1
|
Yan H, Zhang W, Wang Y, Jin J, Xu H, Fu Y, Shan Z, Wang X, Teng X, Li X, Wang Y, Hu X, Zhang W, Zhu C, Zhang X, Zhang Y, Wang R, Zhang J, Cai Y, You X, Chen J, Ge X, Wang L, Xu J, Jiang L, Liu S, Lei C, Zhang X, Wang H, Ren Y, Wan J. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. THE PLANT CELL 2024; 36:1892-1912. [PMID: 38262703 PMCID: PMC11062441 DOI: 10.1093/plcell/koae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxiang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| |
Collapse
|
2
|
Ferreira MM, Santos AS, Santos AS, Zugaib M, Pirovani CP. Plant Serpins: Potential Inhibitors of Serine and Cysteine Proteases with Multiple Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3619. [PMID: 37896082 PMCID: PMC10609998 DOI: 10.3390/plants12203619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023]
Abstract
Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Ariana Silva Santos
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | | | - Maria Zugaib
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Carlos Priminho Pirovani
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| |
Collapse
|
3
|
Sharma R, Mokhtari S, Jafari SM, Sharma S. Barley-based probiotic food mixture: health effects and future prospects. Crit Rev Food Sci Nutr 2021; 62:7961-7975. [PMID: 33998934 DOI: 10.1080/10408398.2021.1921692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumers around the globe are increasingly aware of the relation between nutrition and health. In this sense, food products that can improve gastrointestinal health such as probiotics, prebiotics and synbiotics are the most important segment within functional foods. Cereals are the potential substrates for probiotic products as they contain nutrients easily assimilated by probiotics and serve as the transporters of Lactobacilli through the severe conditions of gastrointestinal tract. Barley is one of the important substrates for the probiotic formulation because of its high phenolic compounds, β-glucans and tocols. The purpose of this review is to examine recent information regarding barley-based probiotic foods with a specific focus on the potential benefits of barley as a substrate for probiotic microorganisms in the development of dairy and nondairy based food products, and to study the effects of food matrices containing barley β-glucans on the growth and features of Lactobacillus strains after fermentation.
Collapse
Affiliation(s)
- Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Samira Mokhtari
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
4
|
Adegoke TV, Wang Y, Chen L, Wang H, Liu W, Liu X, Cheng YC, Tong X, Ying J, Zhang J. Posttranslational Modification of Waxy to Genetically Improve Starch Quality in Rice Grain. Int J Mol Sci 2021; 22:4845. [PMID: 34063649 PMCID: PMC8124582 DOI: 10.3390/ijms22094845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
The waxy (Wx) gene, encoding the granule-bound starch synthase (GBSS), is responsible for amylose biosynthesis and plays a crucial role in defining eating and cooking quality. The waxy locus controls both the non-waxy and waxy rice phenotypes. Rice starch can be altered into various forms by either reducing or increasing the amylose content, depending on consumer preference and region. Low-amylose rice is preferred by consumers because of its softness and sticky appearance. A better way of improving crops other than downregulation and overexpression of a gene or genes may be achieved through the posttranslational modification of sites or regulatory enzymes that regulate them because of their significance. The impact of posttranslational GBSSI modifications on extra-long unit chains (ELCs) remains largely unknown. Numerous studies have been reported on different crops, such as wheat, maize, and barley, but the rice starch granule proteome remains largely unknown. There is a need to improve the yield of low-amylose rice by employing posttranslational modification of Wx, since the market demand is increasing every day in order to meet the market demand for low-amylose rice in the regional area that prefers low-amylose rice, particularly in China. In this review, we have conducted an in-depth review of waxy rice, starch properties, starch biosynthesis, and posttranslational modification of waxy protein to genetically improve starch quality in rice grains.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Lijuan Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xingyong Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Yi-Chen Cheng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| |
Collapse
|
5
|
Effects of endogenous proteins on rice digestion during small intestine (in vitro) digestion. Food Chem 2020; 344:128687. [PMID: 33272758 DOI: 10.1016/j.foodchem.2020.128687] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022]
Abstract
Rices with higher protein contents are nutritionally desirable. This study investigates the effects of endosperm proteins on starch in vitro digestibility in cooked and uncooked rice, and the mechanisms underlying any changes. The composition of rice endosperm proteins and the morphologies of proteins and starch granules were determined by SDS-PAGE and confocal microscopy. Starch molecular fine structure was examined using size-exclusion chromatography. In vitro digestion showed that the digestion rate coefficients (k) of cooked rice flour were significantly lower than those of isolated starch or of a starch-protein mixture. (e.g for samples from SWR4, k is 9.6, 12.9 and 11.6 × 10-2 min-1 for cooked rice flour, isolated starch and starch-protein mixture, respectively). For uncooked samples, digestion rate coefficients were 1.4, 1.5 and 1.8 × 10-2 min-1 for flour, starch-protein mixture and starch, respectively. The digestion rates in cooked samples were higher than those in uncooked samples. This suggests that, in cooked samples, starch digestion rates are more affected by the protein physical barrier than by some chemical effect (e.g. hydrogen bonding between protein and starch), while in uncooked samples, a chemical effect from protein is more pronounced than a physical barrier from protein.
Collapse
|
6
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
7
|
Niu L, Ding H, Hao R, Liu H, Wu X, Hu X, Wang W. A rapid and universal method for isolating starch granules in plant tissues. PLANT, CELL & ENVIRONMENT 2019; 42:3355-3371. [PMID: 31429107 DOI: 10.1111/pce.13631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Starch is the major form of carbohydrate storage in plants and exists as discrete starch granules (SGs). Isolation of high-quality SGs in different plant tissues is a prerequisite for studying the roles of SGs during plant growth, development, and responses to abiotic stress. However, it is difficult to isolate transitory SGs from leaves and storage SGs from pollen grains due to their small sizes and low quantities. Herein, we develop a novel method for isolating SGs by using the aqueous two-phase system (ATS) of ethanol/NaH2 PO4 . The ATS method efficiently separated SGs from contaminants based on their differences in density, solubility, and polarity. Using this method, we first isolated and purified three kinds of SGs from maize seeds, pollen, and leaves. The biochemical, microscopic, and proteomic analyses demonstrated the high purity of the isolated SGs. Proteomic analysis revealed distinct differences in SG-bound proteins between seed SGs and pollen SGs. As a simple, rapid, and low-cost method, the ATS-based method exhibits highly universal and reproducible results for starch-containing tissues in various plant species.
Collapse
Affiliation(s)
- Liangjie Niu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huiying Ding
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruiqi Hao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hui Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaolin Wu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
8
|
Intra-Sample Heterogeneity of Potato Starch Reveals Fluctuation of Starch-Binding Proteins According to Granule Morphology. PLANTS 2019; 8:plants8090324. [PMID: 31487879 PMCID: PMC6784226 DOI: 10.3390/plants8090324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/26/2022]
Abstract
Starch granule morphology is highly variable depending on the botanical origin. Moreover, all investigated plant species display intra-tissular variability of granule size. In potato tubers, the size distribution of starch granules follows a unimodal pattern with diameters ranging from 5 to 100 µm. Several evidences indicate that granule morphology in plants is related to the complex starch metabolic pathway. However, the intra-sample variability of starch-binding metabolic proteins remains unknown. Here, we report on the molecular characterization of size-fractionated potato starch granules with average diameters of 14.2 ± 3.7 µm, 24.5 ± 6.5 µm, 47.7 ± 12.8 µm, and 61.8 ± 17.4 µm. In addition to changes in the phosphate contents as well as small differences in the amylopectin structure, we found that the starch-binding protein stoichiometry varies significantly according to granule size. Label-free quantitative proteomics of each granule fraction revealed that individual proteins can be grouped according to four distinct abundance patterns. This study corroborates that the starch proteome may influence starch granule growth and architecture and opens up new perspectives in understanding the dynamics of starch biosynthesis.
Collapse
|
9
|
Helle S, Bray F, Verbeke J, Devassine S, Courseaux A, Facon M, Tokarski C, Rolando C, Szydlowski N. Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors. FRONTIERS IN PLANT SCIENCE 2018; 9:746. [PMID: 29963063 PMCID: PMC6013586 DOI: 10.3389/fpls.2018.00746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
Starch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines.
Collapse
Affiliation(s)
- Stanislas Helle
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Jérémy Verbeke
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Stéphanie Devassine
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maud Facon
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Caroline Tokarski
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Nicolas Szydlowski
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| |
Collapse
|
10
|
Cohen M, Fluhr R. Noncanonical interactions between serpin and β-amylase in barley grain improve β-amylase activity in vitro. PLANT DIRECT 2018; 2:e00054. [PMID: 31245723 PMCID: PMC6508567 DOI: 10.1002/pld3.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/31/2023]
Abstract
Serpin protease inhibitors and β-amylase starch hydrolases are very abundant seed proteins in the endosperm of grasses. β-amylase is a crucial enzyme in the beer industry providing maltose for fermenting yeast. In animals and plants, inhibitory serpins form covalent linkages that inactivate their cognate proteases. Additionally, in animals, noninhibitory functions for serpins are observed such as metabolite carriers and chaperones. The function of serpins in seeds has yet to be unveiled. In developing endosperm, serpin Z4 and β-amylase showed similar in vivo spatio-temporal accumulation properties and colocalize in the cytosol of transformed tobacco leaves. A molecular interaction between recombinant proteins of serpin Z4 and β-amylase was revealed by surface plasmon resonance and microscale thermophoresis yielding a dissociation constant of 10-7 M. Importantly, the addition of serpin Z4 significantly changes β-amylase enzymatic properties by increasing its maximal catalytic velocity. The presence of serpin Z4 stabilizes β-amylase activity during heat treatment without affecting its critical denaturing temperature. Oxidative stress, simulated by the addition of CuCl2, leads to the formation of high molecular weight polymers of β-amylase similar to those detected in vivo. The polymers were cross-linked through disulfide bonds, the formation of which was repressed when serpin Z4 was present. The results suggest an unprecedented function for a plant seed serpin as a β-amylase-specific chaperone-like partner that could optimize β-amylase activity upon germination. This report is the first to describe a noninhibitory function for a serpin in plants.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Robert Fluhr
- Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
11
|
The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chem 2018; 241:493-501. [DOI: 10.1016/j.foodchem.2017.09.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/12/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022]
|
12
|
Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proc Natl Acad Sci U S A 2017; 115:E24-E33. [PMID: 29255019 DOI: 10.1073/pnas.1715668115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression.
Collapse
|
13
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
14
|
Abstract
Background Barley seed proteins are of prime importance to the brewing industry, human and animal nutrition and in plant breeding for cultivar identification. To obtain comprehensive proteomic data from seeds, total protein from a two-rowed (Conrad) and a six-rowed (Lacey) barley cultivar were precipitated in acetone, digested in-solution, and the resulting peptides were analyzed by nano-liquid chromatography coupled with tandem mass spectrometry. Results The raw mass spectra data searched against Uniprot’s Barley database using in-house Mascot search engine identified 1168 unique proteins. Gene Ontology (GO) analysis indicated that the majority of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. Spectral counting analysis showed that there are 20 differentially abundant seed proteins between the two-rowed Conrad and six-rowed Lacey cultivars. Conclusion This study paves the way for the use of a top-down gel-free proteomics strategy in barley for investigating more complex traits such as malting quality. Differential abundance of hordoindoline proteins impact the seed hardness trait of barley cultivars. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3408-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramamurthy Mahalingam
- USDA, Agricultural Research Service, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI, 53726, USA.
| |
Collapse
|
15
|
Yu W, Tan X, Zou W, Hu Z, Fox GP, Gidley MJ, Gilbert RG. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydr Polym 2017; 155:271-279. [DOI: 10.1016/j.carbpol.2016.08.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
16
|
Yu H, Wang T. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms. FRONTIERS IN PLANT SCIENCE 2016; 7:707. [PMID: 27252723 PMCID: PMC4879773 DOI: 10.3389/fpls.2016.00707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/09/2016] [Indexed: 05/07/2023]
Abstract
Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms.
Collapse
Affiliation(s)
- Huatao Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
17
|
Ahmed Z, Tetlow IJ, Ahmed R, Morell MK, Emes MJ. Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:95-106. [PMID: 25711817 DOI: 10.1016/j.plantsci.2014.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 05/23/2023]
Abstract
The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP. In the ΔSBEIIb down-regulated line, soluble SP activity was undetectable. Nonetheless, SP was incorporated into a heteromeric protein complex with SBEI and SBEIIa and was readily detected in starch granules. In amo1, unlike other mutants, the data suggest that both SBEIIa and SBEIIb are in a protein complex with SSI and SSIIa. In the sex6 mutant no protein complexes involving SBEIIa or SBEIIb were detected in amyloplasts. Studies with Pro-Q Diamond revealed that GBSS, SSI, SSIIa, SBEIIb and SP are phosphorylated in their granule bound state. Alteration in the granule proteome in ΔSBEIIa and ΔSBEIIb lines, suggests that different protein complexes are involved in the synthesis of A and B granules.
Collapse
Affiliation(s)
- Zaheer Ahmed
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Regina Ahmed
- Food Futures National Research Flagship and Division of Plant Industry, CSIRO, Canberra ACT 2601, Australia.
| | | | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
18
|
Arcalis E, Ibl V, Peters J, Melnik S, Stoger E. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:439. [PMID: 25232360 PMCID: PMC4153030 DOI: 10.3389/fpls.2014.00439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/15/2014] [Indexed: 05/22/2023]
Abstract
Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins, which are ultimately deposited either within protein bodies derived from the endoplasmic reticulum, or in protein storage vacuoles (PSVs). During seed maturation endosperm cells undergo a rapid sequence of developmental changes, including extensive reorganization and rearrangement of the endomembrane system and protein transport via several developmentally regulated trafficking routes. Storage organelles have been characterized in great detail by the histochemical analysis of fixed immature tissue samples. More recently, in vivo imaging and the use of tonoplast markers and fluorescent organelle tracers have provided further insight into the dynamic morphology of PSVs in different cell layers of the developing endosperm. This is relevant for biotechnological applications in the area of molecular farming because seed storage organelles in different cereal crops offer alternative subcellular destinations for the deposition of recombinant proteins that can reduce proteolytic degradation, allow control over glycan structures and increase the efficacy of oral delivery. We discuss how the specialized architecture and developmental changes of the endomembrane system in endosperm cells may influence the subcellular fate and post-translational modification of recombinant glycoproteins in different cereal species.
Collapse
Affiliation(s)
| | | | | | | | - Eva Stoger
- *Correspondence: Eva Stoger, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
19
|
Juárez-García E, Agama-Acevedo E, Gómez-Montiel NO, Pando-Robles V, Bello-Pérez LA. Proteomic analysis of the enzymes involved in the starch biosynthesis of maize with different endosperm type and characterization of the starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2660-2668. [PMID: 23737144 DOI: 10.1002/jsfa.6054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 12/20/2012] [Accepted: 01/09/2012] [Indexed: 06/02/2023]
Abstract
BACKGROUND The characterization of starch maize with different endosperm type and the proteomic analysis of its biosynthetic enzymes at 20 and 50 days after pollination (DAP) was carried out. RESULTS There were differences between both endosperm types at 20 DAP, mainly in starch accumulation, amylose content, granule size and crystallinity percentage, whereas at 50 DAP the differences found were not relevant in the case of starch content, granule size, chain length distribution and thermal properties. SSSI, SBEIIb and GBSSI enzymes were identified; however, SBEIIb was only identified in two samples: floury endosperm at 20 DAP and vitreous at 50 DAP. CONCLUSION Starch did not show differences in its morphological or structural characteristics in either endosperm on reaching maturity. Starch biosynthetic enzymes identified by matrix-assisted laser desorption/ionization-time of flight did not show a relationship to starch structure.
Collapse
Affiliation(s)
- Erika Juárez-García
- Instituto Politécnico Nacional, CEPROBI, colonia San Isidro, 62731, Yautepec, Morelos, México
| | | | | | | | | |
Collapse
|
20
|
Polymorphism of Starch Granule-Associated Proteins and 5′ Leader Sequence of GBSSI Gene in Indigenous Naked Barley ( Hordeum vulgare L.) from Qinghai-Tibetan Plateau in China. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.01148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Asare EK, Båga M, Rossnagel BG, Chibbar RN. Polymorphism in the barley granule bound starch synthase 1 (gbss1) gene associated with grain starch variant amylose concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10082-10092. [PMID: 22950712 DOI: 10.1021/jf302291t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Granule bound starch synthase 1 (GBSS1) accumulation within starch granules and structure of Gbss1 alleles were determined for nine barley ( Hordeum vulgare L.) genotypes producing amylose-free (undetectable), near-waxy (1.6-4.5%), normal (25.8%), and increased (38.0-40.8%) amylose grain starches. Compared to normal starch granules, GBSS1 accumulation was severely reduced in three near-waxy, slightly reduced in two waxy, and slightly elevated in three increased amylose starches. Gbss1 nucleotide sequence analysis for the nine genotypes distinguished them into three Gbss1 groups with several single-nucleotide polymorphisms. A new unique Q312H substitution within GBSS1 was discovered in near-waxy genotype SB94912 with reduced amylose (1.6%) concentration relative to the other two near-waxy lines, CDC Rattan and CDC Candle (4.5%). The two waxy genotype GBSS1 showed a previously described D287V change for CDC Alamo and a new G513W change for CDC Fibar. Both amino acid alterations are conserved residues within starch synthase domains involved in glucan interaction. The increased amylose genotypes showed several unique nucleotide changes within the second and fourth Gbss1 introns, but only SB94893 GBSS1 showed a unique amino acid substitution, A250T in exon 6. The Gbss1 nucleotide differences were used to design genetic markers to monitor Gbss1 alleles in genotypes with various amylose grain starches.
Collapse
Affiliation(s)
- Eric K Asare
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | | | | |
Collapse
|
22
|
Wang S, Hassani ME, Crossett B, Copeland L. Extraction and identification of internal granule proteins from waxy wheat starch. STARCH-STARKE 2012. [DOI: 10.1002/star.201200093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Beckles DM, Tananuwong K, Shoemaker CF. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat. J Food Sci 2012; 77:C437-42. [PMID: 22515236 DOI: 10.1111/j.1750-3841.2012.02648.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. PRACTICAL APPLICATION Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we examined if making "specific" changes to the composition of gluten proteins in wheat seeds would simultaneously alter starch, as their synthesis is interrelated and the molecular structure of both determine flour functionality. This information may be used to address issues of "substantial equivalence" and to inform Industrial End-Users of possible changes in product performance.
Collapse
Affiliation(s)
- Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
24
|
Gorjanović S. A Review: Biological and Technological Functions of Barley Seed Pathogenesis-Related Proteins (PRs). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Santelia D, Kötting O, Seung D, Schubert M, Thalmann M, Bischof S, Meekins DA, Lutz A, Patron N, Gentry MS, Allain FHT, Zeeman SC. The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. THE PLANT CELL 2011; 23:4096-111. [PMID: 22100529 PMCID: PMC3246334 DOI: 10.1105/tpc.111.092155] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 09/28/2011] [Accepted: 10/27/2011] [Indexed: 05/18/2023]
Abstract
Starch contains phosphate covalently bound to the C6-position (70 to 80% of total bound phosphate) and the C3-position (20 to 30%) of the glucosyl residues of the amylopectin fraction. In plants, the transient phosphorylation of starch renders the granule surface more accessible to glucan hydrolyzing enzymes and is required for proper starch degradation. Phosphate also confers desired properties to starch-derived pastes for industrial applications. In Arabidopsis thaliana, the removal of phosphate by the glucan phosphatase Starch Excess4 (SEX4) is essential for starch breakdown. We identified a homolog of SEX4, LSF2 (Like Sex Four2), as a novel enzyme involved in starch metabolism in Arabidopsis chloroplasts. Unlike SEX4, LSF2 does not have a carbohydrate binding module. Nevertheless, it binds to starch and specifically hydrolyzes phosphate from the C3-position. As a consequence, lsf2 mutant starch has elevated levels of C3-bound phosphate. SEX4 can release phosphate from both the C6- and the C3-positions, resulting in partial functional overlap with LSF2. However, compared with sex4 single mutants, the lsf2 sex4 double mutants have a more severe starch-excess phenotype, impaired growth, and a further change in the proportion of C3- and C6-bound phosphate. These findings significantly advance our understanding of the metabolism of phosphate in starch and provide innovative options for tailoring novel starches with improved functionality for industry.
Collapse
Affiliation(s)
- Diana Santelia
- Institute for Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Z, Li D, Du X, Wang H, Larroque O, Jenkins CLD, Jobling SA, Morell MK. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5217-31. [PMID: 21813797 PMCID: PMC3193023 DOI: 10.1093/jxb/err239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 05/09/2023]
Abstract
In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 'high amylose Glacier'. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis.
Collapse
Affiliation(s)
- Zhongyi Li
- CSIRO Food Future National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Finnie C, Sultan A, Grasser KD. From protein catalogues towards targeted proteomics approaches in cereal grains. PHYTOCHEMISTRY 2011; 72:1145-1153. [PMID: 21134685 DOI: 10.1016/j.phytochem.2010.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/27/2023]
Abstract
Due to their importance for human nutrition, the protein content of cereal grains has been a subject of intense study for over a century and cereal grains were not surprisingly one of the earliest subjects for 2D-gel-based proteome analysis. Over the last two decades, countless cereal grain proteomes, mostly derived using 2D-gel based technologies, have been described and hundreds of proteins identified. However, very little is still known about post-translational modifications, subcellular proteomes, and protein-protein interactions in cereal grains. Development of techniques for improved extraction, separation and identification of proteins and peptides is facilitating functional proteomics and analysis of sub-proteomes from small amounts of starting material, such as seed tissues. The combination of proteomics with structural and functional analysis is increasingly applied to target subsets of proteins. These "next-generation" proteomics studies will vastly increase our depth of knowledge about the processes controlling cereal grain development, nutritional and processing characteristics.
Collapse
Affiliation(s)
- Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg 224, DK-2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
28
|
Wang CP, Pan ZF, Nima ZX, Tang YW, Cai P, Liang JJ, Deng GB, Long H, Yu MQ. Starch granule-associated proteins of hull-less barley (Hordeum vulgare L.) from the Qinghai-Tibet Plateau in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:616-24. [PMID: 21213217 DOI: 10.1002/jsfa.4223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND The starch granule-associated proteins (SGAPs) are the minor components of the starch granules and a majority of them are believed to be starch biosynthetic enzymes. The Qinghai-Tibet Plateau in China, one of the centres of origin of cultivated barley, is abundant in hull-less barley resources which exhibit high polymorphism in SGAPs. RESULTS The SGAPs of hull-less barley from Qinghai-Tibet Plateau were analysed by one-dimensional (1-D) SDS-PAGE, 2-D PAGE and ESI-Q-TOF MS/MS. In the 1-D SDS-PAGE gel, four proteins including a 80 kDa starch synthase, actin, actin 4 and ATP synthase β-subunit were identified as novel SGAPs. A total of six different bands were identified as starch granule-bound starch synthase I (GBSSI) and the segregation of the novel GBSSI bands in F(1) and F(2) seeds derived from yf127 × yf70 was in accordance with Mendel's law. In the 2-D PAGE gel, 92 spots were identified as 42 protein species which could be classified into 15 functional groups. Thirteen protein species were identified as SGAPs for the first time and multiple spots were identified as GBSSI. CONCLUSION This study revealed novel SGAPs in hull-less barley from the Qinghai-Tibet Plateau in China and these will be significant in further studies of starch biosynthesis in barley.
Collapse
Affiliation(s)
- Chun-Ping Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoon JW, Jung JY, Chung HJ, Kim MR, Kim CW, Lim ST. Identification of botanical origin of starches by SDS-PAGE analysis of starch granule-associated proteins. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Bancel E, Rogniaux H, Debiton C, Chambon C, Branlard G. Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J Proteome Res 2010; 9:3299-310. [DOI: 10.1021/pr9010525] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Bancel
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Hélène Rogniaux
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Clément Debiton
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Gérard Branlard
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
31
|
Gupta M, Abu-Ghannam N, Gallaghar E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of its By-Products. Compr Rev Food Sci Food Saf 2010; 9:318-328. [DOI: 10.1111/j.1541-4337.2010.00112.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Utrilla-Coello RG, Agama-Acevedo E, Barba de la Rosa AP, Rodríguez-Ambriz SL, Bello-Pérez LA. Physicochemical and Enzyme Characterization of Small and Large Starch Granules Isolated from Two Maize Cultivars. Cereal Chem 2010. [DOI: 10.1094/cchem-87-1-0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rubí G. Utrilla-Coello
- Centro de Desarrollo de Productos Bióticos del IPN. Km 8.5 carr. Yautepec-Jojutla, colonia San Isidro, apartado postal 24, 62731 Yautepec, Morelos, México
| | - Edith Agama-Acevedo
- Centro de Desarrollo de Productos Bióticos del IPN. Km 8.5 carr. Yautepec-Jojutla, colonia San Isidro, apartado postal 24, 62731 Yautepec, Morelos, México
- Corresponding author. E-mail:
| | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica. Camino de la Presa San José, Lomas 4a sección, Apartado Postal 78216, San Luis Potosí, México
| | - Sandra L. Rodríguez-Ambriz
- Centro de Desarrollo de Productos Bióticos del IPN. Km 8.5 carr. Yautepec-Jojutla, colonia San Isidro, apartado postal 24, 62731 Yautepec, Morelos, México
| | - Luis Arturo Bello-Pérez
- Centro de Desarrollo de Productos Bióticos del IPN. Km 8.5 carr. Yautepec-Jojutla, colonia San Isidro, apartado postal 24, 62731 Yautepec, Morelos, México
| |
Collapse
|
33
|
Finnie C, Svensson B. Barley seed proteomics from spots to structures. J Proteomics 2009; 72:315-24. [DOI: 10.1016/j.jprot.2008.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022]
|
34
|
Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. PLANT PHYSIOLOGY 2009; 149:1541-59. [PMID: 19168640 PMCID: PMC2649383 DOI: 10.1104/pp.109.135293] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds.
Collapse
|
35
|
Luengwilai K, Beckles DM. Structural investigations and morphology of tomato fruit starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:282-91. [PMID: 19093869 DOI: 10.1021/jf802064w] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The physicochemical properties of starch from tomato (Solanum lycopersicum L.) pericarp and columella of cv. Moneymaker fruit at 28 days post anthesis (DPA) were investigated, providing the first description of the composition and structure of tomato fruit starch. Starch granules from pericarp were mainly polygonal, 13.5-14.3 microm, and increased in size through development, being largest in ripening fruit. Amylopectin content was 81-83% and was of molecular weight 1.01 x 10(8) g/mol; the phosphorus content was 139 ppm, and starch showed a C-type pattern with crystallinity of 30%. Starch characteristics were similar in columella except granule size (16.8-17.8 microm) and crystallinity (40%), although 6-fold more starch accumulated in the pericarp. Solara, a high-sugar tomato cultivar, was also studied to determine if this affects starch granule architecture. There were few differences from Moneymaker, except that Solara columella starch crystallinity was lower (26%), and more starch granule-intrinsic proteins could be extracted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Kietsuda Luengwilai
- Department of Plant Sciences MS-3, University of California-Davis, California 95616, USA
| | | |
Collapse
|
36
|
Liu F, Makhmoudova A, Lee EA, Wait R, Emes MJ, Tetlow IJ. The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4423-40. [PMID: 19805395 DOI: 10.1093/jxb/erp297] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The amylose extender (ae(-)) mutant of maize lacks starch branching enzyme IIb (SBEIIb) activity, resulting in amylopectin with reduced branch point frequency, and longer glucan chains. Recent studies indicate isozymes of soluble starch synthases form high molecular weight complexes with SBEII isoforms. This study investigated the effect of the loss of SBEIIb activity on interactions between starch biosynthetic enzymes in maize endosperm amyloplasts. Results show distinct patterns of protein-protein interactions in amyloplasts of ae(-) mutants compared with the wild type, suggesting functional complementation for loss of SBEIIb by SBEI, SBEIIa, and SP. Coimmunoprecipitation experiments and affinity chromatography using recombinant proteins showed that, in amyloplasts from normal endosperm, protein-protein interactions involving starch synthase I (SSI), SSIIa, and SBEIIb could be detected. By contrast, in ae(-) amyloplasts, SSI and SSIIa interacted with SBEI, SBEIIa, and SP. All interactions in the wild-type were strongly enhanced by ATP, and broken by alkaline phosphatase, indicating a role for protein phosphorylation in their assembly. Whilst ATP and alkaline phosphatase had no effect on the stability of the protein complexes from ae(-) endosperm, radiolabelling experiments showed SP and SBEI were both phosphorylated within the mutant protein complex. It is proposed that, during amylopectin biosynthesis, SSI and SSIIa form the core of a phosphorylation-dependent glucan-synthesizing protein complex which, in normal endosperm, recruits SBEIIb, but when SBEIIb is absent (ae(-)), recruits SBEI, SBEIIa, and SP. Differences in stromal protein complexes are mirrored in the complement of the starch synthesizing enzymes detected in the starch granules of each genotype, reinforcing the hypothesis that the complexes play a functional role in starch biosynthesis.
Collapse
Affiliation(s)
- Fushan Liu
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Teerawanichpan P, Lertpanyasampatha M, Netrphan S, Varavinit S, Boonseng O, Narangajavana J. Influence of Cassava Storage Root Development and Environmental Conditions on Starch Granule Size Distribution. STARCH-STARKE 2008. [DOI: 10.1002/star.200800226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Agama-Acevedo E, de la Rosa APB, Méndez-Montealvo G, Bello-Pérez LA. Physicochemical and Biochemical Characterization of Starch Granules Isolated of Pigmented Maize Hybrids. STARCH-STARKE 2008. [DOI: 10.1002/star.200800206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V. Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3395-406. [PMID: 18653693 PMCID: PMC2529236 DOI: 10.1093/jxb/ern198] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/09/2008] [Accepted: 06/24/2008] [Indexed: 05/20/2023]
Abstract
In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.
Collapse
Affiliation(s)
- Florent Grimaud
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| | - Hélène Rogniaux
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, IA 50011 USA
| | - Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, IA 50011 USA
| | - Véronique Planchot
- Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, F-44316 Nantes Cedex 03, France
| |
Collapse
|
40
|
Borén M, Glaring MA, Ghebremedhin H, Olsson H, Blennow A, Jansson C. Molecular and physicochemical characterization of the high-amylose barley mutant Amo1. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Silva F, Nogueira LC, Gonçalves C, Ferreira AA, Ferreira IM, Teixeira N. Electrophoretic and HPLC methods for comparative study of the protein fractions of malts, worts and beers produced from Scarlett and Prestige barley (Hordeum vulgare L.) varieties. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.06.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Glaring MA, Koch CB, Blennow A. Genotype-Specific Spatial Distribution of Starch Molecules in the Starch Granule: A Combined CLSM and SEM Approach. Biomacromolecules 2006; 7:2310-20. [PMID: 16903676 DOI: 10.1021/bm060216e] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starch granule types from a variety of botanical sources were selected to represent differences in crystalline polymorph, amylose and phosphate content, and amylopectin chain length distribution. Equimolar labeling of starch molecules with the fluorophore 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) was used to construct a detailed map of the distribution of amylose and amylopectin within the granule by confocal laser scanning microscopy (CLSM) analysis. Medium- and high-resolution scanning electron microscopy (SEM) were used to provide detailed images of granule surface structures. By using a combined surface and internal imaging approach, interpretations of a number of previous structural observations is presented. In particular, internal images of high amylose maize and potato suggest that multiple initiations of new granules are responsible for the compound or elongated structures observed in these starches. CLSM optical sections of rice granules revealed an apparent altered distribution of amylose in relation to the proposed growth ring structure, hinting at a novel mechanism of starch molecule deposition. Well-described granule features, such as equatorial grooves, channels, cracks, and growth rings were documented and related to both the internal and external observations. A new method for probing the phosphate distribution in native granules was developed using a phosphate-binding fluorescent dye and CLSM.
Collapse
Affiliation(s)
- Mikkel A Glaring
- Plant Biochemistry Laboratory, Center for Molecular Plant Physiology (PlaCe), Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
43
|
Alexander RD, Morris PC. A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics 2006; 6:1886-96. [PMID: 16470656 DOI: 10.1002/pmic.200500548] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are important eukaryotic regulatory proteins. Barley (Hordeum vulgare L.) 14-3-3A was over-expressed, immobilised and used to affinity purify 14-3-3 binding proteins from developing barley grains. Binding was shown to be phosphorylation-dependent. These proteins were fractionated by PAGE and identified by MALDI-TOF MS. In total, 54 14-3-3 binding proteins were identified, 49 of these interactions are novel to plants. These proteins fell into a number of functional categories. The largest category was for carbohydrate metabolism, including plastidic enzymes for starch synthesis and modification. 14-3-3 was shown to be present in isolated plastids. Four of five enzymes involved in sucrose biosynthesis from triose phosphates were identified, suggesting co-ordinated regulation of this pathway. Invertase and sucrose synthase, which break down sucrose to hexoses, were found. Sucrose synthase activity was shown to be inhibited by exogenous 14-3-3 in a dosage-dependent manner. The second-largest functional group was for proteins involved in stress and defence responses; for example, RGH2A, closely related to the MLA powdery mildew resistance protein, was found. This work illustrates the broad range of processes in which 14-3-3 may be involved, and augments previous data demonstrating key roles in carbohydrate metabolism and plant defence.
Collapse
|
44
|
Agrawal GK, Rakwal R. Rice proteomics: a cornerstone for cereal food crop proteomes. MASS SPECTROMETRY REVIEWS 2006; 25:1-53. [PMID: 15957154 DOI: 10.1002/mas.20056] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteomics-a systematic study of proteins present in a cell, tissue, organ, or organism at a particular moment during the life cycle-that began with classical two-dimensional electrophoresis and its advancement during the 1990s, has been revolutionized by a series of tremendous technological developments in mass spectrometry (MS), a core technology. Proteomics is exerting its influence on biological function of genes and genomes in the era (21st century) of functional genomics, and for this reason yeast, bacterial, and mammalian systems are the best examples. Although plant proteomics is still in its infancy, evolving proteomic technologies and the availability of the genome sequences of Arabidopsis thaliana (L.) Heyhn, and rice (Oryza sativa L.), model dicotyledoneous and monocotyledoneous (monocot) species, respectively, are propelling it towards new heights, as evidenced by the rapid spurt in worldwide plant proteome research. Rice, with an immense socio-economic impact on human civilization, is a representative model of cereal food crops, and we consider it as a cornerstone for functional genomics of cereal plants. In this review, we look at the history and the current state of monocot proteomes, including barley, maize, and wheat, with a central focus on rice, which has the most extensive proteomic coverage to date. On one side, we highlight advances in technologies that have generated enormous amount of interest in plant proteomics, and the other side summarizes the achievements made towards establishing proteomes during plant growth & development and challenge to environmental factors, including disease, and for studying genetic relationships. In light of what we have learned from the proteomic journey in rice and other monocots, we finally reveal and assess their impact in our continuous strive towards completion of their full proteomes.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal.
| | | |
Collapse
|
45
|
|
46
|
Rehulka P, Chmelík J, Allmaier G. The influence of nonspecific cleavage sites on identification of low molecular mass proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with seamless post-source decay fragment ion analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:79-82. [PMID: 15570568 DOI: 10.1002/rcm.1750] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|