1
|
Glättli SC, Elzinga FA, van der Bijl W, Leuvenink HGD, Prins JR, van Goor H, Gordijn SJ, Olinga P, Touw DJ, Mian P. Variability in perfusion conditions and set-up parameters used in ex vivo human placenta models: A literature review. Placenta 2024; 157:37-49. [PMID: 38570213 DOI: 10.1016/j.placenta.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
The ex vivo human placenta perfusion model has proven to be clinically relevant to study transfer- and fetal exposure of various drugs. Although the method has existed for a long period, the setup of the perfusion model has not been generalized yet. This review aims to summarize the setups of ex vivo placental perfusion models used to examine drug transfer across the placenta to identify generalized properties and differences across setups. A literature search was carried out in PubMed September 26, 2022. Studies were labeled as relevant when information was reported, between 2000 and 2022, on the setups of ex vivo placental perfusion models used to study drug transfer across the placenta. The placenta perfusion process, and the data extraction, was divided into phases of preparation, control, drug, and experimental reflecting the chronological timeline of the different phases during the entire placental perfusion process. 135 studies describing an ex vivo human placental perfusion experiment were included. Among included studies, the majority (78.5%) analyzed drug perfusion in maternal to fetal direction, 18% evaluated bi-directional drug perfusion, 3% under equilibrium conditions, and one study investigated drug perfusion in fetal to maternal direction. This literature review facilitates the comparison of studies that employ similar placenta perfusion protocols for drug transfer studies and reveals significant disparities in the setup of these ex vivo placental perfusion models. Due to interlaboratory variability, perfusion studies are not readily comparable or interchangeable. Therefore, a stepwise protocol with multiple checkpoints for validating placental perfusion is needed.
Collapse
Affiliation(s)
- S C Glättli
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - F A Elzinga
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - W van der Bijl
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - H G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - J R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - H van Goor
- Department of Pathology and Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - S J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - P Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deunsinglaan 1, 9713 AV, Groningen, the Netherlands
| | - D J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deunsinglaan 1, 9713 AV, Groningen, the Netherlands
| | - P Mian
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
2
|
Staud F, Pan X, Karahoda R, Dong X, Kastner P, Horackova H, Vachalova V, Markert UR, Abad C. Characterization of a human placental clearance system to regulate serotonin levels in the fetoplacental unit. Reprod Biol Endocrinol 2023; 21:74. [PMID: 37612712 PMCID: PMC10464227 DOI: 10.1186/s12958-023-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Serotonin (5-HT) is a biogenic monoamine with diverse functions in multiple human organs and tissues. During pregnancy, tightly regulated levels of 5-HT in the fetoplacental unit are critical for proper placental functions, fetal development, and programming. Despite being a non-neuronal organ, the placenta expresses a suite of homeostatic proteins, membrane transporters and metabolizing enzymes, to regulate monoamine levels. We hypothesized that placental 5-HT clearance is important for maintaining 5-HT levels in the fetoplacental unit. We therefore investigated placental 5-HT uptake from the umbilical circulation at physiological and supraphysiological levels as well as placental metabolism of 5-HT to 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA efflux from trophoblast cells. METHODS We employed a systematic approach using advanced organ-, tissue-, and cellular-level models of the human placenta to investigate the transport and metabolism of 5-HT in the fetoplacental unit. Human placentas from uncomplicated term pregnancies were used for perfusion studies, culturing explants, and isolating primary trophoblast cells. RESULTS Using the dually perfused placenta, we observed a high and concentration-dependent placental extraction of 5-HT from the fetal circulation. Subsequently, within the placenta, 5-HT was metabolized to 5-hydroxyindoleacetic acid (5-HIAA), which was then unidirectionally excreted to the maternal circulation. In the explant cultures and primary trophoblast cells, we show concentration- and inhibitor-dependent 5-HT uptake and metabolism and subsequent 5-HIAA release into the media. Droplet digital PCR revealed that the dominant gene in all models was MAO-A, supporting the crucial role of 5-HT metabolism in placental 5-HT clearance. CONCLUSIONS Taken together, we present transcriptional and functional evidence that the human placenta has an efficient 5-HT clearance system involving (1) removal of 5-HT from the fetal circulation by OCT3, (2) metabolism to 5-HIAA by MAO-A, and (3) selective 5-HIAA excretion to the maternal circulation via the MRP2 transporter. This synchronized mechanism is critical for regulating 5-HT in the fetoplacental unit; however, it can be compromised by external insults such as antidepressant drugs.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Xin Pan
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Xiaojing Dong
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Veronika Vachalova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Udo R Markert
- Placenta-Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|