766989 DOI: 10.3389/fpls.2021.752683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Collapse
Affiliation(s)
- Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jialing Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| |
Collapse
|
32
|
Quantitative Phosphoproteomics of cipk3/ 9/ 23/ 26 Mutant and Wild Type in Arabidopsis thaliana. Genes (Basel) 2021; 12:genes12111759. [PMID: 34828365 PMCID: PMC8623713 DOI: 10.3390/genes12111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
CBL-interacting protein kinases 3/9/23/26 (CIPK3/9/23/26) are central regulation components of magnesium ion homeostasis. CBL2/3 interacts with CIPK3/9/23/26, which phosphorylates their downstream targets, suggesting that protein phosphorylation is a key factor influencing the maintenance of cellular magnesium homeostasis in higher plants. The cipk3/9/23/26 quadruple mutant is very sensitive to high levels of magnesium. In this study, TMT quantitative phosphoproteomics were used to compare the global variations in phosphoproteins in wild type and cipk3/9/23/26 quadruple mutant seedlings of Arabidopsis thaliana, and 12,506 phosphorylation modification sites on 4537 proteins were identified, of which 773 phosphorylated proteins exhibited significant variations at the phosphorylation level under magnesium sensitivity. Subsequently, we used bioinformatics methods to systematically annotate and analyze the data. Certain transporters and signaling components that could be associated with magnesium sensitivity, such as ATP-binding cassette transporters and mitogen-activated protein kinases, were identified. The results of this study further our understanding of the molecular mechanisms of CIPK3/9/23/26 in mediating magnesium homeostasis.
Collapse
|
33
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
34
|
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. PLANTA 2021; 254:45. [PMID: 34365553 DOI: 10.1007/s00425-021-03693-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses. Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Thien Quoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
35
|
Liao Y, Zhang Q, Cui R, Xu X, Zhu F, Cheng Q, Li X. High-Throughput Sequencing Reveals the Regulatory Networks of Transcriptome and Small RNAs During the Defense Against Marssonina brunnea in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:719549. [PMID: 34567031 PMCID: PMC8456019 DOI: 10.3389/fpls.2021.719549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
MicroRNAs are implicated in the adjustment of gene expression in plant response to biotic stresses. However, the regulatory networks of transcriptome and miRNAs are still poorly understood. In the present study, we ascertained the induction of genes for small RNA biosynthesis in poplar defense to a hemibiotrophic fungus Marssonina brunnea and afterward investigated the molecular regulatory networks by performing comprehensive sequencing analysis of mRNAs and small RNAs in M. brunnea-inoculated leaves. Differentially expressed genes in M. brunnea-infected poplar are mainly involved in secondary metabolisms, phytohormone pathways, the recognition of pathogens, and MAPK pathway in the plant, with real-time quantitative PCR (qPCR) validating the mRNA-seq results. Furthermore, differentially expressed miRNAs, such as MIR167_1-6, MIR167_1-12, MIR171_2-3, MIR395-13, MIR396-3, MIR396-16, MIR398-8, and MIR477-6, were identified. Through psRobot and TargetFinder programs, MIR167-1-6, MIR395-13, MIR396-3, MIR396-16, and MIR398-8 were annotated to modulate the expression of genes implicated in transportation, signaling, and biological responses of phytohormones and activation of antioxidants for plant immunity. Besides, validated differentially expressed genes involved in lignin generation, which were phenylalanine ammonia-lyase, ferulate-5-hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase 11, were selected as targets for the identification of novel miRNAs. Correspondingly, novel miRNAs, such as Novel MIR8567, Novel MIR3228, Novel MIR5913, and Novel MIR6493, were identified using the Mireap online program, which functions in the transcriptional regulation of lignin biosynthesis for poplar anti-fungal response. The present study underlines the roles of miRNAs in the regulation of transcriptome in the anti-fungal response of poplar and provides a new idea for molecular breeding of woody plants.
Collapse
|