1
|
Mani S, Garifallou J, Kim SJ, Simoni MK, Huh DD, Gordon SM, Mainigi M. Uterine macrophages and NK cells exhibit population and gene-level changes after implantation but maintain pro-invasive properties. Front Immunol 2024; 15:1364036. [PMID: 38566989 PMCID: PMC10985329 DOI: 10.3389/fimmu.2024.1364036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. Methods With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. Results We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. Conclusions This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.
Collapse
Affiliation(s)
- Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - James Garifallou
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Se-jeong Kim
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K. Simoni
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- National Science Foundation (NSF) Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Doll JR, Moreno-Fernandez ME, Stankiewicz TE, Wayland JL, Wilburn A, Weinhaus B, Chougnet CA, Giordano D, Cappelletti M, Presicce P, Kallapur SG, Salomonis N, Tilburgs T, Divanovic S. BAFF and APRIL counterregulate susceptibility to inflammation-induced preterm birth. Cell Rep 2023; 42:112352. [PMID: 37027297 PMCID: PMC10551044 DOI: 10.1016/j.celrep.2023.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.
Collapse
Affiliation(s)
- Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Wayland
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Adrienne Wilburn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Benjamin Weinhaus
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Monica Cappelletti
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pietro Presicce
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Suhas G Kallapur
- Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
The Regulators of Human Endometrial Stromal Cell Decidualization. Biomolecules 2022; 12:biom12091275. [PMID: 36139114 PMCID: PMC9496326 DOI: 10.3390/biom12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Several factors are important for implantation and subsequent placentation in the endometrium, including immunity, angiogenesis, extracellular matrix, glucose metabolism, reactive oxidative stress, and hormones. The involvement or abnormality of these factors can impair canonical decidualization. Unusual decidualization can lead to perinatal complications, such as disruption of trophoblast invasion. Drastic changes in the morphology and function of human endometrial stromal cells (hESCs) are important for decidualization of the human endometrium; hESCs are used to induce optimal morphological and functional decidualization in vitro because they contain estrogen and progesterone receptors. In this review, we will focus on the studies that have been conducted on hESC decidualization, including the results from our laboratory.
Collapse
|
4
|
Whettlock EM, Woon EV, Cuff AO, Browne B, Johnson MR, Male V. Dynamic Changes in Uterine NK Cell Subset Frequency and Function Over the Menstrual Cycle and Pregnancy. Front Immunol 2022; 13:880438. [PMID: 35784314 PMCID: PMC9245422 DOI: 10.3389/fimmu.2022.880438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Uterine natural killer cells (uNK) play an important role in promoting successful pregnancy by regulating trophoblast invasion and spiral artery remodelling in the first trimester. Recently, single-cell RNA sequencing (scRNAseq) on first-trimester decidua showed that uNK can be divided into three subsets, which may have different roles in pregnancy. Here we present an integration of previously published scRNAseq datasets, together with novel flow cytometry data to interrogate the frequency, phenotype, and function of uNK1–3 in seven stages of the reproductive cycle (menstrual, proliferative, secretory phases of the menstrual cycle; first, second, and third trimester; and postpartum). We found that uNK1 and uNK2 peak in the first trimester, but by the third trimester, the majority of uNK are uNK3. All three subsets are most able to degranulate and produce cytokines during the secretory phase of the menstrual cycle and express KIR2D molecules, which allow them to interact with HLA-C expressed by placental extravillous trophoblast cells, at the highest frequency during the first trimester. Taken together, our findings suggest that uNK are particularly active and able to interact with placental cells at the time of implantation and that uNK1 and uNK2 may be particularly involved in these processes. Our findings are the first to establish how uNK frequency and function change dynamically across the healthy reproductive cycle. This serves as a platform from which the relationship between uNK function and impaired implantation and placentation can be investigated. This will have important implications for the study of subfertility, recurrent miscarriage, pre-eclampsia, and pre-term labour.
Collapse
|
5
|
Favaro RR, Phillips K, Delaunay-Danguy R, Ujčič K, Markert UR. Emerging Concepts in Innate Lymphoid Cells, Memory, and Reproduction. Front Immunol 2022; 13:824263. [PMID: 35774779 PMCID: PMC9237338 DOI: 10.3389/fimmu.2022.824263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Members of the innate immune system, innate lymphoid cells (ILCs), encompass five major populations (Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells) whose functions include defense against pathogens, surveillance of tumorigenesis, and regulation of tissue homeostasis and remodeling. ILCs are present in the uterine environment of humans and mice and are dynamically regulated during the reproductive cycle and pregnancy. These cells have been repurposed to support pregnancy promoting maternal immune tolerance and placental development. To accomplish their tasks, immune cells employ several cellular and molecular mechanisms. They have the capacity to remember a previously encountered antigen and mount a more effective response to succeeding events. Memory responses are not an exclusive feature of the adaptive immune system, but also occur in innate immune cells. Innate immune memory has already been demonstrated in monocytes/macrophages, neutrophils, dendritic cells, and ILCs. A population of decidual NK cells characterized by elevated expression of NKG2C and LILRB1 as well as a distinctive transcriptional and epigenetic profile was found to expand during subsequent pregnancies in humans. These cells secrete high amounts of interferon-γ and vascular endothelial growth factor likely favoring placentation. Similarly, uterine ILC1s in mice upregulate CXCR6 and expand in second pregnancies. These data provide evidence on the development of immunological memory of pregnancy. In this article, the characteristics, functions, and localization of ILCs are reviewed, emphasizing available data on the uterine environment. Following, the concept of innate immune memory and its mechanisms, which include epigenetic changes and metabolic rewiring, are presented. Finally, the emerging role of innate immune memory on reproduction is discussed. Advances in the comprehension of ILC functions and innate immune memory may contribute to uncovering the immunological mechanisms underlying female fertility/infertility, placental development, and distinct outcomes in second pregnancies related to higher birth weight and lower incidence of complications.
Collapse
|
6
|
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun 2022; 13:1252. [PMID: 35292627 PMCID: PMC8924260 DOI: 10.1038/s41467-022-28663-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles K Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Young
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Lash GE. Uterine Natural Killer Cells and Implantation. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s2661318221500195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decidual leukocytes make up approximately 30% of all decidual stromal cells in early pregnancy, of which 70% are uterine natural killer (uNK) cells. uNK cells are phenotypically distinct from peripheral blood NK cells, being CD56[Formula: see text]CD16[Formula: see text]. A recent single-cell sequencing project of the decidua identified three subsets of uNK cells, but we are yet to determine how they differ functionally. Several roles for uNK cells in implantation are starting to emerge including biosensing of poor-quality embryos, killing of bacteria infected trophoblast, spiral artery remodeling, and regulation of trophoblast invasion. Altered numbers of uNK cells have been identified in several pathological conditions, but whether this is causative of the condition is currently unclear.
Collapse
Affiliation(s)
- Gendie E. Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
9
|
Role of Natural Killer Cells during Pregnancy and Related Complications. Biomolecules 2022; 12:biom12010068. [PMID: 35053216 PMCID: PMC8773865 DOI: 10.3390/biom12010068] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
A high number of leucocytes reside in the human endometrium and are distributed differentially during the menstrual cycle and pregnancy. During early pregnancy, decidual natural killer (dNK) cells are the most common type of natural killer (NK) cells in the uterus. The increase in the number of uterine NK (uNK) cells during the mid-secretory phase of the menstrual cycle, followed by further increase of dNK cells in early pregnancy, has heightened interest in their involvement during pregnancy. Extensive research has revealed various roles of dNK cells during pregnancy including the formation of new blood vessels, migration of trophoblasts, and immunological tolerance. The present review article is focused on the significance of NK cells during pregnancy and their role in pregnancy-related diseases. The article will provide an in-depth review of cellular and molecular interactions during pregnancy and related disorders, with NK cells playing a pivotal role. Moreover, this study will help researchers to understand the physiology of normal pregnancy and related complications with respect to NK cells, so that future research work can be designed to alleviate the complications.
Collapse
|
10
|
Fraser R, Zenclussen AC. Killer Timing: The Temporal Uterine Natural Killer Cell Differentiation Pathway and Implications for Female Reproductive Health. Front Endocrinol (Lausanne) 2022; 13:904744. [PMID: 35832424 PMCID: PMC9271944 DOI: 10.3389/fendo.2022.904744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the predominant maternal uterine immune cell component, and they densely populate uterine mucosa to promote key changes in the post-ovulatory endometrium and in early pregnancy. It is broadly accepted that (a) immature, inactive endometrial NK (eNK) cells in the pre-ovulatory endometrium become activated and transition into decidual NK (dNK) cells in the secretory stage, peri-implantation endometrium, and continue to mature into early pregnancy; and (b) that secretory-stage and early pregnancy dNK cells promote uterine vascular growth and mediate trophoblast invasion, but do not exert their killing function. However, this may be an overly simplistic view. Evidence of specific dNK functional killer roles, as well as opposing effects of dNK cells on the uterine vasculature before and after conception, indicates the presence of a transitory secretory-stage dNK cell (s-dNK) phenotype with a unique angiodevelopmental profile during the peri-implantation period, that is that is functionally distinct from the angiomodulatory dNK cells that promote vessel destabilisation and vascular cell apoptosis to facilitate uterine vascular changes in early pregnancy. It is possible that abnormal activation and differentiation into the proposed transitory s-dNK phenotype may have implications in uterine pathologies ranging from infertility to cancer, as well as downstream effects on dNK cell differentiation in early pregnancy. Further, dysregulated transition into the angiomodulatory dNK phenotype in early pregnancy will likely have potential repercussions for adverse pregnancy outcomes, since impaired dNK function is associated with several obstetric complications. A comprehensive understanding of the uterine NK cell temporal differentiation pathway may therefore have important translational potential due to likely NK phenotypic functional implications in a range of reproductive, obstetric, and gynaecological pathologies.
Collapse
Affiliation(s)
- Rupsha Fraser
- Centre for Reproductive Health, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rupsha Fraser,
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| |
Collapse
|
11
|
Kanter JR, Mani S, Gordon SM, Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. F&S REVIEWS 2021; 2:265-286. [PMID: 35756138 PMCID: PMC9232176 DOI: 10.1016/j.xfnr.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Objective While immune cells were originally thought to only play a role in maternal tolerance of the semiallogenic fetus, an active role in pregnancy establishment is becoming increasingly apparent. Uterine natural killer (uNK) cells are of specific interest because of their cyclic increase in number during the window of implantation. As a distinct entity from their peripheral blood counterparts, understanding the biology and function of uNK cells will provide the framework for understanding their role in early pregnancy establishment and adverse pregnancy outcomes. Evidence Review This review discusses unique uNK cell characteristics and presents clinical implications resulting from their dysfunction. We also systematically present existing knowledge about uNK cell function in three processes critical for successful human embryo implantation and placentation: stromal cell decidualization, spiral artery remodeling, and extravillous trophoblast invasion. Finally, we review the features of uNK cells that could help guide future investigations. Results It is clear the uNK cells are intimately involved in multiple facets of early pregnancy. This is accomplished directly, through the secretion of factors that regulate stromal cells and trophoblast function; and indirectly, via interaction with other maternal cell types present at the maternal-fetal interface. Current work also suggests that uNK cells are a heterogenous population, with subsets that potentially accomplish different functions. Conclusion Establishment of pregnancy through successful embryo implantation and placentation requires crosstalk between multiple maternal cell types and invading fetal trophoblast cells. Defects in this process have been associated with multiple adverse perinatal outcomes including hypertensive disorders of pregnancy, placenta accreta, and recurrent miscarriage though the mechanism underlying development of these defects remain unclear. Abnormalities in NK cell number and function which would disrupt physiological maternal-fetal crosstalk, could play a critical role in abnormal implantation and placentation. It is therefore imperative to dissect the unique physiological role of uNK cells in pregnancy and use this knowledge to inform clinical practice by determining how uNK cell dysfunction could lead to reproductive failure.
Collapse
Affiliation(s)
- Jessica R. Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Scott M. Gordon
- Division of Neonatology, Children’s Hospital of Philadelphia, Pennsylvania
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Bi J, Cheng C, Zheng C, Huang C, Zheng X, Wan X, Chen YH, Tian Z, Sun H. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. SCIENCE ADVANCES 2021; 7:eabi6515. [PMID: 34524845 PMCID: PMC8443187 DOI: 10.1126/sciadv.abi6515] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maturation process of NK cells determines their functionality during which IL-15 plays a critical role. However, very few checkpoints specifically targeting this process have been discovered. Here, we report that TIPE2 expression gradually increased during NK cell ontogenesis correlating to their maturation stages in both mice and humans. NK-specific TIPE2 deficiency increased mature NK cells in mice, and these TIPE2-deficient NK cells exhibited enhanced activation, cytotoxicity, and IFN-γ production upon stimulation and enhanced response to IL-15 for maturation. Moreover, TIPE2 suppressed IL-15–triggered mTOR activity in both human and murine NK cells. Consequently, blocking mTOR constrained the effect of TIPE2 deficiency on NK cell maturation in response to IL-15. Last, NK-specific TIPE2-deficient mice were resistant to tumor growth in vivo. Our results uncover a potent checkpoint in NK cell maturation and antitumor immunity in both mice and humans, suggesting a promising approach of targeting TIPE2 for NK cell–based immunotherapies.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author. (J.B.); (H.S.)
| | - Chen Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chaoyue Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing 100864, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
- Corresponding author. (J.B.); (H.S.)
| |
Collapse
|
13
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
16
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
17
|
de Mendonça Vieira R, Meagher A, Crespo ÂC, Kshirsagar SK, Iyer V, Norwitz ER, Strominger JL, Tilburgs T. Human Term Pregnancy Decidual NK Cells Generate Distinct Cytotoxic Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:3149-3159. [PMID: 32376646 DOI: 10.4049/jimmunol.1901435] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Decidual NK cells (dNK) are the main lymphocyte population in early pregnancy decidual mucosa. Although dNK decrease during pregnancy, they remain present in decidual tissues at term. First trimester dNK facilitate trophoblast invasion, provide protection against infections, and were shown to have many differences in their expression of NKRs, cytokines, and cytolytic capacity compared with peripheral blood NK cells (pNK). However, only limited data are available on the phenotype and function of term pregnancy dNK. In this study, dNK from human term pregnancy decidua basalis and decidua parietalis tissues were compared with pNK and first trimester dNK. Profound differences were found, including: 1) term pregnancy dNK have an increased degranulation response to K562 and PMA/ionomycin but lower capacity to respond to human CMV-infected cells; 2) term pregnancy dNK are not skewed toward recognition of HLA-C, as was previously shown for first trimester dNK; and 3) protein and gene expression profiles identified multiple differences between pNK, first trimester, and term pregnancy dNK, suggesting term pregnancy dNK are a distinct type of NK cells. Understanding the role of dNK throughout pregnancy is of high clinical relevance for studies aiming to prevent placental inflammatory disorders as well as maternal-to-fetal transmission of pathogens.
Collapse
Affiliation(s)
| | - Ava Meagher
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ângela C Crespo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Sarika K Kshirsagar
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Vidya Iyer
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA 02111.,Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA 02111.,Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138; .,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
18
|
The phenotype of decidual CD56+ lymphocytes is influenced by secreted factors from decidual stromal cells but not macrophages in the first trimester of pregnancy. J Reprod Immunol 2020; 138:103082. [PMID: 31982613 DOI: 10.1016/j.jri.2020.103082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/23/2022]
Abstract
During the first trimester of pregnancy the decidua is comprised of decidual stromal cells (DSC), invading fetal trophoblast cells and maternal leukocytes, including decidual natural killer (dNK) cells and macrophages. dNK cells are distinct from peripheral blood NK cells and have a role in regulating trophoblast invasion and spiral artery remodelling. The unique phenotype of dNK cells results from the decidual environment in which they reside, however the interaction and influence of other cells in the decidua on dNK phenotype is unknown. We isolated first trimester DSC and decidual macrophages and investigated the effect that DSC and decidual macrophage secreted factors have on CD56+ decidual lymphocyte receptor expression and cytokine secretion (including dNK cells). We report that DSC secreted factors induce the secretion of the cytokines IL-8 and IL-6 from first trimester CD56+ cells. However, neither DSC nor decidual macrophage secreted factors changed CD56+ cell receptor expression. These results suggest that secreted factors from DSC influence CD56+ decidual lymphocytes during the first trimester of pregnancy and therefore may play a role in regulating the unique phenotype and function of dNK cells during placentation.
Collapse
|
19
|
Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2017; 16:310-20. [PMID: 27121652 DOI: 10.1038/nri.2016.34] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells have long been considered to be a homogenous population of innate lymphocytes with limited phenotypic and functional diversity. However, recent findings have revealed that these cells comprise a large number of distinct populations with diverse characteristics. Some of these characteristics may relate to their developmental origin, and others represent differences in differentiation that are influenced by factors such as tissue localization and imprints by viral infections. In this Review, we provide a comprehensive overview of the emerging knowledge about the development, differentiation and function of human NK cell populations, with a particular focus on NK cells in peripheral tissues.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
20
|
Allan DSJ, Cerdeira AS, Ranjan A, Kirkham CL, Aguilar OA, Tanaka M, Childs RW, Dunbar CE, Strominger JL, Kopcow HD, Carlyle JR. Transcriptome analysis reveals similarities between human blood CD3 - CD56 bright cells and mouse CD127 + innate lymphoid cells. Sci Rep 2017; 7:3501. [PMID: 28615725 PMCID: PMC5471261 DOI: 10.1038/s41598-017-03256-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
For many years, human peripheral blood natural killer (NK) cells have been divided into functionally distinct CD3− CD56bright CD16− and CD3− CD56dim CD16+ subsets. Recently, several groups of innate lymphoid cells (ILC), distinct from NK cells in development and function, have been defined in mouse. A signature of genes present in mouse ILC except NK cells, defined by Immunological Genome Project studies, is significantly over-represented in human CD56bright cells, by gene set enrichment analysis. Conversely, the signature genes of mouse NK cells are enriched in human CD56dim cells. Correlations are based upon large differences in expression of a few key genes. CD56bright cells show preferential expression of ILC-associated IL7R (CD127), TNFSF10 (TRAIL), KIT (CD117), IL2RA (CD25), CD27, CXCR3, DPP4 (CD26), GPR183, and MHC class II transcripts and proteins. This could indicate an ontological relationship between human CD56bright cells and mouse CD127+ ILC, or conserved networks of transcriptional regulation. In line with the latter hypothesis, among transcription factors known to impact ILC or NK cell development, GATA3, TCF7 (TCF-1), AHR, SOX4, RUNX2, and ZEB1 transcript levels are higher in CD56bright cells, while IKZF3 (AIOLOS), TBX21 (T-bet), NFIL3 (E4BP4), ZEB2, PRDM1 (BLIMP1), and RORA mRNA levels are higher in CD56dim cells.
Collapse
Affiliation(s)
- David S J Allan
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ana Sofia Cerdeira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | - Anuisa Ranjan
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christina L Kirkham
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Oscar A Aguilar
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Miho Tanaka
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Richard W Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Hernan D Kopcow
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - James R Carlyle
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Emerging role for dysregulated decidualization in the genesis of preeclampsia. Placenta 2017; 60:119-129. [PMID: 28693893 DOI: 10.1016/j.placenta.2017.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/10/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022]
Abstract
In normal human placentation, uterine invasion by trophoblast cells and subsequent spiral artery remodeling depend on cooperation among fetal trophoblasts and maternal decidual, myometrial, immune and vascular cells in the uterine wall. Therefore, aberrant function of anyone or several of these cell-types could theoretically impair placentation leading to the development of preeclampsia. Because trophoblast invasion and spiral artery remodeling occur during the first half of pregnancy, the molecular pathology of fetal placental and maternal decidual tissues following delivery may not be informative about the genesis of impaired placentation, which transpired months earlier. Therefore, in this review, we focus on the emerging prospective evidence supporting the concept that deficient or defective endometrial maturation in the late secretory phase and during early pregnancy, i.e., pre-decidualization and decidualization, respectively, may contribute to the genesis of preeclampsia. The first prospectively-acquired data directly supporting this concept were unexpectedly revealed in transcriptomic analyses of chorionic villous samples (CVS) obtained during the first trimester of women who developed preeclampsia 5 months later. Additional supportive evidence arose from investigations of Natural Killer cells in first trimester decidua from elective terminations of women with high resistance uterine artery indices, a surrogate for deficient trophoblast invasion. Last, circulating insulin growth factor binding protein-1, which is secreted by decidual stromal cells was decreased during early pregnancy in women who developed preeclampsia. We conclude this review by making recommendations for further prospectively-designed studies to corroborate the concept of endometrial antecedents of preeclampsia. These studies could also enable identification of women at increased risk for developing preeclampsia, unveil the molecular mechanisms of deficient or defective (pre)decidualization, and lead to preventative strategies designed to improve (pre)decidualization, thereby reducing risk for preeclampsia development.
Collapse
|
22
|
Aksu S, Çalışkan E, Cakiroglu Y. Evaluation of endometrial natural killer cell expression of CD4, CD103, and CD16 cells in women with unexplained infertility. J Reprod Immunol 2016; 117:70-5. [PMID: 27505845 DOI: 10.1016/j.jri.2016.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether natural killer cell (NK) concentrations in the mid-secretory endometrial tissue of women with unexplained infertility differ from those in the mid-secretory endometrial tissue of fertile women. METHODS This study was conducted with 22 patients with unexplained infertility caused by unsuccessful ovulation induced with gonadotrophins and 12 healthy fertile women, who formed a control group. Mid-secretory endometrial tissue samples were obtained with a Pipelle catheter, and the endometrial NK cell phenotypes were determined by flow cytometry. RESULTS The median number of CD4+ cells in the endometrium was significantly lower in women with unexplained infertility compared with in the fertile controls (3.31 vs. 5.81; p=0.02). The CD4(+)/CD8(+) cell ratio in the unexplained-infertility group was significantly lower than that in the control group (0.42 vs. 0.76, p=0.01). The median number of CD103(+) cells in the endometrium of the infertile group was significantly lower than that in the endometrium of the control group (4.40 vs. 6.73, p=0.02). The median number of CD16(+) cells was significantly higher in infertile women than in control women (0.12 vs. 0.001, p=0.01). CONCLUSIONS Significant reductions in the numbers of CD4(+) and CD103(+) cells as well as in the CD4(+)/CD8(+) ratio but an increased number of CD16(+) cells in the endometrium of infertile women suggest that disordered NK cell activity may be a contributor to the etiology of unexplained infertility.
Collapse
|
23
|
Schnabel A, Blois SM, Meint P, Freitag N, Ernst W, Barrientos G, Conrad ML, Rose M, Seelbach-Göbel B. Elevated systemic galectin-1 levels characterize HELLP syndrome. J Reprod Immunol 2016; 114:38-43. [PMID: 26956510 DOI: 10.1016/j.jri.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
Galectin-1 (gal-1), a member of a family of conserved β-galactoside-binding proteins, has been shown to exert a key role during gestation. Though gal-1 is expressed at higher levels in the placenta from HELLP patients, it is still poorly understood whether systemic gal-1 levels also differ in HELLP patients. In the present study, we evaluated the systemic expression of gal-1, together with the angiogenic factors, placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) in conjunction with HELLP syndrome severity. Systemic levels of gal-1 and sFlt-1 were elevated in patients with both early- and late-onset HELLP syndrome as compared to healthy controls. In contrast, peripheral PlGF levels were decreased in early- and late-onset HELLP. A positive correlation between systemic gal-1 levels and sFlt-1/PlGF ratios was found in early onset HELLP patients. Our results show that HELLP syndrome is associated with increased circulating levels of gal-1; integrating systemic gal-1 measurements into the diagnostic analyses of pregnant women may provide more effective prediction of HELLP syndrome development.
Collapse
Affiliation(s)
- Annegret Schnabel
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany.
| | - Sandra M Blois
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Peter Meint
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| | - Nancy Freitag
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Ernst
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| | - Gabriela Barrientos
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie L Conrad
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Seelbach-Göbel
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
25
|
Gibson DA, Greaves E, Critchley HOD, Saunders PTK. Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2. Hum Reprod 2015; 30:1290-301. [PMID: 25820695 PMCID: PMC4498222 DOI: 10.1093/humrep/dev067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
STUDY QUESTION Does intrauterine biosynthesis of estrogen play an important role in early pregnancy by altering the function of uterine natural killer (uNK) cells? SUMMARY ANSWER Estrogens directly regulate the function of human uNK cells by increasing uNK cell migration and secretion of uNK cell-derived chemokine (C-C motif) ligand 2 (CCL2) that critically facilitates uNK-mediated angiogenesis. WHAT IS KNOWN ALREADY uNK cells are a phenotypically distinct population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. Recently we discovered that decidualisation of human endometrial stromal cells results in the generation of an estrogen-rich microenvironment in areas of decidualised endometrium. We hypothesize that intrauterine biosynthesis of estrogens plays an important role in early pregnancy by altering the function of uNK cells. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human uNK cells which were isolated from first trimester human decidua (n = 32). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary uNK cells were isolated from first trimester human decidua using magnetic cell sorting. The impact of estrogens on uNK cell function was assessed. Isolated uNK cells were treated with estrone (E1, 10−8 M) or estradiol (E2, 10−8 M) alone or in combination with the anti-estrogen ICI 182 780 (ICI, 10−6 M). uNK cell motility was assessed by transwell migration assay and time-lapse microscopy. Expression of chemokine receptors was assessed by quantitative PCR (qPCR) and immunohistochemistry, and angiogenic factors were assessed by qPCR and cytokine array. Concentrations of CCL2 in supernatants were measured by enzyme-linked immunosorbent assay. Angiogenesis was assessed in a human endometrial endothelial cell network formation assay. MAIN RESULTS AND THE ROLE OF CHANCE Treatment with either E1 or E2 increased uNK cell migration (P = 0.0092 and P = 0.0063, respectively) compared with control. Co-administration of the anti-estrogen ICI blocked the effects of E1 and E2 on cell migration. Concentrations of C-X-C chemokine receptor type 4 (CXCR4) mRNA in uNK cells were increased by E2 treatment. The network formation assay revealed that conditioned media from uNK cells treated with E2 significantly increased human endometrial endothelial cell (HEEC) angiogenesis (P = 0.0029 versus control). Analysis of media from uNK cells treated with E2 using an antibody array identified CCL2 as the most abundant cytokine. Validation assays confirmed concentrations of CCL2 mRNA and protein were increased by E2 in uNK cells (P < 0.05 versus controls). Compared with the control, recombinant human CCL2 was found to increase HEEC network formation (P < 0.05) and neutralization of CCL2 in uNK conditioned media significantly decreased E2-dependent uNK-mediated network formation (P = 0.0006). LIMITATIONS, REASONS FOR CAUTION Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in vivo in humans. Primary human uNK cells were isolated from first trimester decidua at a range of gestations (8–12 weeks), which may be a source of variation. Primary human uNK cells from non-pregnant endometrium were not assessed and therefore the responses of uNK cells to E2 treatment described in this study may be distinct to uNK cells from first trimester decidua. WIDER IMPLICATIONS OF THE FINDINGS E2 is an essential regulator of reproductive competence. This study demonstrates a critical role for E2 in regulating cellular cross-talk within the endometrium during early pregnancy. We provide the first evidence that E2 directly regulates the function of human uNK cells by altering uNK cell migration and the secretion of uNK-derived angiogenic factors. We describe a novel mechanism of estrogen-dependent secretion of CCL2 which critically mediates uNK-dependent endometrial angiogenesis. Dysregulation of uNK cell function has been implicated in the aetiology of early implantation disorders and disorders of pregnancy. These novel findings provide unique insight into the regulation of uNK cell activity during the establishment of pregnancy in women and highlight key processes which may be targeted in future therapeutic strategies. STUDY FUNDING/COMPETING INTEREST(S) Studies undertaken in the authors' laboratory were supported by MRC Programme Grant G1100356/1 to P.T.K.S. The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- D A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - E Greaves
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - H O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - P T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
26
|
Tamblyn JA, Hewison M, Wagner CL, Bulmer JN, Kilby MD. Immunological role of vitamin D at the maternal-fetal interface. J Endocrinol 2015; 224:R107-21. [PMID: 25663707 DOI: 10.1530/joe-14-0642] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During pregnancy, immune activity is tightly regulated so that antimicrobial protection of the mother and fetus is balanced with the need for immune tolerance to prevent fetal rejection. In this setting, the maternal-fetal interface, in the form of the uterine decidua, provides a heterogeneous immune cell population with the potential to mediate diverse activities throughout pregnancy. Recent studies have suggested that vitamin D may be a key regulator of immune function during pregnancy, with the fetal-maternal interface representing a prominent target. Among its non-classical actions are potent immunomodulatory effects, including induction of antibacterial responses and modulation of T-lymphocytes to suppress inflammation and promote tolerogenesis. Thus, vitamin D may play a pivotal role in normal decidual immune function by promoting innate responses to infection, while simultaneously preventing an over-elaboration of inflammatory adaptive immunity. Research to date has focused upon the potential role of vitamin D in preventing infectious diseases such as tuberculosis, as well as possibly suppressing of autoimmune disease. Nevertheless, vitamin D may also influence facets of immune function not immediately associated with primary innate responses. This review summarises our current understanding of decidual immune function with respect to the vitamin D metabolism and signalling, and as to how this may be affected by variations in maternal vitamin D status. There has recently been much interest in vitamin D supplementation of pregnant women, but our knowledge of how this may influence the function of decidua remains limited. Further insight into the immunomodulatory actions of vitamin D during pregnancy will help shed light upon this.
Collapse
Affiliation(s)
- J A Tamblyn
- College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK
| | - M Hewison
- College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK
| | - C L Wagner
- College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK
| | - J N Bulmer
- College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK
| | - M D Kilby
- College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK College of Medical and Dental SciencesCentre for Women's and Children's HealthCollege of Medical and Dental SciencesCentre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Edgbaston, Birmingham B15 2TT, UKDepartments of PediatricsBiochemistry, and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USAReproductive and Vascular Biology GroupInstitute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UKFetal Medicine CentreBirmingham Women's Foundation Trust, Birmingham B15 2TG, UK
| |
Collapse
|
27
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
28
|
Rodriguez Garcia M, Patel MV, Shen Z, Fahey JV, Biswas N, Mestecky J, Wira CR. Mucosal Immunity in the Human Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Wang F, Tian Z, Wei H. Genomic expression profiling of NK cells in health and disease. Eur J Immunol 2014; 45:661-78. [PMID: 25476835 DOI: 10.1002/eji.201444998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
NK cells are important components of innate and adaptive immunity. Functionally, they play key roles in host defense against tumors and infectious pathogens. Within the past few years, genomic-scale experiments have provided us with a plethora of gene expression data that reveal an extensive molecular and biological map underlying gene expression programs. In order to better explore and take advantage of existing datasets, we review here the genomic expression profiles of NK cells and their subpopulations in resting or stimulated states, in diseases, and in different organs; moreover, we contrast these expression data to those of other lymphocytes. We have also compiled a comprehensive list of genomic profiling studies of both human and murine NK cells in this review.
Collapse
Affiliation(s)
- Fuyan Wang
- Institute of Immunology, School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, China
| | | | | |
Collapse
|
30
|
Rabaglino MB, Post Uiterweer ED, Jeyabalan A, Hogge WA, Conrad KP. Bioinformatics approach reveals evidence for impaired endometrial maturation before and during early pregnancy in women who developed preeclampsia. Hypertension 2014; 65:421-9. [PMID: 25421975 DOI: 10.1161/hypertensionaha.114.04481] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impaired uterine invasion by extravillous trophoblast in early gestation is implicated in the genesis of preeclampsia, a potentially lethal malady of human pregnancy. However, reasons for extravillous trophoblast dysfunction remain unclear because of virtual inaccessibility of early placental and uterine tissues from women who develop preeclampsia, and the absence of animal models in which the disease spontaneously occurs. Consequently, the possibility that deficient or defective maturation of the endometrium (decidualization) may compromise extravillous trophoblast invasion in preeclampsia remains unexplored. Using a bioinformatics approach, we tested this hypothesis identifying 396 differentially expressed genes (DEG) in chorionic villous samples from women at ≈11.5 gestational weeks who developed severe preeclampsia symptoms 6 months later compared with chorionic villous samples from normal pregnancies. A large number, 154 or 40%, overlapped with DEG associated with various stages of normal endometrial maturation before and after implantation as identified by other microarray data sets (P=4.7×10(-14)). One-hundred and sixteen of the 154 DEG or 75% overlapped with DEG associated with normal decidualization in the absence of extravillous trophoblast, ie, late-secretory endometrium (LSE) and endometrium from tubal ectopic pregnancy (EP; P=4.2×10(-9)). Finally, 112 of these 154 DEG or 73% changed in the opposite direction in microarray data sets related to normal endometrial maturation (P=0.01), including 16 DEG upregulated in decidual (relative to peripheral blood) natural killer cells that were downregulated in chorionic villous samples from women who developed preeclampsia (P<0.0001). Taken together, these results suggest that insufficient or defective maturation of endometrium and decidual natural killer cells during the secretory phase and early pregnancy preceded the development of preeclampsia.
Collapse
Affiliation(s)
- Maria B Rabaglino
- From the Department of Animal Reproduction, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina (M.B.R.); Department of Obstetrics and Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands (E.D.P.U.); Department of Ob/Gyn, Magee Womens Hospital, Pittsburgh, PA (A.J., W.A.H.); and D.H. Barron Reproductive and Perinatal Biology Research Program, Departments of Physiology and Functional Genomics and of Ob/Gyn, University of Florida, Gainesville (E.D.P.U., K.P.C.).
| | - Emiel D Post Uiterweer
- From the Department of Animal Reproduction, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina (M.B.R.); Department of Obstetrics and Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands (E.D.P.U.); Department of Ob/Gyn, Magee Womens Hospital, Pittsburgh, PA (A.J., W.A.H.); and D.H. Barron Reproductive and Perinatal Biology Research Program, Departments of Physiology and Functional Genomics and of Ob/Gyn, University of Florida, Gainesville (E.D.P.U., K.P.C.)
| | - Arun Jeyabalan
- From the Department of Animal Reproduction, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina (M.B.R.); Department of Obstetrics and Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands (E.D.P.U.); Department of Ob/Gyn, Magee Womens Hospital, Pittsburgh, PA (A.J., W.A.H.); and D.H. Barron Reproductive and Perinatal Biology Research Program, Departments of Physiology and Functional Genomics and of Ob/Gyn, University of Florida, Gainesville (E.D.P.U., K.P.C.)
| | - William A Hogge
- From the Department of Animal Reproduction, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina (M.B.R.); Department of Obstetrics and Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands (E.D.P.U.); Department of Ob/Gyn, Magee Womens Hospital, Pittsburgh, PA (A.J., W.A.H.); and D.H. Barron Reproductive and Perinatal Biology Research Program, Departments of Physiology and Functional Genomics and of Ob/Gyn, University of Florida, Gainesville (E.D.P.U., K.P.C.)
| | - Kirk P Conrad
- From the Department of Animal Reproduction, Universidad Nacional de Rio Cuarto, Rio Cuarto, Cordoba, Argentina (M.B.R.); Department of Obstetrics and Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands (E.D.P.U.); Department of Ob/Gyn, Magee Womens Hospital, Pittsburgh, PA (A.J., W.A.H.); and D.H. Barron Reproductive and Perinatal Biology Research Program, Departments of Physiology and Functional Genomics and of Ob/Gyn, University of Florida, Gainesville (E.D.P.U., K.P.C.).
| |
Collapse
|
31
|
Almasry SM, Elmansy RA, Elfayomy AK, Algaidi SA. Ultrastructure alteration of decidual natural killer cells in women with unexplained recurrent miscarriage: a possible association with impaired decidual vascular remodelling. J Mol Histol 2014; 46:67-78. [PMID: 25355193 DOI: 10.1007/s10735-014-9598-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/26/2014] [Indexed: 12/21/2022]
Abstract
This study aimed to evaluate the extent of remodelling of intra-decidual segments of the spiral arteries in human deciduas between the 6th and 10th gestational weeks in women with unexplained recurrent miscarriages (RM) in comparison to gestational-matched controls. A possible association with the number, immunoexpressive behaviour and ultrastructural changes of decidual natural killer cells (dNKCs) was investigated. Decidual biopsies were obtained from RM cases (n = 40) and women with no history of spontaneous miscarriage and at least one live birth at term (n = 30). Staining was performed using PAS, anti-CD34 and anti-CD56 antibodies, using an avidin-biotin-peroxides technique. Analysis by means of light and transmission electron microscopy was employed. To determine the extent of remodelling of decidual vessels, a quantitative score was analysed using histological criteria of vascular transformation and then related to the number of CD56(+) dNKCs. In RM, dNKCs were distributed among decidual cells and around the vessels. They possessed numerous polyploidic protrusions on cell membranes crossing from one cell to another. The cells became more irregular and exhibited heterogeneous electron-dense granules in their cytoplasm compared to controls. The non-remodelling score and number of dNKCs were significantly increased in RM group (p < 0.001). The number of dNKCs was significantly correlated with the scores in both control (r = 0.491; p = 0.006) and RM (r = 0.852; p < 0.001) groups. It appears that dNKCs play a key role in impaired decidual artery remodelling that may be involved with early RM. This may be due to increased numbers of cells or impaired cellular interactions resulting from alterations to the ultrastructure.
Collapse
|
32
|
Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol 2014; 72:129-40. [PMID: 24661472 DOI: 10.1111/aji.12234] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed.
Collapse
Affiliation(s)
- Joanne Kwak-Kim
- Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA; Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | |
Collapse
|
33
|
Polanski LT, Barbosa MAP, Martins WP, Baumgarten MN, Campbell B, Brosens J, Quenby S, Raine-Fenning N. Interventions to improve reproductive outcomes in women with elevated natural killer cells undergoing assisted reproduction techniques: a systematic review of literature. Hum Reprod 2013; 29:65-75. [DOI: 10.1093/humrep/det414] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Vacca P, Mingari MC, Moretta L. Natural killer cells in human pregnancy. J Reprod Immunol 2013; 97:14-9. [PMID: 23432867 DOI: 10.1016/j.jri.2012.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 02/04/2023]
Abstract
While conventional NK cells play an important role in early defenses against pathogens thanks to their cytolytic activity and production of pro-inflammatory chemokines and cytokines, those present in decidua (dNK cells), during early pregnancy, are primarily involved in tissue building and remodeling and in the formation of new blood vessels. This occurs mainly via the release of IL-8, VEGF, SDF-1 and IP-10. In addition, we show that by interacting with particular myelomonocytic cells (dCD14(+)) they contribute to the induction of regulatory T cells (Tregs). In turn, Tregs are thought to play a pivotal role in immunosuppression and induction of tolerance toward the fetal allograft. We recently demonstrated that CD34(+) hematopoietic precursors (dCD34(+)) are present in decidual tissues, thus suggesting that dNK cells might derive from such precursors. Indeed, this was confined by in vitro experiments in which dCD34(+) cells differentiated into dNK cells upon culture with appropriate cytokine combinations or even in co-culture with decidua-derived stromal cells (dSC). It is possible to speculate that inappropriate cellular interactions in the decidual microenvironment or defects of dNK (or dCD14(+)) cell generation might negatively influence pregnancy success.
Collapse
|
35
|
Kang L, Voskinarian-Berse V, Law E, Reddin T, Bhatia M, Hariri A, Ning Y, Dong D, Maguire T, Yarmush M, Hofgartner W, Abbot S, Zhang X, Hariri R. Characterization and ex vivo Expansion of Human Placenta-Derived Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2013; 4:101. [PMID: 23641243 PMCID: PMC3640206 DOI: 10.3389/fimmu.2013.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 11/13/2022] Open
Abstract
Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched, full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell, HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units, CD56+CD3- placenta-derived NK cells, termed pNK cells, were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were >80% CD56+CD3-, comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D, NKp46, and NKp44 (p < 0.001, p < 0.001, and p < 0.05, respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile, immunophenotype, and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development, pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.
Collapse
Affiliation(s)
- Lin Kang
- Celgene Cellular Therapeutics Warren, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramos-Medina R, García-Segovia Á, León JA, Alonso B, Tejera-Alhambra M, Gil J, Caputo JD, Seyfferth A, Aguarón Á, Vicente Á, Ordoñez D, Alonso J, de Albornoz EC, Carbone J, Caballero P, Fernandez-Cruz E, Ortiz-Quintana L, Sánchez-Ramón S. New decision-tree model for defining the risk of reproductive failure. Am J Reprod Immunol 2013; 70:59-68. [PMID: 23480226 DOI: 10.1111/aji.12098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/24/2013] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Natural killer (NK) cells play a key role in embryo implantation and pregnancy success, whereas blood and uterine NK expansions have been involved in the pathophysiology of reproductive failure (RF). Our main goal was to design in a large observational study a tree-model decision for interpretation of risk factors for RF. METHODS OF STUDY A hierarchical multivariate decision model based on a classification and regression tree was developed. NK and NKT-like cell subsets were analyzed by flow cytometry. RESULTS By multivariate analysis, blood NK cells expansion was an independent risk factor for RF (both recurrent miscarriages and implantation failures). We propose a new decision-tree model for the risk interpretation of women with RF based on a combination of main risk factors. CONCLUSIONS Women with age above 35 years and >13% CD56⁺CD16⁺ NK cells showed the highest risk of further pregnancy loss (100%).
Collapse
Affiliation(s)
- Rocío Ramos-Medina
- Unit of Clinical Immunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.
Collapse
Affiliation(s)
- Adrian Erlebacher
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
38
|
Wallace AE, Fraser R, Cartwright JE. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18:458-71. [PMID: 22523109 DOI: 10.1093/humupd/dms015] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During pregnancy, maternal uterine spiral arteries (SAs) are remodelled from minimal-flow, high-resistance vessels into larger diameter vessels with low resistance and high flow. Fetal extravillous trophoblasts (EVT) have important roles in this process. Decidual natural killer cells (dNK cells) are the major maternal immune component of the decidua and accumulate around SAs before trophoblast invasion. A role for dNK cells in vessel remodelling is beginning to be elucidated. This review examines the overlapping and dissimilar mechanisms used by EVT and dNK cells in this process and how this may mirror another example of tissue remodelling, namely cancer development. METHODS The published literature was searched using Pubmed focusing on EVT, dNK cells and SA remodelling. Additional papers discussing cancer development are also included. RESULTS Similarities exist between actions carried out by dNK cells and EVT. Both interact with vascular cells lining the SA, as well as with each other, to promote transformation of the SA. EVT differentiation has previously been likened to the epithelial-mesenchymal transition in cancer cells, and we discuss how dNK-EVT interactions at the maternal-fetal interface can also be compared with the roles of immune cells in cancer. CONCLUSIONS The combined role that dNK cells and EVT play in SA remodelling suggests that these interactions could be described as a partnership. The investigation of pregnancy as a multicellular system involving both fetal and maternal components, as well as comparisons to similar examples of tissue remodelling, will further identify the key mechanisms in SA remodelling that are required for a successful pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Reproductive and Cardiovascular Disease Research Group, Division of Biomedical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
39
|
Dambaeva SV, Durning M, Rozner AE, Golos TG. Immunophenotype and cytokine profiles of rhesus monkey CD56bright and CD56dim decidual natural killer cells. Biol Reprod 2012; 86:1-10. [PMID: 21900681 DOI: 10.1095/biolreprod.111.094383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The primate endometrium is characterized in pregnancy by a tissue-specific population of CD56(bright) natural killer (NK) cells. These cells are observed in human, rhesus, and other nonhuman primate decidua. However, other subsets of NK cells are present in the decidua and may play distinct roles in pregnancy. The purpose of this study was to define the surface marker phenotype of rhesus monkey decidual NK (dNK) cell subsets, and to address functional differences by profiling cytokine and chemokine secretion in contrast with decidual T cells and macrophages. Rhesus monkey decidual leukocytes were obtained from early pregnancy tissues, and were characterized by flow cytometry and multiplex assay of secreted factors. We concluded that the major NK cell population in rhesus early pregnancy decidua are CD56(bright) CD16(+)NKp30(-) decidual NK cells, with minor CD56(dim) and CD56(neg) dNK cells. Intracellular cytokine staining demonstrated that CD56(dim) and not CD56(bright) dNK cells are the primary interferon-gamma (IFNG) producers. In addition, the profile of other cytokines, chemokines, and growth factors secreted by these two dNK cell populations was generally similar, but distinct from that of peripheral blood NK cells. Finally, analysis of multiple pregnancies from eight dams revealed that the decidual immune cell profile is characteristic of an individual animal and is consistently maintained across successive pregnancies, suggesting that the uterine immune environment in pregnancy is carefully regulated in the rhesus monkey decidua.
Collapse
Affiliation(s)
- Svetlana V Dambaeva
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| | | | | | | |
Collapse
|
40
|
Vacca P, Moretta L, Moretta A, Mingari MC. Origin, phenotype and function of human natural killer cells in pregnancy. Trends Immunol 2011; 32:517-23. [PMID: 21889405 DOI: 10.1016/j.it.2011.06.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/06/2011] [Accepted: 06/17/2011] [Indexed: 01/05/2023]
Abstract
During the early phases of pregnancy, natural killer (NK) cells are the predominant lymphoid cells in the human decidua. Here, rather than act as killers and/or drivers of inflammation, NK cells contribute to tissue building and remodeling and formation of new vessels due to the release of interleukin-8, vascular endothelial growth factor, stromal cell-derived factor-1 and interferon gamma-inducible protein-10. Here, we propose that the interaction of NK cells with CD14(+) myelomonocytic cells to promote induction of T regulatory cells plays a pivotal role in immunosuppression and tolerance towards the fetus allograft. Importantly, CD34(+) hematopoietic precursors are present in human decidua and may give rise to decidual NK cells. Defects in decidual NK cell generation, or in appropriate functional interactions with other cell types, could have major consequences for successful pregnancy.
Collapse
Affiliation(s)
- Paola Vacca
- National Institute for Cancer Research, Largo R. Benzi, 16132 Genova, Italy
| | | | | | | |
Collapse
|
41
|
Male V, Sharkey A, Masters L, Kennedy PR, Farrell LE, Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur J Immunol 2011; 41:3017-27. [PMID: 21739430 PMCID: PMC3262970 DOI: 10.1002/eji.201141445] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/06/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
Abstract
The major leukocyte population in the decidua during the first trimester of pregnancy consists of NK cells that express receptors capable of recognizing MHC class I molecules expressed by placental trophoblast. These include members of the killer immunoglobulin-like receptor (KIR) family, the two-domain KIR (KIR2D), which recognize HLA-C. Interactions between decidual NK (dNK) cell KIR2D and placental HLA-C contribute to the success of pregnancy and dNK cells express KIR2D at higher frequency than peripheral NK (pNK) cells. Thus, they are biased toward recognizing HLA-C. In order to investigate when this unusual KIR repertoire appears, we compared the phenotype of NK cells isolated from non-pregnant (endometrium) and pregnant (decidua) human uterine mucosa. Endometrial NK (eNK) cells did not express KIR2D at a higher level than matched pNK cells, so the bias toward HLA-C recognition occurs as a response to pregnancy. Furthermore, HLA-C expression was upregulated on uterine stromal cells as the mucosa transformed from endometrium to decidua at the onset of pregnancy. As uterine NK (uNK) cells can mature from NK precursors and acquire KIR expression in utero, the pregnancy-specific bias of uNK cells toward HLA-C recognition could arise as developing uNK cells interact with uterine stromal cells, which express higher levels of HLA-C during pregnancy.
Collapse
Affiliation(s)
- Victoria Male
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
42
|
Lash GE, Bulmer JN. Do uterine natural killer (uNK) cells contribute to female reproductive disorders? J Reprod Immunol 2011; 88:156-64. [PMID: 21334072 DOI: 10.1016/j.jri.2011.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/23/2010] [Accepted: 01/12/2011] [Indexed: 01/30/2023]
Abstract
The most abundant immune cells in the uterine decidua around the time of implantation and early placental development are the uterine natural killer (uNK) cells. Altered numbers of uNK cells have been associated with several human reproductive disorders, including recurrent miscarriage, recurrent implantation failure, uterine fibroids, sporadic miscarriage, fetal growth restriction and preeclampsia. Understanding of the function of uNK cells in non-pregnant and pregnant endometrium is now increasing; the potential contribution of altered numbers and function of uNK cells to reproductive disorders is the focus of this review.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | |
Collapse
|
43
|
Chen Y, Zhuang Y, Chen X, Huang L. Effect of human endometrial stromal cell-derived conditioned medium on uterine natural killer (uNK) cells' proliferation and cytotoxicity. Am J Reprod Immunol 2011; 65:589-96. [PMID: 21223424 DOI: 10.1111/j.1600-0897.2010.00955.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Human endometrial stromal cells are involved in the regulation of immune cell proliferation, apoptosis, differentiation, and function. In the endometrium, uNK cells are in close contact with stromal cells. The aim of the study was to investigate the effects of human endometrial stromal cells on uNK-cell proliferation and uNK-cell cytotoxicity. METHOD OF STUDY The conditioned medium was derived from the endometrial stromal cells in the proliferative phase, secretory phase, and early pregnancy. The effects of stromal cell-derived conditioned medium on uNK-cell proliferation and cytotoxicity were detected by mitochondrial lactate dehydrogenase-based MTS staining and flow cytometry. RESULTS The stromal cell-derived conditioned medium in both secretory phase and early pregnancy significantly promoted uNK-cell proliferation. Compared with the control group, the uNK-cell cytotoxicity were significantly reduced by conditioned medium in the proliferative, secretory, and decidua groups, but there were no significant differences among these different physiological stages in the inhibiting ability. CONCLUSION Human endometrial stromal cells may be involved in the regulation of uNK-cell functions through influencing proliferation and cytolytic activity.
Collapse
Affiliation(s)
- Yuezhou Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|