1
|
Cromb D, Steinweg J, Aviles Verdera J, van Poppel MP, Bonthrone AF, Lloyd DF, Pushparajah K, Simpson J, Razavi R, Rutherford M, Counsell SJ, Hutter J. T2*-Relaxometry MRI to Assess Third Trimester Placental and Fetal Brain Oxygenation and Placental Characteristics in Healthy Fetuses and Fetuses With Congenital Heart Disease. J Magn Reson Imaging 2025; 61:1246-1255. [PMID: 38994701 PMCID: PMC11803691 DOI: 10.1002/jmri.29498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) has been linked to impaired placental and fetal brain development. Assessing the placenta and fetal brain in parallel may help further our understanding of the relationship between development of these organs. HYPOTHESIS 1) Placental and fetal brain oxygenation are correlated, 2) oxygenation in these organs is reduced in CHD compared to healthy controls, and 3) placental structure is altered in CHD. STUDY TYPE Retrospective case-control. POPULATION Fifty-one human fetuses with CHD (32 male; median [IQR] gestational age [GA] = 32.0 [30.9-32.9] weeks) and 30 from uncomplicated pregnancies with normal birth outcomes (18 male; median [IQR] GA = 34.5 [31.9-36.7] weeks). FIELD STRENGTH/SEQUENCE 1.5 T single-shot multi-echo-gradient-echo echo-planar imaging. ASSESSMENT Masking was performed using an automated nnUnet model. Mean brain and placental T2* and quantitative measures of placental texture, volume, and morphology were calculated. STATISTICAL TESTS Spearman's correlation coefficient for determining the association between brain and placental T2*, and between brain and placental characteristics with GA. P-values for comparing brain T2*, placenta T2*, and placental characteristics between groups derived from ANOVA. Significance level P < 0.05. RESULTS There was a significant positive association between placental and fetal brain T2* (⍴ = 0.46). Placental and fetal brain T2* showed a significant negative correlation with GA (placental T2* ⍴ = -0.65; fetal brain T2* ⍴ = -0.32). Both placental and fetal brain T2* values were significantly reduced in CHD, after adjusting for GA (placental T2*: control = 97 [±24] msec, CHD = 83 [±23] msec; brain T2*: control = 218 [±26] msec, CHD = 202 [±25] msec). Placental texture and morphology were also significantly altered in CHD (Texture: control = 0.84 [0.83-0.87], CHD = 0.80 [0.78-0.84]; Morphology: control = 9.9 [±2.2], CHD = 10.8 [±2.0]). For all fetuses, there was a significant positive association between placental T2* and placental texture (⍴ = 0.46). CONCLUSION Placental and fetal brain T2* values are associated in healthy fetuses and those with CHD. Placental and fetal brain oxygenation are reduced in CHD. Placental appearance is significantly altered in CHD and shows associations with placental oxygenation, suggesting altered placental development and function may be related. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
| | - Johannes Steinweg
- Department of Cardiovascular ImagingSchool of Biomedical Engineering & Imaging Science, King's College LondonLondonUK
| | - Jordina Aviles Verdera
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Milou P.M. van Poppel
- Department of Cardiovascular ImagingSchool of Biomedical Engineering & Imaging Science, King's College LondonLondonUK
| | - Alexandra F. Bonthrone
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
| | - David F.A. Lloyd
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
- Department of Cardiovascular ImagingSchool of Biomedical Engineering & Imaging Science, King's College LondonLondonUK
| | - Kuberan Pushparajah
- Department of Cardiovascular ImagingSchool of Biomedical Engineering & Imaging Science, King's College LondonLondonUK
| | - John Simpson
- Department of Cardiovascular ImagingSchool of Biomedical Engineering & Imaging Science, King's College LondonLondonUK
| | - Reza Razavi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Mary Rutherford
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing BrainSchool of Biomedical and Engineering Sciences, King's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Smart Imaging Lab, Radiological InstituteUniversity Hospital ErlangenErlangenGermany
| |
Collapse
|
2
|
Pishghadam M, Haizler-Cohen L, Ngwa JS, Yao W, Kapse K, Iqbal SN, Limperopoulos C, Andescavage NN. Placental quantitative susceptibility mapping and T2* characteristics for predicting birth weight in healthy and high-risk pregnancies. Eur Radiol Exp 2025; 9:18. [PMID: 39966316 PMCID: PMC11836258 DOI: 10.1186/s41747-025-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The human placenta is critical in supporting fetal development, and placental dysfunction may compromise maternal-fetal health. Early detection of placental dysfunction remains challenging due to the lack of reliable biomarkers. This study compares placental quantitative susceptibility mapping and T2* values between healthy and high-risk pregnancies and investigates their association with maternal and fetal parameters and their ability to predict birth weight (BW). METHODS A total of 105 pregnant individuals were included: 68 healthy controls and 37 high-risk due to fetal growth restriction (FGR), chronic or gestational hypertension, and pre-eclampsia. Placental magnetic resonance imaging data were collected using a three-dimensional multi-echo radiofrequency-spoiled gradient-echo, and mean susceptibility and T2* values were calculated. To analyze associations and estimate BW, we employed linear regression and regression forest models. RESULTS No significant differences were found in susceptibility between high-risk pregnancies and controls (p = 0.928). T2* values were significantly lower in high-risk pregnancies (p = 0.013), particularly in pre-eclampsia and FGR, emerging as a predictor of BW. The regression forest model showed placental T2* as a promising mode for BW estimation. CONCLUSION Our findings underscore the potential of mean placental T2* as a more sensitive marker for detecting placental dysfunction in high-risk pregnancies than mean placental susceptibility. Moreover, the high-risk status emerged as a significant predictor of BW. These results call for further research with larger and more diverse populations to validate these findings and enhance prediction models for improved pregnancy management. RELEVANCE STATEMENT This study highlights the potential of placental T2* magnetic resonance imaging measurements as reliable indicators for detecting placental dysfunction in high-risk pregnancies, aiding in improved prenatal care and birth weight prediction. KEY POINTS Placental dysfunction in high-risk pregnancies is evaluated using MRI T2* values. Lower T2* values significantly correlate with pre-eclampsia and fetal growth restriction. T2* MRI may predict birth weight, enhancing prenatal care outcomes.
Collapse
Affiliation(s)
- Morteza Pishghadam
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Lylach Haizler-Cohen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Julius S Ngwa
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Wu Yao
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Sara N Iqbal
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
| | - Nickie N Andescavage
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Payette K, Uus AU, Aviles Verdera J, Hall M, Egloff A, Deprez M, Tomi-Tricot R, Hajnal JV, Rutherford MA, Story L, Hutter J. Fetal body organ T2* relaxometry at low field strength (FOREST). Med Image Anal 2025; 99:103352. [PMID: 39326224 DOI: 10.1016/j.media.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Fetal Magnetic Resonance Imaging (MRI) at low field strengths is an exciting new field in both clinical and research settings. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artifacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we present the Fetal body Organ T2* RElaxometry at low field STrength (FOREST) pipeline that analyzes ten major fetal body organs. Dynamic multi-echo multi-gradient sequences were acquired and automatically reoriented to a standard plane, reconstructed into a high-resolution volume using deformable slice-to-volume reconstruction, and then automatically segmented into ten major fetal organs. We extensively validated FOREST using an inter-rater quality analysis. We then present fetal T2* body organ growth curves made from 100 control subjects from a wide gestational age range (17-40 gestational weeks) in order to investigate the relationship of T2* with gestational age. The T2* values for all organs except the stomach and spleen were found to have a relationship with gestational age (p<0.05). FOREST is robust to fetal motion, and can be used for both normal and fetuses with pathologies. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.
Collapse
Affiliation(s)
- Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Alena U Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Alexia Egloff
- Department of Women & Children's Health, King's College London, London, UK
| | - Maria Deprez
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Joseph V Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Hall M, Verdera JA, Cromb D, Silva SN, Rutherford M, Counsell SJ, Hajnal JV, Story L, Hutter J. Placental T2* as a measure of placental function across field strength from 0.55T to 3T. Sci Rep 2024; 14:28594. [PMID: 39562648 PMCID: PMC11577033 DOI: 10.1038/s41598-024-77406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Placental MRI is increasingly implemented in clinical obstetrics and research. Functional imaging, especially T2*, has been shown to vary across gestation and in pathology. Translation into the clinical arena has been slow because of time taken to mask the region of interest and owing to differences in T2* results depending on field strength. This paper contributes methodology to remove these barriers by utilising data from 0.55, 1.5 and 3T MRI to provide a fully automated segmentation tool; determining field strength dependency of placental assessment techniques; and deriving normal ranges for T2* by gestational age but independent of field strength. T2* datasets were acquired across field strengths. Automatic quantification including fully automatic masking was achieved and tested in 270 datasets across fields. Normal curves for quantitative placental mean T2*, volume and other derived measurements were obtained in 273 fetal MRI scans and z-scores calculated. The fully automatic segmentation achieved excellent quantification results (Dice scores of 0.807 at 3T, 0.796 at 1.5T and 0.815 at 0.55T.). Similar changes were seen between placental T2* and gestational age across all three field strengths (p < 0.05). Z-scores were generated. This study provides confidence in the translatability of T2* trends across field strengths in fetal imaging.
Collapse
Affiliation(s)
- Megan Hall
- Department of Early Life Imaging, King's College London, London, UK.
- Department of Women's and Children's Health, King's College London, London, UK.
- St Thomas' Hospital, 1st Floor, South Wing Westminster Bridge Road, SE1 7EH, London, UK.
| | - Jordina Aviles Verdera
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Daniel Cromb
- Department of Early Life Imaging, King's College London, London, UK
| | - Sara Neves Silva
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Mary Rutherford
- Department of Early Life Imaging, King's College London, London, UK
| | | | - Joseph V Hajnal
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Lisa Story
- Department of Early Life Imaging, King's College London, London, UK
- Department of Women's and Children's Health, King's College London, London, UK
- St Thomas' Hospital, 1st Floor, South Wing Westminster Bridge Road, SE1 7EH, London, UK
| | - Jana Hutter
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, FAU Erlangen, Bavaria, Germany
| |
Collapse
|
5
|
Xu J, Mao Y, Qu F, Hua X, Cheng J. Detection of placental stiffness using virtual magnetic resonance elastography in pregnancies complicated by preeclampsia. Arch Gynecol Obstet 2024; 310:2283-2289. [PMID: 38884644 PMCID: PMC11392975 DOI: 10.1007/s00404-024-07585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Jialu Xu
- Department of Radiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yajing Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feifei Qu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jiejun Cheng
- Department of Radiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O’Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Preeclampsia Associated Differences in the Placenta, Fetal Brain, and Maternal Heart Can Be Demonstrated Antenatally: An Observational Cohort Study Using MRI. Hypertension 2024; 81:836-847. [PMID: 38314606 PMCID: PMC7615760 DOI: 10.1161/hypertensionaha.123.22442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Antonio de Marvao
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Ronny Schweitzer
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Daniel Cromb
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Priya Jandu
- GKT School of Medical Education (P.J.), King’s College London, United Kingdom
| | - Declan P O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Alison Ho
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Germany (J.H.)
| |
Collapse
|
7
|
Slator PJ, Cromb D, Jackson LH, Ho A, Counsell SJ, Story L, Chappell LC, Rutherford M, Hajnal JV, Hutter J, Alexander DC. Non-invasive mapping of human placenta microenvironments throughout pregnancy with diffusion-relaxation MRI. Placenta 2023; 144:29-37. [PMID: 37952367 DOI: 10.1016/j.placenta.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.
Collapse
Affiliation(s)
- Paddy J Slator
- Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| |
Collapse
|
8
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
9
|
Cromb D, Slator PJ, De La Fuente M, Price AN, Rutherford M, Egloff A, Counsell SJ, Hutter J. Assessing within-subject rates of change of placental MRI diffusion metrics in normal pregnancy. Magn Reson Med 2023; 90:1137-1150. [PMID: 37183839 PMCID: PMC10962570 DOI: 10.1002/mrm.29665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. METHODS Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both aT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion (T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit. RESULTS There was a significant decline in placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals forT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). TheT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). CONCLUSION Whole placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although onlyT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change ofT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmentalT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Paddy J. Slator
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Miguel De La Fuente
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anthony N. Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| |
Collapse
|
10
|
Avena-Zampieri CL, Hutter J, Deprez M, Payette K, Hall M, Uus A, Nanda S, Milan A, Seed PT, Rutherford M, Greenough A, Story L. Assessment of normal pulmonary development using functional magnetic resonance imaging techniques. Am J Obstet Gynecol MFM 2023; 5:100935. [PMID: 36933803 PMCID: PMC10711505 DOI: 10.1016/j.ajogmf.2023.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The mainstay of assessment of the fetal lungs in clinical practice is via evaluation of pulmonary size, primarily using 2D ultrasound and more recently with anatomical magnetic resonance imaging. The emergence of advanced magnetic resonance techniques such as T2* relaxometry in combination with the latest motion correction post-processing tools now facilitates assessment of the metabolic activity or perfusion of fetal pulmonary tissue in vivo. OBJECTIVE This study aimed to characterize normal pulmonary development using T2* relaxometry, accounting for fetal motion across gestation. METHODS Datasets from women with uncomplicated pregnancies that delivered at term, were analyzed. All subjects had undergone T2-weighted imaging and T2* relaxometry on a Phillips 3T magnetic resonance imaging system antenatally. T2* relaxometry of the fetal thorax was performed using a gradient echo single-shot echo planar imaging sequence. Following correction for fetal motion using slice-to-volume reconstruction, T2* maps were generated using in-house pipelines. Lungs were manually segmented and mean T2* values calculated for the right and left lungs individually, and for both lungs combined. Lung volumes were generated from the segmented images, and the right and left lungs, as well as both lungs combined were assessed. RESULTS Eighty-seven datasets were suitable for analysis. The mean gestation at scan was 29.9±4.3 weeks (range: 20.6-38.3) and mean gestation at delivery was 40±1.2 weeks (range: 37.1-42.4). Mean T2* values of the lungs increased over gestation for right and left lungs individually and for both lungs assessed together (P=.003; P=.04; P=.003, respectively). Right, left, and total lung volumes were also strongly correlated with increasing gestational age (P<.001 in all cases). CONCLUSION This large study assessed developing lungs using T2* imaging across a wide gestational age range. Mean T2* values increased with gestational age, which may reflect increasing perfusion and metabolic requirements and alterations in tissue composition as gestation advances. In the future, evaluation of findings in fetuses with conditions known to be associated with pulmonary morbidity may lead to enhanced prognostication antenatally, consequently improving counseling and perinatal care planning.
Collapse
Affiliation(s)
- Carla L Avena-Zampieri
- Department of Women and Children's Health, King's College London, London, United Kingdom (XX Avena-Zampieri, XX Hall, XX Seed, XX Greenough, and XX Story); Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story).
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story)
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story); Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Deprez, Ms Payette, and Ms Uus)
| | - Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story); Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Deprez, Ms Payette, and Ms Uus)
| | - Megan Hall
- Department of Women and Children's Health, King's College London, London, United Kingdom (XX Avena-Zampieri, XX Hall, XX Seed, XX Greenough, and XX Story); Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story); Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom (Dr Hall, Dr Nanda, and Dr Story)
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story); Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Deprez, Ms Payette, and Ms Uus)
| | - Surabhi Nanda
- Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom (Dr Hall, Dr Nanda, and Dr Story)
| | - Anna Milan
- Neonatal Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom (Dr Milan)
| | - Paul T Seed
- Department of Women and Children's Health, King's College London, London, United Kingdom (XX Avena-Zampieri, XX Hall, XX Seed, XX Greenough, and XX Story)
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story)
| | - Anne Greenough
- Department of Women and Children's Health, King's College London, London, United Kingdom (XX Avena-Zampieri, XX Hall, XX Seed, XX Greenough, and XX Story); Neonatal Unit, King's College Hospital, London, United Kingdom (Prof Greenough); National Institute for Health and Care Research Biomedical Research Centre based at Guy's & St Thomas NHS Foundation Trusts and King's College London, London, United Kingdom (Prof Greenough)
| | - Lisa Story
- Department of Women and Children's Health, King's College London, London, United Kingdom (XX Avena-Zampieri, XX Hall, XX Seed, XX Greenough, and XX Story); Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom (Ms Avena-Zampieri, Dr Hutter, Mr Deprez, Ms Payette, Dr Hall, Ms Uus, Prof Rutherford, and Dr Story); Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom (Dr Hall, Dr Nanda, and Dr Story)
| |
Collapse
|
11
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O'Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Characterisation of placental, fetal brain and maternal cardiac structure and function in pre-eclampsia using MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289069. [PMID: 37163073 PMCID: PMC10168502 DOI: 10.1101/2023.04.24.23289069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Pre-eclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multi-system approach to MRI investigation of pre-eclampsia, with acquisition of maternal cardiac, placental, and fetal brain anatomical and functional imaging. Methods A prospective study was carried out recruiting pregnant women with pre-eclampsia, chronic hypertension, or no medical complications, and a non-pregnant female cohort. All women underwent a cardiac MRI, and pregnant women underwent a fetal-placental MRI. Cardiac analysis for structural, morphological and flow data was undertaken; placenta and fetal brain volumetric and T2* data were obtained. All results were corrected for gestational age. Results Seventy-eight MRIs were obtained during pregnancy. Pregnancies affected by pre-eclampsia demonstrated lower placental and fetal brain T2*. Within the pre-eclampsia group, three placental T2* results were within the normal range, these were the only cases with normal placental histopathology. Similarly, three fetal brain T2* results were within the normal range; these cases had no evidence of cerebral redistribution on fetal Dopplers. Cardiac MRI analysis demonstrated higher left ventricular mass in pre-eclampsia with 3D modelling revealing additional specific characteristics of eccentricity and outflow track remodelling. Conclusions We present the first holistic assessment of the immediate implications of pre-eclampsia on the placenta, maternal heart, and fetal brain. As well as having potential clinical implications for the risk-stratification and management of women with pre-eclampsia, this gives an insight into disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Antonio de Marvao
- Department of Women and Children’s Health, King’s College London, UK
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Ronny Schweitzer
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Daniel Cromb
- Centre for the Developing Brain, King’s College London, UK
| | | | - Priya Jandu
- GKT School of Medical Education, King’s College London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Alison Ho
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Anthony Price
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, UK
| | | | - Lisa Story
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Pablo Lamata
- Centre for Medical Engineering, King’s College London, UK
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| |
Collapse
|
12
|
Hutter J, Slator PJ, Avena Zampieri C, Hall M, Rutherford M, Story L. Multi-modal MRI reveals changes in placental function following preterm premature rupture of membranes. Magn Reson Med 2023; 89:1151-1159. [PMID: 36255151 PMCID: PMC10091779 DOI: 10.1002/mrm.29483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Preterm premature rupture of membranes complicates up to 40% of premature deliveries. Fetal infection may occur in the absence of maternal symptoms, delaying diagnosis and increasing morbidity and mortality. A noninvasive antenatal assessment of early signs of placental inflammation is therefore urgently required. METHODS Sixteen women with preterm premature rupture of membranes < 34 weeks gestation and 60 women with uncomplicated pregnancies were prospectively recruited. A modified diffusion-weighted spin-echo single shot EPI sequence with a diffusion preparation acquiring 264 unique parameter combinations in < 9 min was obtained on a clinical 3 Tesla MRI scanner. The data was fitted to a 2-compartment T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel incoherent motion model comprising fast and slowly circulating fluid pools to obtain quantitative information on perfusion, density, and tissue composition. Z values were calculated, and correlation with time from between the rupture of membranes and the scan, gestational age at delivery, and time between scan and delivery assessed. RESULTS Placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was significantly reduced in preterm premature rupture of membranes, and the 2-compartmental model demonstrated that this decline is mainly linked to the perfusion component observed in the placental parenchyma. Multi-modal MRI measurement of placental function is linked to gestational age at delivery and time from membrane rupture. CONCLUSION More complex models and data acquisition can potentially improve fitting of the underlying etiology of preterm birth compared with individual single-contrast models and contribute to additional insights in the future. This will need validation in larger cohorts. A multi-modal MRI acquisition between rupture of the membranes and delivery can be used to measure placental function and is linked to gestational age at delivery.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | | | - Carla Avena Zampieri
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | - Megan Hall
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Institute for Women's and Children's Health, King's College London, London, United Kingdom.,Fetal Medicine Unit, St Thomas' Hospital, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | - Lisa Story
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Institute for Women's and Children's Health, King's College London, London, United Kingdom.,Fetal Medicine Unit, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
13
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
14
|
Hall M, Hutter J, Suff N, Zampieri CA, Tribe RM, Shennan A, Rutherford M, Story L. Antenatal diagnosis of chorioamnionitis: A review of the potential role of fetal and placental imaging. Prenat Diagn 2022; 42:1049-1058. [PMID: 35670265 PMCID: PMC9543023 DOI: 10.1002/pd.6188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022]
Abstract
Chorioamnionitis is present in up to 70% of spontaneous preterm births. It is defined as an acute inflammation of the chorion, with or without involvement of the amnion, and is evidence of a maternal immunological response to infection. A fetal inflammatory response can coexist and is diagnosed on placental histopathology postnatally. Fetal inflammatory response syndrome (FIRS) is associated with poorer fetal and neonatal outcomes. The only antenatal diagnostic test is amniocentesis which carries risks of miscarriage or preterm birth. Imaging of the fetal immune system, in particular the thymus and the spleen, and the placenta may give valuable information antenatally regarding the diagnosis of fetal inflammatory response. While ultrasound is largely limited to structural information, MRI can complement this with functional information that may provide insight into the metabolic activities of the fetal immune system and placenta. This review discusses fetal and placental imaging in pregnancies complicated by chorioamnionitis and their potential future use in achieving non-invasive antenatal diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK.,Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Carla Avena Zampieri
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Rachel M Tribe
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Andrew Shennan
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK.,Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
15
|
Lo G, Jacques A, Dickinson JE. Magnetic resonance imaging (MRI) of normal human placentae. J Med Imaging Radiat Oncol 2022; 67:232-241. [PMID: 35665447 DOI: 10.1111/1754-9485.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The MRI appearances of the human placenta in the absence of maternal or fetal pathology have not been extensively studied, with only a few studies reporting findings in the uncomplicated pregnancy. The purpose of this study is to review the placental MRI appearances in low-risk pregnancies in a prospective study. METHODS A prospective observational study of placental MRI in low-risk pregnancies was initially planned, however recruitment was terminated early due to the COVID19 pandemic. The protocol was subsequently modified to compare the placental appearances in the enrolled cohort with pregnancies having had MRI for non-placental pathologies. The data from the two groups were then pooled to assess the range of normal placental appearances. RESULTS Eighty-three pregnancies were prospectively assessed with MRI at a median gestation of 29 weeks (range 14-39) from a mixed group of prospective cases (n = 28) and retrospectively recruited obstetric MRI (n = 55). Placental thickness in the third trimester ranged from 18 to 35 mm. T2 heterogeneity was seen in 75% (25/33) at second trimester and by the third trimester 50% (25/50) were moderately or markedly heterogenous. T2 dark bands (>6 mm) were seen in 9% (3/33) and 20% (10/50) of second and third trimester pregnancies, respectively. Undetectable myometrium or loss of the subplacental myometrial plane was present in 15% (5/33) of second and 38% (19/50) of third trimester placentae. CONCLUSION This qualitative study of normal placental MRI appearances expands the current knowledge base by confirming they vary, evolve with gestation, and can overlap with signs of placenta accreta spectrum.
Collapse
Affiliation(s)
- Glen Lo
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,King Edward Memorial Hospital, Perth, Western Australia, Australia.,The University of Western Australia, Nedlands, Western Australia, Australia.,Curtin University, Perth, Western Australia, Australia
| | - Angela Jacques
- Department of Research, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Institute for Health Research, The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Jan E Dickinson
- King Edward Memorial Hospital, Perth, Western Australia, Australia.,The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Colford K, Price AN, Sigurdardottir J, Fotaki A, Steinweg J, Story L, Ho A, Chappell LC, Hajnal JV, Rutherford M, Pushparajah K, Lamata P, Hutter J. Cardiac and placental imaging (CARP) in pregnancy to assess aetiology of preeclampsia. Placenta 2022; 122:46-55. [PMID: 35430505 PMCID: PMC9810538 DOI: 10.1016/j.placenta.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The CARP study aims to investigate placental function, cardiac function and fetal growth comprehensively during pregnancy, a time of maximal cardiac stress, to work towards disentangling the complex cardiac and placental interactions presenting in the aetiology of pre-eclampsia as well as predicting maternal Cardiovascular Disease (CVD) risk in later life. BACKGROUND The involvement of the cardiovascular system in pre-eclampsia, one of the most serious complications of pregnancy, is evident. While the manifestations of pre-eclampsia during pregnancy (high blood pressure, multi-organ disease, and placental dysfunction) resolve after delivery, a lifelong elevated CVD risk remains. METHOD An assessment including both cardiac and placental Magnetic Resonance Imaging (MRI) optimised for use in pregnancy and bespoke to the expected changes was developed. Simultaneous structural and functional MRI data from the placenta, the heart and the fetus were obtained in a total of 32 pregnant women (gestational ages from 18.1 to 37.5 weeks), including uncomplicated pregnancies and five cases with early onset pre-eclampsia. RESULTS The achieved comprehensive MR acquisition was able to demonstrate a phenotype associated with pre-eclampsia linking both placental and cardiac factors, reduced mean T2* (p < 0.005), increased heterogeneity (p < 0.005) and a trend towards an increase in cardiac work, larger average mass (109.4 vs 93.65 gr), wall thickness (7.0 vs 6.4 mm), blood pool volume (135.7 vs 127.48 mL) and mass to volume ratio (0.82 vs 0.75). The cardiac output in the controls was, controlling for gestational age, positively correlated with placental volume (p < 0.05). DISCUSSION The CARP study constitutes the first joint assessment of functional and structural properties of the cardiac system and the placenta during pregnancy. Early indications of cardiac remodelling in pre-eclampsia were demonstrated paving the way for larger studies.
Collapse
Affiliation(s)
- Kathleen Colford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anthony N. Price
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Julie Sigurdardottir
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anastasia Fotaki
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Johannes Steinweg
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Lisa Story
- Academic Women's Health Department, King's College London, London, UK
| | - Alison Ho
- Academic Women's Health Department, King's College London, London, UK
| | - Lucy C. Chappell
- Academic Women's Health Department, King's College London, London, UK
| | - Joseph V. Hajnal
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Kuberan Pushparajah
- Centre for Medical Engineering, King's College London, London, UK,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK,Corresponding author. Perinatal Imaging, 1st Floor South Wing, St THomas' Hospital, Westminster Bridge Road, SE17EH, London, UK.
| |
Collapse
|
17
|
Mizutani T, Kotani T, Kato N, Imai K, Ushida T, Nakano-Kobayashi T, Kinoshita Y, Ito M, Kinoshita F, Yamamuro O, Kajiyama H. Assessment of placental abruption with diffusion-weighted imaging. J Obstet Gynaecol Res 2022; 48:930-937. [PMID: 35194877 DOI: 10.1111/jog.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
AIM To investigate whether placental abruption without fetal distress could be assessed by apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI). METHODS We conducted a retrospective case-control study at a single center. ADC values at the lesions of placental abruption in the abruption group (n = 8) were compared to those in the control group (n = 32). In the abruption group, ADC values at the sites of abruption were also compared to those at the nonabruption sites within the same placenta. RESULTS The ADC values in the placental area above the abruption site in the abruption group showed lower values than those in the control group when the slice containing the umbilical cord insertion site was set as the reference, and those values were compared in each corresponding slice. Compared with average ADC values, those above the abruption site in the abruption group were also significantly lower than those in the control group (p < 0.001). Furthermore, ADC values at the area above abruption were lower than those at the nonabruption area of all planes in the abruption group. CONCLUSIONS ADC values at the lesions above the placental abruption site were reduced compared to those in the normal placenta and those in the nonabruption area. Thus, it would be helpful to understand the pathophysiology of placental abruption in expectant management, although further investigations would be needed.
Collapse
Affiliation(s)
- Teruyuki Mizutani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Obstetrics and Gynaecology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Noriko Kato
- Department of Obstetrics and Gynaecology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Nakano-Kobayashi
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimi Kinoshita
- Diagnostic Radiology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Masato Ito
- Diagnostic Radiology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Fumie Kinoshita
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Osamu Yamamuro
- Department of Obstetrics and Gynaecology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Andescavage N, Kapse K, Lu YC, Barnett SD, Jacobs M, Gimovsky AC, Ahmadzia H, Quistorff J, Lopez C, Andersen NR, Bulas D, Limperopoulos C. Normative placental structure in pregnancy using quantitative Magnetic Resonance Imaging. Placenta 2021; 112:172-179. [PMID: 34365206 DOI: 10.1016/j.placenta.2021.07.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To characterize normative morphometric, textural and microstructural placental development by applying advanced and quantitative magnetic resonance imaging (qMRI) techniques to the in-vivo placenta. METHODS We enrolled 195 women with uncomplicated, healthy singleton pregnancies in a prospective observational study. Women underwent MRI between 16- and 40-weeks' gestation. Morphometric and textural metrics of placental growth were calculated from T2-weighted (T2W) images, while measures of microstructural development were calculated from diffusion-weighted images (DWI). Normative tables and reference curves were constructed for each measured index across gestation and according to fetal sex. RESULTS Data from 269 MRI studies from 169 pregnant women were included in the analyses. During the study period, placentas undergo significant increases in morphometric measures of volume, thickness, and elongation. Placental texture reveals increasing variability with advancing gestation as measured by grey level non uniformity, run length non uniformity and long run high grey level emphasis. Placental microstructure did not vary with gestational age. Placental elongation was the only metric that differed significantly between male and female fetuses. DISCUSSION We report quantitative metrics of placental morphometry, texture and microstructure in a large cohort of healthy controls during the second and third trimesters of pregnancy. These measures can serve as normative references of in-vivo placental development to better understand placental function in high-risk conditions and allow for the early detection of placental mal-development.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Kushal Kapse
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yuan-Chiao Lu
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott D Barnett
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Marni Jacobs
- Division of Biostatistics & Study Methodology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Alexis C Gimovsky
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Homa Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Jessica Quistorff
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nicole Reinholdt Andersen
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Dorothy Bulas
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
| |
Collapse
|