1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
3
|
De Angelis M, Maity-Kumar G, Schriever SC, Kozlova EV, Müller TD, Pfluger PT, Curras-Collazo MC, Schramm KW. Development and validation of an LC-MS/MS methodology for the quantification of thyroid hormones in dko MCT8/OATP1C1 mouse brain. J Pharm Biomed Anal 2022; 221:115038. [PMID: 36152487 PMCID: PMC7613747 DOI: 10.1016/j.jpba.2022.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The Allan-Herndon Dudley Syndrome (AHDS) is a rare disease caused by the progressive loss of monocarboxylate transporter 8 (MCT8). In patients with AHDS, the absence of MCT8 impairs transport of thyroid hormones (TH) through the blood brain barrier, leading to a central state of TH deficiency. In mice, the AHDS is mimicked by simultaneous deletion of the TH transporters MCT8 and the solute carrier organic anion transporter family member 1c1 (OATP1C1). To support preclinical mouse studies, an analytical methodology was developed and successfully applied for quantifying selected thyroid hormones in mouse whole brain and in specific regions using liquid chromatography tandem mass-spectrometry (LC-MS/MS). An important requirement for the methodology was its high sensitivity since a very low concentration of THs was expected in MCT8/OATP1C1 double-knockout (dko) mouse brain. Seven THs were targeted: L-thyroxine (T4), 3,3,5-triiodo-L-thyronine-thy-ronine (T3), 3,3’,5’-triiodo-L-thyronine-thyronine (rT3), 3,3-diiodo-L-thyronine (3,3’-T2, T2), 3,5-diiodo-L-thyro-nine (rT2, 3,5-T2), 3-iodo-L-thyronine (T1), 3-iodothyronamine (T1AM). Isotope dilution liquid chromatography triple-quadrupole mass spectrometry methodology was applied for detection and quantification. The method was validated in wild-type animals for mouse whole brain and for five different brain regions (hypothalamus, hippocampus, prefrontal cortex, brainstem and cortex). Instrumental calibration curves ranged from 0.35 to 150 pg/μL with good linearity (r2 >0.996). The limit of quantification was from 0.08 to 0.6 pg/mg, with an intra- and inter-day precision of 4.2−14.02% and 0.4−17.9% respectively, and accuracies between 84.9% and 114.8% when the methodology was validated for the whole brain. In smaller, distinct brain regions, intra- and inter-day precision were 0.6−20.7% and 2.5−15.6% respectively, and accuracies were 80.2−128.6%. The new methodology was highly sensitive and allowed for the following quantification in wild-type mice: (i) for the first time, four distinct thyroid hormones (T4, T3, rT3 and 3,3’-T2) in only approximately 100 mg of mouse brain were detected; (ii) the quantification of T4 and T3 for the first time in distinct mouse brain regions were reported. Further, application of our method to MCT8/OATP1C1 dko mice revealed the expected, relative lack of T3 and T4 uptake into the brain, and confirmed the utility of our analytical method to study TH transport across the blood brain barrier in a preclinical model of central TH deficiency.
Collapse
Affiliation(s)
- Meri De Angelis
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany.
| | - Gandhari Maity-Kumar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany
| | | | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, Neuherberg, Germany; Department für Biowissenschaftliche Grundlagen, Technische Universität München, Weihenstephaner Steig 23, Freising, Germany
| |
Collapse
|
4
|
Hauser S, Andres S, Leopold K. Determination of trace elements in placenta by total reflection X-ray fluorescence spectrometry: effects of sampling and sample preparation. Anal Bioanal Chem 2022; 414:4519-4529. [PMID: 35552471 PMCID: PMC9142463 DOI: 10.1007/s00216-022-04112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Placental elemental composition can serve as an indicator for neonatal health. Medical studies aiming at revealing such cause-and-effect relationships or studies monitoring potential environmental influences consist of large sample series to ensure statistically sufficient data. Several analytical techniques have been used to study trace metals in human placenta. However, most techniques require provision of clear liquid sample solutions and therefore time- and reagent-consuming total digestion of biological tissue is necessary. In total reflection X-ray fluorescence spectrometry (TXRF)-a straightforward multielement analytical technique-in contrast suspensions of minute sample amounts can be analyzed directly. Therefore, herein we report on a valid method to prepare homogenous sample suspensions for sustainable and fast TXRF analysis of large sample series. The optimized method requires only 10 mg of powdered placental tissue and 1 mL nitric acid. Suspensions are readily prepared within 30 min and the found mass fractions of major, minor, and trace elements are in good agreement in comparison to analysis of digests. In addition, possible effects on fixation time and the exact sampling location, i.e., maternal vs. fetal side of the placenta, were studied applying this method. Thereby, significant differences for fetal placenta tissue compared to maternal or intermediate tissue were observed revealing accumulation of trace elements in the fetal side of the placenta. Furthermore, considerable depletion of up to 60% mass fraction with longer fixation duration occurred in particular in fetal placenta tissue. These findings help to understand the large ranges of mass fraction of elements in placenta reported in the literature and at the same time indicate the necessity for more systematic investigation of non-homogenous elements distributed in placenta taking sampling and stabilization methods into account.
Collapse
Affiliation(s)
- Sebastian Hauser
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sophia Andres
- Universitätsfrauenklinikum Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Analytical strategies to profile the internal chemical exposome and the metabolome of human placenta. Anal Chim Acta 2022; 1219:339983. [DOI: 10.1016/j.aca.2022.339983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
|
6
|
Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework. Cells 2022; 11:cells11040614. [PMID: 35203265 PMCID: PMC8870475 DOI: 10.3390/cells11040614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.
Collapse
|
7
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
8
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Perinatal effects of persistent organic pollutants on thyroid hormone concentration in placenta and breastmilk. Mol Aspects Med 2021; 87:100988. [PMID: 34238594 DOI: 10.1016/j.mam.2021.100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Thyroid hormones (TH) are known to play a critical role in regulating many biological processes including growth and development, energy homeostasis, thermogenesis, lipolysis and metabolism of cholesterol. Severe TH deficiency especially during fetal development results in cretinism, but can also lead to an imbalance in metabolism with, among others, an alteration in body weight composition. Over the past two decades, increasing evidence has shown that certain persistent organic pollutants (POP) can interfere with the endocrine system. These POP referred to as "endocrine disrupting chemicals" are widely present in the environment and populations are exposed globally. Moreover, epidemiological studies have shown that a particularly sensitive period is the pre- and postnatal time. Indeed, perinatal exposure to such chemicals could lead to the onset diseases in later life. It is known, that, maternal thyroid hormones are transported by the placenta to the fetus from 6 weeks of gestation and it seems that during the first trimester, and part of the second, the fetus is entirely dependent on maternal TH supply for its development. Interferences in the TH-network as a consequence of the exposure to such pollutants could cause variations in TH concentration. Only small changes in maternal thyroid hormone levels in early stages of pregnancy can influence fetal neurological and cardiovascular development, as well as according to recent studies, have effect on childhood body composition. With this review, we will report the most recent and important studies concerning the association between thyroid hormone concentration and POP levels measured during the perinatal period. We will mostly focus on the data recently reported on placenta and breastmilk as main sources for understanding the potential consequences of exposure. The possible link between exposure to pollutants, TH dysregulation and possible adverse outcome will also be briefly discussed. From our literature search, several studies support the hypothesis that pre- and postnatal exposure to different pollutants might play a role in causing variation in thyroid hormone concentration. However, few research papers have so far studied the relationship linking exposure to pollutants, TH concentration and possible health consequences. Therefore, this review highlights the need for further research in this direction.
Collapse
|
10
|
Gómez-Roig MD, Mazarico E, Cuadras D, Muniesa M, Pascal R, Ferrer P, Cantallops M, Arraez M, Gratacós E, Falcon M. Placental chemical elements concentration in small fetuses and its relationship with Doppler markers of placental function. Placenta 2021; 110:1-8. [PMID: 34051643 DOI: 10.1016/j.placenta.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION In this study, we aimed at quantifying placental concentrations of 22 chemical elements in small fetuses (SGA) as compared with normally grown fetuses (AGA), and to assess the relationship with Doppler markers of placental function. METHODS Prospective cohort study, including 71 SGA fetuses (estimated fetal weight < 10th percentile) and 96 AGA fetuses (estimated fetal weight > 10th percentile), recruited in the third trimester of gestation. The placental concentration of 22 chemical elements was determined by inductively coupled plasma optical emission spectrophotometer (ICP-OES, ICAP 6500 Duo Thermo): aluminum (Al), beryllium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chrome (Cr), copper (Cu), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), lead (Pb), rubidium (Rb), sulfur (S), strontium (Sr), titanium (Ti), thallium (Tl), antimony (Sb), selenium (Se), and zinc (Zn). Placental function was assessed by measuring the following fetal-maternal parameters: Uterine artery Pulsatility Index (UtA PI), Umbilical artery Pulsatility Index (UA PI) and Middle Cerebral artery Pulsatility Index (MCA PI). The association between the chemical elements concentration and study group and the association with Doppler measures were evaluated. RESULTS SGA was associated with significantly (p < 0.05) lower concentrations of Al (AGA 21.14 vs SGA 0.51 mg/kg), Cr (AGA 0.17 vs SGA 0.12 mg/kg), Cu (AGA 0.89 vs SGA 0.81 mg/kg), Mg (AGA 0.007 vs SGA 0.006 g/100g), Mn (AGA 0.60 vs SGA 0.47 mg/kg), Rb (AGA 1.68 vs SGA 1.47 mg/kg), Se (AGA 0.02 vs SGA 0.01 mg/kg), Ti (AGA 0.75 vs SGA 0.05 mg/kg) and Zn (AGA 9.04 vs SGA 8.22 mg/kg). Lower placental concentrations of Al, Cr, Mn, Se, Ti were associated with abnormal UtA, UA and MCA Doppler. DISCUSSION Lower placental concentrations of Al, Cr, Cu, Mn, Rb, Se, Ti and Zn are associated with SGA fetuses and abnormal fetal-maternal Doppler results. Additional studies are required to further understand how chemical elements affect fetal growth and potentially find strategies to prevent SGA.
Collapse
Affiliation(s)
- M D Gómez-Roig
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Maternal and Child Health Development Network, RETICS. Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness, Madrid, Spain
| | - E Mazarico
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Maternal and Child Health Development Network, RETICS. Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness, Madrid, Spain.
| | - D Cuadras
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - M Muniesa
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain
| | - R Pascal
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain
| | - P Ferrer
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain
| | - M Cantallops
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain
| | - M Arraez
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain
| | - E Gratacós
- BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - M Falcon
- Department of Forensic and Legal Medicine. University of Murcia, Spain
| |
Collapse
|