1
|
Karakis V, Britt JW, Jabeen M, San Miguel A, Rao BM. Derivation of human trophoblast stem cells from placentas at birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.01.592064. [PMID: 38746283 PMCID: PMC11092656 DOI: 10.1101/2024.05.01.592064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human trophoblast stem cells (hTSCs) have emerged as a powerful tool for modeling the placental cytotrophoblast (CTB) in vitro. hTSCs were originally derived from CTBs of the first trimester placenta or blastocyst-stage embryos in trophoblast stem cell medium (TSCM) that contains epidermal growth factor (EGF), the glycogen synthase kinase-beta (GSK3β) inhibitor CHIR99021, the transforming growth factor-beta (TGFβ) inhibitors A83-01 and SB431542, valproic acid (VPA), and the Rho-associated protein kinase (ROCK) inhibitor Y-27632. Here we show that hTSCs can be derived from CTBs isolated from the term placenta, using TSCM supplemented with a low concentration of mitochondrial pyruvate uptake inhibitor UK5099 and lipid-rich albumin (TUA medium). Notably, hTSCs could not be derived from term CTBs using TSCM alone, or in the absence of either UK5099 or lipid-rich albumin. Strikingly, hTSCs cultured in TUA medium for a few passages could be transitioned into TSCM and cultured thereafter in TSCM. hTSCs from term CTBs cultured in TUA medium as well as those transitioned into and cultured in TSCM thereafter could be differentiated to the extravillous trophoblast and syncytiotrophoblast lineages and exhibited high transcriptome similarity with hTSCs derived from first trimester CTBs. We anticipate that these results will enable facile derivation of hTSCs from normal and pathological placentas at birth with diverse genetic backgrounds and facilitate in vitro mechanistic studies in trophoblast biology.
Collapse
|
2
|
Cinzori ME, Nicol M, Dewald AL, Goodrich JM, Zhou Z, Gardiner JC, Kerver JM, Dolinoy DC, Talge N, Strakovsky RS. Maternal mitochondrial DNA copy number and methylation as possible predictors of pregnancy outcomes in a Michigan pregnancy cohort. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae021. [PMID: 39628676 PMCID: PMC11614404 DOI: 10.1093/eep/dvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Little is understood about the roles of mitochondria in pregnancy-related adaptations. Therefore, we evaluated associations of maternal early-to-mid pregnancy mitochondrial DNA copy number (mtDNAcn) and mtDNA methylation with birth size and gestational length. Michigan women (n = 396) provided venous bloodspots at median 11 weeks gestation to quantify mtDNAcn marker NADH-ubiquinone oxidoreductase chain 1 (ND1) using real-time quantitative PCR and mtDNA methylation at several regions within four mitochondria-specific genes using pyrosequencing: MTTF (mitochondrially encoded tRNA phenylalanine), DLOOP (D-loop promoter region, heavy strand), CYTB (cytochrome b), and LDLR (D-loop promoter region, light strand). We abstracted gestational length and birthweight from birth certificates and calculated birthweight z-scores using published references. We used multivariable linear regression to evaluate associations of mtDNAcn and mtDNA methylation with birthweight and birthweight z-scores. Cox Proportional Hazards Models (PHMs) and quantile regression characterized associations of mitochondrial measures with gestational length. We also considered differences by fetal sex. Using linear regression and Cox PHMs, mtDNAcn was not associated with birth outcomes, whereas associations of mtDNA methylation with birth outcomes were inconsistent. However, using quantile regression, mtDNAcn was associated with shorter gestation in female newborns at the upper quantiles of gestational length, but with longer gestational length in males at the lower quantiles of gestational length. Maternal LDLR, DLOOP, and MTTF methylation was associated with longer gestational length in females at the upper quantiles and in males at lower gestational length quantiles. Maternal mtDNAcn and mtDNA methylation were associated with gestational length in babies born comparatively early or late, which could reflect adaptations in mitochondrial processes that regulate the length of gestation.
Collapse
Affiliation(s)
- Maria E Cinzori
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Megan Nicol
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | - Alisa L Dewald
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, United States
| | - Joseph C Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Jean M Kerver
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicole Talge
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
3
|
Toledano JM, Puche-Juarez M, Galvez-Navas JM, Moreno-Fernandez J, Diaz-Castro J, Ochoa JJ. Pregnancy Disorders: A Potential Role for Mitochondrial Altered Homeostasis. Antioxidants (Basel) 2024; 13:979. [PMID: 39199225 PMCID: PMC11351112 DOI: 10.3390/antiox13080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a complex and challenging process associated with physiological changes whose objective is to adapt the maternal organism to the increasing energetic requirements due to embryo and fetal development. A failed adaptation to these demands may lead to pregnancy complications that threaten the health of both mothers and their offspring. Since mitochondria are the main organelle responsible for energy generation in the form of ATP, the adequate state of these organelles seems crucial for proper pregnancy development and healthy pregnancy outcomes. The homeostasis of these organelles depends on several aspects, including their content, biogenesis, energy production, oxidative stress, dynamics, and signaling functions, such as apoptosis, which can be modified in relation to diseases during pregnancy. The etiology of pregnancy disorders like preeclampsia, fetal growth restriction, and gestational diabetes mellitus is not yet well understood. Nevertheless, insufficient placental perfusion and oxygen transfer are characteristic of many of them, being associated with alterations in the previously cited different aspects of mitochondrial homeostasis. Therefore, and due to the capacity of these multifactorial organelles to respond to physiological and pathophysiological stimuli, it is of great importance to gather the currently available scientific information regarding the relationship between main pregnancy complications and mitochondrial alterations. According to this, the present review is intended to show clear insight into the possible implications of mitochondria in these disorders, thus providing relevant information for further investigation in relation to the investigation and management of pregnancy diseases.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jose Maria Galvez-Navas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Cáncer Registry of Granada, Andalusian School of Public Health, Cuesta del Observatorio 4, Campus Universitario de Cartuja, 18011 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.D.-C.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
4
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
5
|
Wątroba M, Szewczyk G, Szukiewicz D. The Role of Sirtuin-1 (SIRT1) in the Physiology and Pathophysiology of the Human Placenta. Int J Mol Sci 2023; 24:16210. [PMID: 38003402 PMCID: PMC10671790 DOI: 10.3390/ijms242216210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Sirtuins, especially SIRT1, play a significant role in regulating inflammatory response, autophagy, and cell response to oxidative stress. Since their discovery, sirtuins have been regarded as anti-ageing and longevity-promoting enzymes. Sirtuin-regulated processes seem to participate in the most prevalent placental pathologies, such as pre-eclampsia. Furthermore, more and more research studies indicate that SIRT1 may prevent pre-eclampsia development or at least alleviate its manifestations. Having considered this, we reviewed recent studies on the role of sirtuins, especially SIRT1, in processes determining normal or abnormal development and functioning of the placenta.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (G.S.)
| |
Collapse
|
6
|
Mishra PK, Kumari R, Bhargava A, Bunkar N, Chauhan P, Tiwari R, Shandilya R, Srivastava RK, Singh RD. Prenatal exposure to environmental pro-oxidants induces mitochondria-mediated epigenetic changes: a cross-sectional pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74133-74149. [PMID: 35633452 DOI: 10.1007/s11356-022-21059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 05/24/2023]
Abstract
Mitochondria play a central role in maintaining cellular and metabolic homeostasis during vital development cycles of foetal growth. Optimal mitochondrial functions are important not only to sustain adequate energy production but also for regulated epigenetic programming. However, these organelles are subtle targets of environmental exposures, and any perturbance in the defined mitochondrial machinery during the developmental stage can lead to the re-programming of the foetal epigenetic landscape. As these modifications can be transferred to subsequent generations, we herein performed a cross-sectional study to have an in-depth understanding of this intricate phenomenon. The study was conducted with two arms: whereas the first group consisted of in utero pro-oxidant exposed individuals and the second group included controls. Our results showed higher levels of oxidative mtDNA damage and associated integrated stress response among the exposed individuals. These disturbances were found to be closely related to the observed discrepancies in mitochondrial biogenesis. The exposed group showed mtDNA hypermethylation and changes in allied mitochondrial functioning. Altered expression of mitomiRs and their respective target genes in the exposed group indicated the possibilities of a disturbed mitochondrial-nuclear cross talk. This was further confirmed by the modified activity of the mitochondrial stress regulators and pro-inflammatory mediators among the exposed group. Importantly, the disturbed DNMT functioning, hypermethylation of nuclear DNA, and higher degree of post-translational histone modifications established the existence of aberrant epigenetic modifications in the exposed individuals. Overall, our results demonstrate the first molecular insights of in utero pro-oxidant exposure associated changes in the mitochondrial-epigenetic axis. Although, our study might not cement an exposure-response relationship for any particular environmental pro-oxidant, but suffice to establish a dogma of mito-epigenetic reprogramming at intrauterine milieu with chronic illness, a hitherto unreported interaction.
Collapse
Affiliation(s)
- Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Radha Dutt Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462030, India
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Li J, Wang Y, Wu T, Li S, Sun YN, Liu ZH. Baicalein suppresses high glucose-induced inflammation and apoptosis in trophoblasts by targeting the miRNA-17-5p-Mfn1/2-NF-κB pathway. Placenta 2022; 121:126-136. [DOI: 10.1016/j.placenta.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022]
|
8
|
TCDD-induced IL-24 secretion in human chorionic stromal cells inhibits placental trophoblast cell migration and invasion. Reprod Toxicol 2022; 108:10-17. [PMID: 34995713 DOI: 10.1016/j.reprotox.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/30/2022]
Abstract
Environmental pollutant dioxins are potentially harmful to pregnant women and can lead to severe adverse outcomes in pregnancy, such as spontaneous abortion and stillbirth. However, little is currently known about the underlying toxicological mechanism. Our previous study reported that the IL-24 gene is a dioxin response gene during 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) treatment. Here, we further tested the effect of TCDD on IL-24 expression in human chorionic stromal cells. We also investigated the effect of IL-24 on the behaviors of human placental trophoblast cells and predicted the potential mechanism underlying these behaviors using functional network analysis. We found that TCDD stimulates IL-24 expression in human chorionic stromal cells in an AhR (aromatic hydrocarbon receptor)-related manner. We also found that IL-24 inhibits the migration and invasion of human placental trophoblast cells, the possible mechanism of which involves thirteen key proteins and mitochondrial function. Our findings suggest that IL-24 is a potential factor induced by TCDD to regulate trophoblast cell invasion, which potentially involves in TCDD-induced abortion.
Collapse
|
9
|
Carroll A, Desforges M, Jones CJ, Heazell AE. Morphological and functional changes in placentas from prolonged pregnancies. Placenta 2022; 125:29-35. [DOI: 10.1016/j.placenta.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
10
|
Wright RJ. Preterm Birth Enhances Ambient Pollution Toxicity: Oxidative Stress and Placental Function. Am J Respir Crit Care Med 2022; 205:10-12. [PMID: 34793683 PMCID: PMC8865585 DOI: 10.1164/rccm.202110-2338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rosalind J Wright
- Department of Environmental Medicine and Public Health New York, New York
- Icahn School of Medicine at Mount Sinai New York, New York
| |
Collapse
|