1
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
2
|
Li J, Jiang Y, Zhai X. Circ_0008450 regulates keloid-derived fibroblast proliferation, migration, invasion and apoptosis with increased IGFBP5 through sponging miR-1224-5p. Burns 2023; 49:1392-1402. [PMID: 36918335 DOI: 10.1016/j.burns.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Keloids (KD) are benign fibroproliferative tumors and circular RNAs (circRNAs) may participate in KD progression. At present, whether circ_0008450 regulates keloid-derived fibroblast phenotypes remains unclear. This study aimed to explore the functions of circ_0008450 in keloid (KD)-derived fibroblast phenotypes and the underlying mechanism. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay was performed to determine the expression of circ_0008450, miR-1224-5p, insulin like growth factor binding protein 5 (IGFBP5) and extracellular matrix (ECM)-related markers. 5-Ethynyl-2'-deoxyuridine (EdU) assay was conducted to assess cell proliferation ability. Flow cytometry analysis was used to analyze cell cycle and cell apoptosis. Scratch assay and transwell assay were utilized to examine cell migration and invasion. Mechanism assays were executed to verify the relations of circ_0008450, miR-1224-5p and IGFBP5. RESULTS Circ_0008450 was highly expressed in KD tissues and KD-derived fibroblasts. Circ_0008450 silencing inhibited KD-derived fibroblast proliferation, cell cycle, and motility and promoted apoptosis. The effect of circ_0008450 knockdown on KD-derived fibroblast processes was ameliorated by miR-1224-5p downregulation. IGFBP5 was a target gene of miR-1224-5p. IGFBP5 upregulation abated miR-1224-5p-mediated effects on KD-derived fibroblast processes. CONCLUSION Circ_0008450 promoted KD-derived fibroblast proliferation, migration, and invasion and repressed apoptosis via sponging miR-1224-5p and elevating IGFBP5.
Collapse
Affiliation(s)
- Jian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Yang Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang City 453100, Henan, China
| | - Xiaomei Zhai
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City 450052, Henan, China.
| |
Collapse
|
3
|
Deng Y, Jin H, Ning J, Cui D, Zhang M, Yang H. Elevated galectin-3 levels detected in women with hyperglycemia during early and mid-pregnancy antagonizes high glucose - induced trophoblast cells apoptosis via galectin-3/foxc1 pathway. Mol Med 2023; 29:115. [PMID: 37626284 PMCID: PMC10463409 DOI: 10.1186/s10020-023-00707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study was to evaluate plasma galectin-3 levels from early pregnancy to delivery and explore the effects of galectin-3 on the function of trophoblast cells under high glucose exposure. METHODS The plasma galectin-3 levels were quantified by enzyme-linked immunosorbent assay (ELISA) in the China National Birth Cohort (CNBC) at Peking University First Hospital, and the underlying signaling pathway was identified by protein-protein interaction (PPI) analysis, gene set enrichment analysis (GSEA), quantitative PCR (qPCR), western blotting, small interfering RNA (siRNA) transfections, and flow cytometry. RESULTS Significantly higher galectin-3 levels were found in patients with gestational diabetes mellitus (GDM group; n = 77) during the first and second trimesters than that in healthy pregnant women (HP group; n = 113) (P < 0.05). No significant differences in plasma galectin-3 levels were detected between GDM and HP groups in maternal third-trimester blood and cord blood. PPI analysis suggested potential interactions between galectin-3 and foxc1. The findings of GSEA showed that galectin-3 was involved in the cytochrome P450-related and complement-related pathways, and foxc1 was associated with type I diabetes mellitus. Additionally, high glucose (25 mM) significantly increased the expression levels of galectin-3 and foxc1 and induced apoptosis in HTR-8/SVneo cells. Further in vitro experiments showed that galectin-3/foxc1 pathway could protect HTR-8/SVneo cells against high glucose - induced apoptosis. CONCLUSION Future studies were required to validate whether plasma galectin-3 might become a potential biomarker for hyperglycemia during pregnancy. Elevated galectin-3 levels might be a vital protective mechanism among those exposed to hyperglycemia during pregnancy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Hongyan Jin
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
| | - Jie Ning
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Dong Cui
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 8 Xishiku Street, Beijing, 100034, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, 100034, China.
| |
Collapse
|
4
|
da Silva PHCM, Santos KDF, da Silva L, da Costa CCP, Santos RDS, Reis AADS. MicroRNAs Associated with the Pathophysiological Mechanisms of Gestational Diabetes Mellitus: A Systematic Review for Building a Panel of miRNAs. J Pers Med 2023; 13:1126. [PMID: 37511739 PMCID: PMC10381583 DOI: 10.3390/jpm13071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to conduct a systematic review of miRNAs associated with GDM to build a panel of miRNAs. A bibliographic search was carried out in the PubMed/Medline, Virtual Health Library (VHL), Web of Science, and EMBASE databases, selecting observational studies in English without time restriction. The protocol was registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in GDM were identified. In addition, four miRNAs were most frequently dysregulated in GDM (mir-16-5p, mir-20a-5p, mir-222-3p, and mir-330-3p). The dysregulation of these miRNAs is associated with the mechanisms of cell cycle homeostasis, growth, and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion, and resistance. On the other hand, identifying miRNAs associated with GDM and elucidating its main mechanisms can assist in the characterization and definition of potential biomarkers for the diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Pedro Henrique Costa Matos da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Laura da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Caroline Christine Pincela da Costa
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| |
Collapse
|
5
|
Fan W, Rong J, Shi W, Liu W, Wang J, Tan J, Yu B, Tong J. GATA6 Inhibits Neuronal Autophagy and Ferroptosis in Cerebral ischemia-reperfusion Injury Through a miR-193b/ATG7 axis-dependent Mechanism. Neurochem Res 2023:10.1007/s11064-023-03918-8. [PMID: 37059928 DOI: 10.1007/s11064-023-03918-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Ferroptosis is a newly described form of regulated necrotic cell death, which is engaged in the pathological cell death related to stroke, contributing to cerebral ischemia-reperfusion (I/R) injury. Therefore, we performed this study to clarify the role of GATA6 in neuronal autophagy and ferroptosis in cerebral I/R injury. The cerebral I/R injury-related differentially expressed genes (DEGs) as well as the downstream factors of GATA6 were predicted bioinformatically. Moreover, the relations between GATA6 and miR-193b and that between miR-193b and ATG7 were evaluated by chromatin immunoprecipitation and dual-luciferase reporter assays. Besides, neurons were treated with oxygen-glucose deprivation (OGD), followed by overexpression of GATA6, miR-193b, and ATG7 alone or in combination to assess neuronal autophagy and ferroptosis. At last, in vivo experiments were performed to explore the impacts of GATA6/miR-193b/ATG7 on neuronal autophagy and ferroptosis in a rat model of middle cerebral artery occlusion (MCAO)-stimulated cerebral I/R injury. It was found that GATA6 and miR-193b were poorly expressed in cerebral I/R injury. GATA6 transcriptionally activated miR-193b to downregulate ATG7. Additionally, GATA6-mediated miR-193b activation suppressed neuronal autophagy and ferroptosis in OGD-treated neurons by inhibiting ATG7. Furthermore, GATA6/miR-193b relieved cerebral I/R injury by restraining neuronal autophagy and ferroptosis via downregulation of ATG7 in vivo. In summary, GATA6 might prevent neuronal autophagy and ferroptosis to alleviate cerebral I/R injury via the miR-193b/ATG7 axis.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou215000, Nanjing, P.R. China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Wei Liu
- Department of Neurology, Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou215000, Nanjing, P.R. China
| | - Jie Wang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China.
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China.
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China.
| |
Collapse
|
6
|
Bao Y, Zhang J, Liu Y, Wu L, Yang J. Identification of human placenta-derived circular RNAs and autophagy related circRNA-miRNA-mRNA regulatory network in gestational diabetes mellitus. Front Genet 2022; 13:1050906. [PMID: 36531251 PMCID: PMC9748685 DOI: 10.3389/fgene.2022.1050906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 09/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic and reproductive disease with serious risks and adverse health effects. However, the pathophysiological mechanism of GDM, especially the roles of circRNAs in its pathogenesis, is largely unknown. The objective of this study was to identify and investigate the roles of circRNAs in GDM. In the current study, placental circRNA expression profiles of normal controls and GDM patients were analyzed using high-throughput sequencing. Bioinformatics analysis identified a total of 4,955 circRNAs, of which 37 circRNAs were significantly deregulated in GDM placentas compared with NC placentas. GO and KEGG enrichment analyses demonstrated that metabolic process-associated terms and metabolic pathways that may be related to GDM were significantly enriched. The biological characteristics of placenta-derived circRNAs, such as their stability and RNase R resistance, were also validated Bioinformatics prediction. Moreover, we constructed the autophagy related circRNA-miRNA-mRNA regulatory network and further functional analysis revealed that the circCDH2-miR-33b-3p-ULK1 axis may be associated with autophagy in the placentas of GDM patients. Our study indicates that aberrant expression of circRNAs may play roles in autophagy in GDM placentas, providing new insights into GDM.
Collapse
Affiliation(s)
- Yindi Bao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Xiaogan Central Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Lianzhi Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Wang Z, Wang D, Chen J, Long T, Zhong C, Li Y. Effects of glucose and osmotic pressure on the proliferation and cell cycle of human chorionic trophoblast cells. Open Life Sci 2022; 17:1418-1428. [DOI: 10.1515/biol-2022-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
This study investigated the effects of glucose and osmotic pressure on the proliferation and cell cycle of trophoblast cells. HTR8/SVneo cells were treated with 0 (no glucose), 1 (low glucose), 5 (normal), and 25 mmol/L (high glucose) glucose. In addition, the cells were treated with 5 mmol/L glucose (normal) and 5 mmol/L glucose + 20 mmol/L mannitol (mannitol). The cell morphology and proliferation were determined by microscopy and a cell counting kit-8 assay. The cell cycle and apoptosis were examined by flow cytometry. The cell number was relatively decreased and morphological changes were intermediate in the high-glucose group compared with the low-glucose groups. The proportion of cells in the G2/M phase was higher in the low-glucose group than in the other groups, and it was lower in the G1 phase and higher in the S phase in the high-glucose group than in the other groups. Compared with 24 h, cell proliferative activity was restored to a certain extent after 48 h in the high-glucose group. In summary, the blood glucose concentration might influence the proliferation of trophoblast cells. A high-glucose environment inhibited initial cell proliferation, which could be moderately restored after self-regulation. Furthermore, the proliferation of trophoblasts was not affected by the osmotic pressure.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Guangzhou Medical Centre for Critical Pregnant Women , Guangzhou , 510150 , China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province , Guangzhou 510150 , China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University , Guangzhou 510120 , China
| | - Ding Wang
- Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute , Guangzhou, 510150 , China
| | - Jia Chen
- Department of Obstetrics, Foshan Women and Children Hospital , Foshan 528000 , China
| | - Tuhong Long
- Department of Medical Affairs Section, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou 510150 , China
| | - Caijuan Zhong
- Department of Obstetrics, Maternal & Child Health Hospital of Guangdong , Guangzhou 510010 , China
| | - Yingtao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Guangzhou Medical Centre for Critical Pregnant Women , Guangzhou , 510150 , China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province , Guangzhou 510150 , China
| |
Collapse
|
8
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
The Mystery of Exosomes in Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2169259. [PMID: 35720179 PMCID: PMC9200544 DOI: 10.1155/2022/2169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.
Collapse
|
10
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
11
|
Li J, Wang Y, Wu T, Li S, Sun YN, Liu ZH. Baicalein suppresses high glucose-induced inflammation and apoptosis in trophoblasts by targeting the miRNA-17-5p-Mfn1/2-NF-κB pathway. Placenta 2022; 121:126-136. [DOI: 10.1016/j.placenta.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022]
|
12
|
Shen D, Lu Y, Li G, Hu M, Li S, Ju H, Zhang M, Wang X. Mechanism of neutrophil extracellular traps generation and their role in trophoblasts apoptosis in gestational diabetes mellitus. Cell Signal 2021; 88:110168. [PMID: 34634453 DOI: 10.1016/j.cellsig.2021.110168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic syndrome occurring in pregnant women and increases the risk of placental dysplasia. Neutrophil extracellular traps (NETs) may play a critical role in placental dysplasia. NETosis (neutrophil cell death by NET release) depends on NADPH/ROS pathway. In view of the adiponectin which is widely believed to be reduced in GDM patients suppresses NADPH oxidase and ROS generation of neutrophil. We speculate that increased NET release is associated with hypoadiponectinemia. Trophoblast apoptosis is significantly increased in GDM patients, but it is not clear whether NETs promotes cell apoptosis. This study aims to reveal the mechanism of Neutrophil Extracellular Traps generation and their role in trophoblast apoptosis in Gestational Diabetes Mellitus. We investigated the generation of NETs by cell-free DNA (cf-DNA) quantification, live-cell imaging, and reactive oxygen species (ROS) measurement. ERK1/2 and p38 MAPK signalling pathway proteins were detected by western blotting. The Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and western blotting were performed to explore the effects of NETs on trophoblast apoptosis. We found that adiponectin inhibited NET release by suppressing ROS production, and p38 MAPK and ERK1/2 proteins were involved in the process. Further, NETs promoted trophoblast apoptosis by activating the ROS-dependent mitochondrial pathway, which is mediated by ERK1/2 signalling. The current study demonstrated that hypoadiponectinemia is the cause of NETs formation and NETs promoting trophoblast apoptosis.
Collapse
Affiliation(s)
- Di Shen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China; Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China
| | - Guangzhen Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, 251000, Jinan, China
| | - Min Hu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China
| | - Shanling Li
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Hui Ju
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Meihua Zhang
- The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, 238 Jingshi East Road, Jinan, Shandong 250014, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Street, Jinan, Shandong 250021, China; Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Shandong Provincial, Cheeloo College of Medicine, Shandong University, 238 Jingshi East Road, Jinan, Shandong 250014, China; The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, 238 Jingshi East Road, Jinan, Shandong 250014, China.
| |
Collapse
|
13
|
Chen X, Guo DY, Yin TL, Yang J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front Pharmacol 2021; 12:646521. [PMID: 33967782 PMCID: PMC8100504 DOI: 10.3389/fphar.2021.646521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious pregnancy complication with an increasing clinical incidence. The various causes of recurrent abortion are complicated. Developments in genetics, immunology, and cell biology have identified important roles of non-coding RNAs (ncRNAs) in the occurrence and progress of recurrent abortion. NcRNAs can affect the growth, migration, and invasion of placental trophoblasts by regulating cell processes such as the cell cycle, apoptosis, and epithelial-mesenchymal transformation. Therefore, their abnormal expression might lead to the occurrence and development of RSA. NcRNAs include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), ribosomal RNA (rRNA), transfer, RNA (tRNA), circular RNA (cRNA), and Piwi-interacting RNA (piRNA). In this review, we discuss recent research that focused on the function and mechanism of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNA) in regulating placental trophoblasts. The use of ncRNAs as potential diagnostic and predictive biomarkers in RSA is also discussed to provide future research insights.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Duan-Ying Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
14
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
15
|
Zhang TN, Wang W, Huang XM, Gao SY. Non-Coding RNAs and Extracellular Vehicles: Their Role in the Pathogenesis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:664287. [PMID: 34093439 PMCID: PMC8173208 DOI: 10.3389/fendo.2021.664287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition in the second or third trimester of pregnancy. GDM has a considerable impact on health outcomes of the mother and offspring during pregnancy, delivery, and beyond. Although the exact mechanism regarding GDM remains unclear, numerous studies have suggested that non-coding RNAs, including long non-coding (lnc)RNAs, microRNAs, and circular RNAs, were involved in the pathogenesis of GDM in which they played vital regulatory roles. Additionally, several studies have revealed that extracellular vehicles also participated in the pathogenesis of GDM, highlighting their important role in this disease. Considering the lack of effective biomarkers for the early identification of and specific treatment for GDM, non-coding RNAs and extracellular vehicles may be promising biomarkers and even targets for GDM therapies. This review provides an update on our understanding of the role of non-coding RNAs and extracellular vehicles in GDM. As our understanding of the function of lncRNAs and extracellular vehicles improves, the future appears promising for their use as potential biomarkers and treatment targets for GDM in clinical practice.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| | - Shan-Yan Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| |
Collapse
|