1
|
Oh DH, Heo JW, Xia Q, Kim MS, Kim YS. Amine-crosslinked lignin for water pollution attributable to organic dye remediation: Versatile adsorbent for selective dye removal and reusability. Heliyon 2024; 10:e37497. [PMID: 39290289 PMCID: PMC11407063 DOI: 10.1016/j.heliyon.2024.e37497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Lignin, an abundant natural resource, has not been effectively utilized. In this study, the functionality of lignin was enhanced through amination to produce amine-crosslinked lignin, and its adsorption behavior toward cationic and anionic dyes was investigated. Chemical structure analysis confirmed the successful introduction of amine groups, thereby improving the molecular weight and thermal stability of the optimized amine-crosslinked lignin. Additionally, the amine-crosslinked lignin exhibited a larger specific surface area than kraft lignin, as well as excellent adsorption capacity for both anionic and cationic dyes. Furthermore, it selectively adsorbed anionic and cationic dyes depending on pH conditions. The adsorption kinetics were described using a pseudo-second-order model, and the adsorption isotherms for congo red and methyl green were determined using the Langmuir and Freundlich equations, respectively. Additionally, the reusability and adsorption efficiency of the optimized amine-crosslinked lignin were evaluated, confirming its stable and repeatable adsorption efficiency for congo red and methyl green even after five repeated cycles. The assumed adsorption mechanism was attributed to electrostatic interactions. Therefore, the successful synthesis and excellent adsorption properties of amine-crosslinked lignin suggest its promising potential for environmentally friendly and efficient removal of both cationic and anionic dyes, thereby offering a sustainable solution for wastewater treatment and remediation.
Collapse
Affiliation(s)
- Do Hun Oh
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Qian Xia
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
2
|
Paź‐Dyderska S, Jagodziński AM. Potential of reproductive traits in functional ecology: A quantitative comparison of variability in floral, fruit, and leaf traits. Ecol Evol 2024; 14:e11690. [PMID: 39026952 PMCID: PMC11255459 DOI: 10.1002/ece3.11690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Despite their claimed low intraspecific variability, plant reproductive traits are less frequently used in functional ecology. Here we focused on underrepresented plant organs, i.e. flowers and fruits, by comparing their traits with well-established leaf traits. We evaluated 16 functional traits (six floral, six fruit, and four leaf traits) in a randomly selected group of woody species under comparable environmental conditions. We aimed to assess interspecific and intraspecimen variability and explore the potential of the proposed flower and fruit traits for ecological research. Traits related to the dry mass of flowers and fruits exhibited the highest interspecific variability, while carbon content traits in flowers and leaves had the lowest. At a specimen level, specific leaf area revealed the highest variation. Carbon content traits for all organs demonstrated the least intraspecimen variability, with flower carbon content being the least variable. Our study revealed connections between the newly proposed traits and widely recognized functional traits, uncovering intriguing links between the established traits and the floral and fruit traits upon which we focused. This complements the already well-recognized variability in plant form and function with additional insights into reproductive processes.
Collapse
Affiliation(s)
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of SciencesKórnikPoland
- Poznań University of Life SciencesFaculty of Forestry and Wood Technology, Department of Game Management and Forest ProtectionPoznańPoland
| |
Collapse
|
3
|
Zheng B, Zhang L, Zhou Z, Chen S, Chen L, Li Y, Wu A, Li H. Understanding the dynamic evolution of hemicellulose during Pinus taeda L. growth. Int J Biol Macromol 2024; 273:132914. [PMID: 38844290 DOI: 10.1016/j.ijbiomac.2024.132914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.
Collapse
Affiliation(s)
- Biao Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liuyang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zibin Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Siyi Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Luoting Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Chuanpeng L, Shixiao Z, Jingyi JZH, Guiquan J, Ling S, Jiuyin P. Application and study on preparation of bio-asphalt by modified phenolic resin from corn straw tar. Int J Biol Macromol 2024; 271:132195. [PMID: 38816294 DOI: 10.1016/j.ijbiomac.2024.132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
XPS, GPC, FT-IR, and GC-MS analyses were conducted on corn straw tar and 70# petroleum asphalt. The results indicate that the sulfur content in corn straw tar is lower than that in petroleum asphalt, potentially mitigating the volatilization of harmful substances upon substituting petroleum asphalt. This finding serves as evidence for the substantial presence of phenolic substances in corn straw tar. Upon employing the BOX-Behnken response surface analysis and utilizing resin yield as the evaluation index, the significance of three factors was established as follows: reaction time > phenol molar ratio > straw tar content. Based on the secondary multiple regression model, the optimal conditions for synthetic resin production are a phenolic mole ratio of 0.8, a reaction time of 125 min, and a straw tar dosage of 10 %. An assessment of resin viscosity at different VI temperatures reveals that corn stover tar can partially replace phenol and formaldehyde in the condensation reaction. Additionally, viscosity improvement is observed at elevated temperatures. Thermal gravimetric(TG) spectroscopy indicates lower mass loss in B-PF resin at high temperatures compared to PF resin or corn stover tar. In the evaluation of biological bitumen performance, it is discerned that the mixing amount of the prepared biological bitumen should be controlled at approximately 10 % of its performance. This ensures optimal efficacy without adversely affecting the performance of petroleum bitumen.
Collapse
Affiliation(s)
- Li Chuanpeng
- School of Materials Science and Engineering, Beihua University, No. 3999 Binjiang East Road, Jilin 132013, PR China
| | - Zhang Shixiao
- School of Materials Science and Engineering, Beihua University, No. 3999 Binjiang East Road, Jilin 132013, PR China
| | - Jiang Zhanpeng He Jingyi
- School of Materials Science and Engineering, Beihua University, No. 3999 Binjiang East Road, Jilin 132013, PR China
| | - Jiang Guiquan
- School of Materials Science and Engineering, Beihua University, No. 3999 Binjiang East Road, Jilin 132013, PR China
| | - Su Ling
- Yantai Vacational College, 2018 Binhai Middle Road, Laishan District, Yantai 264670, PR China
| | - Pang Jiuyin
- School of Materials Science and Engineering, Beihua University, No. 3999 Binjiang East Road, Jilin 132013, PR China.
| |
Collapse
|
5
|
He L, Liu P, Mei L, Luo H, Ban T, Chen X, Ma B. Disease resistance features of the executor R gene Xa7 reveal novel insights into the interaction between rice and Xanthomonas oryzae pv. oryzae. FRONTIERS IN PLANT SCIENCE 2024; 15:1365989. [PMID: 38633460 PMCID: PMC11021754 DOI: 10.3389/fpls.2024.1365989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a widespread and destructive disease in rice production. Previously, we cloned an executor R gene, Xa7, which confers durable and broad-spectrum resistance to BB. Here, we further confirmed that the transcription activator-like effector (TALE) AvrXa7 in Xoo strains could directly bind to the effector-binding element (EBE) in the promoter of the Xa7 gene. Other executor R genes (Xa7, Xa10, Xa23, and Xa27) driven by the promoter of the Xa7 gene could be activated by AvrXa7 and trigger the hypersensitive response (HR) in tobacco leaves. When the expression of the Xa23 gene was driven by the Xa7 promoter, the transgenic rice plants displayed a similar resistance spectrum as the Xa7 gene, demonstrating that the disease resistance characteristics of executor R genes are mainly determined by their induction patterns. Xa7 gene is induced locally by Xoo in the infected leaves, and its induction not only inhibited the growth of incompatible strains but also enhanced the resistance of rice plants to compatible strains, which overcame the shortcomings of its race-specific resistance. Transcriptome analysis of the Xa7 gene constitutive expression in rice plants displayed that Xa7-mediated disease resistance was related to the biosynthesis of lignin and thus enhanced resistance to Xoo. Overall, our results provided novel insights and important resources for further clarifying the molecular mechanisms of the executor R genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bojun Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Uddin N, Li X, Ullah MW, Sethupathy S, Ma K, Zahoor, Elboughdiri N, Khan KA, Zhu D. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int J Biol Macromol 2024; 260:129595. [PMID: 38253138 DOI: 10.1016/j.ijbiomac.2024.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Li
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Keyu Ma
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
7
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
8
|
García-Fernández C, Jurado M, Campa A, Bitocchi E, Papa R, Ferreira JJ. Genetic control of pod morphological traits and pod edibility in a common bean RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:6. [PMID: 38091106 PMCID: PMC10719158 DOI: 10.1007/s00122-023-04516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.
Collapse
Affiliation(s)
- Carmen García-Fernández
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain.
| | - Maria Jurado
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Elena Bitocchi
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
9
|
Aitouguinane M, El Alaoui-Talibi Z, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Le Cerf D, Rihouey C, Gardarin C, Dubessay P, Michaud P, Pierre G, Delattre C, El Modafar C. Elicitor Activity of Low-Molecular-Weight Alginates Obtained by Oxidative Degradation of Alginates Extracted from Sargassum muticum and Cystoseira myriophylloides. Mar Drugs 2023; 21:301. [PMID: 37233495 PMCID: PMC10222107 DOI: 10.3390/md21050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.
Collapse
Affiliation(s)
- Meriem Aitouguinane
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| | - Halima Rchid
- Laboratoire de Biotechnologies et Valorisation des Ressources Végétales, Faculté des Sciences, Université Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Mohamed Didi Ould El-Hadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Zakaria Boual
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, F-75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| |
Collapse
|
10
|
Rencoret J, Marques G, Rosado MJ, Benito J, Barro F, Gutiérrez A, Del Río JC. Variations in the composition and structure of the lignins of oat (Avena sativa L.) straws according to variety and planting season. Int J Biol Macromol 2023; 242:124811. [PMID: 37187416 DOI: 10.1016/j.ijbiomac.2023.124811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (9-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws varies with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain.
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Javier Benito
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Francisco Barro
- Instituto de Agricultura Sostenible (IAS), CSIC, Córdoba, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| |
Collapse
|
11
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
12
|
Boarino A, Klok HA. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2023; 24:1065-1077. [PMID: 36745923 PMCID: PMC10015462 DOI: 10.1021/acs.biomac.2c01385] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exploration of renewable resources is essential to help transition toward a more sustainable materials economy. The valorization of lignin can be a key component of this transition. Lignin is an aromatic polymer that constitutes approximately one-third of the total lignocellulosic biomass and is isolated in huge quantities as a waste material of biofuel and paper production. About 98% of the 100 million tons of lignin produced each year is simply burned as low-value fuel, so this renewable polymer is widely available at very low cost. Lignin has valuable properties that make it a promising material for numerous applications, but it is far from being fully exploited. The aim of this Perspective is to highlight opportunities and challenges for the use of lignin-based materials in food packaging, antimicrobial, and agricultural applications. In the first part, the ongoing research and the possible future developments for the use of lignin as an additive to improve mechanical, gas and UV barrier, and antioxidant properties of food packaging items will be treated. Second, the application of lignin as an antimicrobial agent will be discussed to elaborate on the activity of lignin against bacteria, fungi, and viruses. Finally, the use of lignin in agriculture will be presented by focusing on the application of lignin as fertilizer.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Anoop AA, Pillai PKS, Nickerson M, Ragavan KV. Plant leaf proteins for food applications: Opportunities and challenges. Compr Rev Food Sci Food Saf 2023; 22:473-501. [PMID: 36478122 DOI: 10.1111/1541-4337.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Plant-based proteins are gaining a lot of attention for their health benefits and are considered as an alternative to animal proteins for developing sustainable food systems. Against the backdrop, ensuring a healthy diet supplemented with good quality protein will be a massive responsibility of governments across the globe. Increasing the yield of food crops has its limitations, including low acceptance of genetically modified crops, land availability for cultivation, and the need for large quantities of agrochemicals. It necessitates the sensible use of existing resources and farm output to derive the proteins. On average, the protein content of plant leaves is similar to that of milk, which can be efficiently tapped for food applications across the globe. There has been limited research on utilizing plant leaf proteins for food product development over the years, which has not been fruitful. However, the current global food production scenario has pushed some leading economies to reconsider the scope of plant leaf proteins with dedicated efforts. It is evident from installing pilot-scale demonstration plants for protein extraction from agro-food residues to cater to the protein demand with product formulation. The present study thoroughly reviews the opportunities and challenges linked to the production of plant leaf proteins, including its nutritional aspects, extraction and purification strategies, anti-nutritional factors, functional and sensory properties in food product development, and finally, its impact on the environment. Practical Application: Plant leaf proteins are one of the sustainable and alternative source of proteins. It can be produced in most of the agroclimatic conditions without requiring much agricultural inputs. It's functional properties are unique and finds application in novel food product formulations.
Collapse
Affiliation(s)
- A A Anoop
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prasanth K S Pillai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - K V Ragavan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Wan K, Tian B, Zhai Y, Liu Y, Wang H, Liu S, Li S, Ye W, An Z, Li C, Li J, James TD, Chen Z. Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation. Nat Commun 2022; 13:5508. [PMID: 36127373 PMCID: PMC9489714 DOI: 10.1038/s41467-022-33273-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/10/2022] [Indexed: 11/15/2022] Open
Abstract
Sustainable afterglow room temperature phosphorescence (RTP) materials, especially afterglow RTP structural materials, are crucial but remain difficult to achieve. Here, an oxidation strategy is developed to convert lignin to afterglow materials with a lifetime of ~ 408 ms. Specifically, lignin is oxidized to give aromatic chromophores and fatty acids using H2O2. The aromatic chromophores are locked by a fatty acid-based matrix by hydrogen bonds, triggering enhanced spin orbit coupling and long afterglow emission. More interestingly, motivated by this discovery, an auto fabrication line is built to convert wood (natural structural materials) to wood with afterglow RTP emission (RTP wood) via in situ oxidation of naturally-occurring lignin located in the wood cell walls to oxidized lignin (OL). The as-prepared RTP wood exhibits great potential for the construction of sustainable afterglow furniture. With this research we provide a new strategy to promote the sustainability of afterglow RTP materials and structural materials. Sustainable afterglow room temperature phosphorescence (RTP) Structural materials are difficult to achieve. Here, the authors demonstrate a wood based RTP material by oxidation of lignin to realize an afterglow RTP material with a lifetime of ~ 408 ms.
Collapse
Affiliation(s)
- Keliang Wan
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Bing Tian
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Yingxiang Zhai
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - He Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Shouxin Liu
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China.
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China.
| |
Collapse
|
16
|
Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186055. [PMID: 36144795 PMCID: PMC9500909 DOI: 10.3390/molecules27186055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; however, its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity. Conversely, the various pre-treatments techniques and valorization strategies offers a potential solution for developing a biomass-based biorefinery. Thus, the current review focus on the new isolation techniques for lignin, various pre-treatment approaches and biocatalytic methods for the synthesis of sustainable value-added products. Meanwhile, the challenges and prospective for the green synthesis of various biomolecules via utilizing the complicated hetero-polymer lignin are also discussed.
Collapse
|
17
|
Melelli A, Jamme F, Beaugrand J, Bourmaud A. Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydr Polym 2022; 291:119584. [DOI: 10.1016/j.carbpol.2022.119584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
18
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
19
|
Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1776-1793. [PMID: 35394636 DOI: 10.1007/s11427-022-2083-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
Cotton fiber is a highly elongated and thickened single cell that produces large quantities of cellulose, which is synthesized and assembled into cell wall microfibrils by the cellulose synthase complex (CSC). In this study, we report that in cotton (Gossypium hirsutum) fibers harvested during secondary cell wall (SCW) synthesis, GhCesA 4, 7, and 8 assembled into heteromers in a previously uncharacterized 36-mer-like cellulose synthase supercomplex (CSS). This super CSC was observed in samples prepared using cotton fiber cells harvested during the SCW synthesis period but not from cotton stem tissue or any samples obtained from Arabidopsis. Knock-out of any of GhCesA 4, 7, and 8 resulted in the disappearance of the CSS and the production of fiber cells with no SCW thickening. Cotton fiber CSS showed significantly higher enzyme activity than samples prepared from knock-out cotton lines. We found that the microfibrils from the SCW of wild-type cotton fibers may contain 72 glucan chains in a bundle, unlike other plant materials studied. GhCesA4, 7, and 8 restored both the dwarf and reduced vascular bundle phenotypes of their orthologous Arabidopsis mutants, potentially by reforming the CSC hexamers. Genetic complementation was not observed when non-orthologous CesA genes were used, indicating that each of the three subunits is indispensable for CSC formation and for full cellulose synthase function. Characterization of cotton CSS will increase our understanding of the regulation of SCW biosynthesis.
Collapse
|
20
|
Lin H, Wang M, Chen Y, Nomura K, Hui S, Gui J, Zhang X, Wu Y, Liu J, Li Q, Deng Y, Li L, Yuan M, Wang S, He SY, He Z. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. SCIENCE ADVANCES 2022; 8:eabg8723. [PMID: 35263144 PMCID: PMC8906744 DOI: 10.1126/sciadv.abg8723] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Global crop production is greatly reduced by vascular diseases. These diseases include bacterial blight of rice and crucifer black rot caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas campestris pv. campestris (Xcc). The molecular mechanisms that activate vascular defense against such pathogens remains underexplored. Here, we show that an Arabidopsis MAPK phosphatase 1 (MKP1) mutant has increased host susceptibility to the adapted pathogen Xcc and is compromised in nonhost resistance to the rice pathogen Xoo. MKP1 regulates MAPK-mediated phosphorylation of the transcription factor MYB4 that negatively regulates vascular lignification through inhibiting lignin biosynthesis. Induction of lignin biosynthesis is, therefore, an important part of vascular-specific immunity. The role of MKP-MAPK-MYB signaling in lignin biosynthesis and vascular resistance to Xoo is conserved in rice, indicating that these factors form a tissue-specific defense regulatory network. Our study likely reveals a major vascular immune mechanism that underlies tissue-specific disease resistance against bacterial pathogens in plants.
Collapse
Affiliation(s)
- Hui Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muyang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiawei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Zuhua He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author.
| |
Collapse
|
21
|
Wang J, Li J, Li Z, Liu B, Zhang L, Guo D, Huang S, Qian W, Guo L. Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. HORTICULTURE RESEARCH 2022; 9:uhac021. [PMID: 35184175 PMCID: PMC9071379 DOI: 10.1093/hr/uhac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 05/25/2023]
Abstract
Longan (Dimocarpus longan) is a subtropical fruit best known for its nutritious fruit and regarded as a precious tonic and traditional medicine since ancient times. High-quality chromosome-scale genome assembly is valuable for functional genomic study and genetic improvement of longan. Here, we report a chromosome-level reference genome sequence for longan cultivar JDB with an assembled genome of 455.5 Mb in size anchored to fifteen chromosomes, representing a significant improvement of contiguity (contig N50 = 12.1 Mb, scaffold N50 = 29.5 Mb) over a previous draft assembly. A total of 40 420 protein-coding genes were predicted in D. longan genome. Synteny analysis suggests longan shares the widespread gamma event with core eudicots, but has no other whole genome duplications. Comparative genomics showed that D. longan genome experienced significant expansions of gene families related to phenylpropanoid biosynthesis and UDP-glucosyltransferase. Deep genome sequencing analysis of longan cultivars identified longan biogeography as a major contributing factor for genetic diversity, and revealed a clear population admixture and introgression among cultivars of different geographic origins, postulating a likely migration trajectory of longan overall confirmed by existing historical records. Finally, genome-wide association studies (GWAS) of longan cultivars identified quantitative trait loci (QTL) for six different fruit quality traits and revealed a shared QTL containing three genes for total soluble solid and seed weight. The chromosome-level reference genome assembly, annotation and population genetic resource for D. longan will facilitate the molecular studies and breeding of desirable longan cultivars in the future.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zaiyuan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Zhang
- Weifang Institute of Technology, Weifang, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wanqiang Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Rajakani R, Sellamuthu G, Ishikawa T, Ahmed HAI, Bharathan S, Kumari K, Shabala L, Zhou M, Chen ZH, Shabala S, Venkataraman G. Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of Oryza coarctata are associated with Na+ sequestration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:998-1015. [PMID: 34606587 DOI: 10.1093/jxb/erab440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Oryza coarctata is the only wild rice species with significant salinity tolerance. The present work examines the role of the substantial rhizomatous tissues of O. coarctata in conferring salinity tolerance. Transition to an erect phenotype (shoot emergence) from prostrate growth of rhizome tissues is characterized by marked lignification and suberization of supporting sclerenchymatous tissue, epidermis, and bundle sheath cells in aerial shoot-proximal nodes and internodes in O. coarctata. With salinity, however, aerial shoot-proximal internodal tissues show reductions in lignification and suberization, most probably related to re-direction of carbon flux towards synthesis of the osmporotectant proline. Concurrent with hypolignification and reduced suberization, the aerial rhizomatous biomass of O. coarctata appears to have evolved mechanisms to store Na+ in these specific tissues under salinity. This was confirmed by histochemical staining, quantitative real-time reverse transcription-PCR expression patterns of genes involved in lignification/suberization, Na+ and K+ contents of internodal tissues, as well as non-invasive microelectrode ion flux measurements of NaCl-induced net Na+, K+, and H+ flux profiles of aerial nodes were determined. In O. coarctata, aerial proximal internodes appear to act as 'traffic controllers', sending required amounts of Na+ and K+ into developing leaves for osmotic adjustment and turgor-driven growth, while more deeply positioned internodes assume a Na+ buffering/storage role.
Collapse
Affiliation(s)
- Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague-16500, Czech Republic
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said 42522, Egypt
| | - Subhashree Bharathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| |
Collapse
|
23
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Moreno-Anguiano O, Carrillo-Parra A, Rutiaga-Quiñones JG, Wehenkel C, Pompa-García M, Márquez-Montesino F, Pintor-Ibarra LF. Chemical composition of Luffa aegyptiaca Mill., Agave durangensis Gentry and Pennisetum sp. PeerJ 2021; 9:e10626. [PMID: 33552718 PMCID: PMC7831367 DOI: 10.7717/peerj.10626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
The particleboard industry faces problems of wood shortage, which has led to the use of non-wood lignocellulosic materials. Furthermore, there is also interest in looking for materials that improve their physical and mechanical properties. The species Luffa aegyptiaca Mill. (fruit), Agave durangensis Gentry (bagasse) and Pennisetum sp. (plant, leaves and stem) could be used in the elaboration of wood-based particleboards. The aim of this study is to determine the feasibility of using these materials to produce particleboards in accordance with their chemical composition. Five materials were studied, A. durangensis (bagasse), L. aegyptiaca (fruit) and Pennisetum sp. (whole plant, leaves and stem). Extractives, holocellulose, Runkel lignin and ash content was determined. The pH of the fibers was also measured and a microanalysis of the ash was performed. ANOVA and Kruskal-Wallis tests were carried out, in addition Tukey and Dunn tests for group comparison were performed. Pennisetum sp. leaves presented the highest total extractives and ash content, while L. aegyptiaca fruit and A. durangensis bagasse had the highest both content of holocellulose and Runkel lignin respectively. The lowest pH was presented by the L. aegyptiaca fruit, while the highest was from the Pennisetum sp. stem. The element with the greatest presence in the five materials was potassium, except in A. durangensis bagasse showing calcium. L. aegyptiaca fruit has better characteristics to be used in particleboards with greater mechanical resistance because of its higher holocellulose content. However, Pennisetum sp. (plant, leaves and stem) could be used to make particleboards with high resistance to water absorption.
Collapse
Affiliation(s)
- Oswaldo Moreno-Anguiano
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - Artemio Carrillo-Parra
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - José G Rutiaga-Quiñones
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - Marín Pompa-García
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | | | - Luis F Pintor-Ibarra
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
25
|
Jamet E, Dunand C, Popper ZA. Editorial: Co-Evolution of Plant Cell Wall Polymers. FRONTIERS IN PLANT SCIENCE 2020; 11:598299. [PMID: 33072157 PMCID: PMC7531020 DOI: 10.3389/fpls.2020.598299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 06/02/2023]
Affiliation(s)
- Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Ryan Institute for Environmental, Marine, and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
26
|
Mottiar Y, Gierlinger N, Jeremic D, Master ER, Mansfield SD. Atypical lignification in eastern leatherwood (Dirca palustris). THE NEW PHYTOLOGIST 2020; 226:704-713. [PMID: 31883117 PMCID: PMC7187453 DOI: 10.1111/nph.16394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/11/2019] [Indexed: 05/30/2023]
Abstract
Lignin is a complex phenolic biopolymer found mainly in the secondary cell walls of vascular plants, where it contributes to mechanical strength, water conduction, and plant defence. We studied the lignin of eastern leatherwood (Dirca palustris) because this slow-growing woody shrub is known for its flexible stems. Various analytical techniques and microscopy methods were employed to examine the composition and distribution of lignin and structural polysaccharides in leatherwood xylem in comparison with trembling aspen (Populus tremuloides) and white spruce (Picea glauca). We found that leatherwood has low overall levels of lignin, a high syringyl lignin content, and a unique distribution of lignin. Most remarkably, the cell corners and middle lamellae remain unlignified in mature xylem. These findings help explain the flexibility of leatherwood and also call into question the classical model of lignification, which purports that lignin polymerization begins in the cell corners and middle lamellae. This atypical lignification regime vividly illustrates the diversity in plant secondary cell wall formation that abounds in nature and casts leatherwood as a new model for the study of lignin biogenesis.
Collapse
Affiliation(s)
- Yaseen Mottiar
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
| | - Notburga Gierlinger
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences ViennaMuthgasse 11Vienna1190Austria
| | - Dragica Jeremic
- Department of Sustainable BioproductsMississippi State UniversityBox 9680StarkvilleMS39759USA
| | - Emma R. Master
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British Columbia2424 Main MallVancouverBCV6T 1Z4Canada
| |
Collapse
|
27
|
Su B, Chen X. Current Status and Potential of Moringa oleifera Leaf as an Alternative Protein Source for Animal Feeds. Front Vet Sci 2020; 7:53. [PMID: 32175333 PMCID: PMC7054280 DOI: 10.3389/fvets.2020.00053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
The increased consumption of livestock, poultry, and fish products in people's diet threatens to drive production toward the use of more and more conventional crops in animal feeds. In this context, alleviating the tightening grain crop supply and ensuring the healthy development of animal husbandry through innovations in protein feedstuff production remain considerable challenges. Moringa oleifera is a miracle tree species with abundant nutrients, high protein biological value, and good feeding effect. As a new protein feedstuff, M. oleifera has great potential in alleviating the feeding crisis. Here, we review available literature regarding the characterization of M. oleifera in the field of animal husbandry in terms of nutrient content, digestion, and absorption characteristics, and feeding effects and present current challenges in using M. oleifera as animal feed.
Collapse
Affiliation(s)
- Bin Su
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
| |
Collapse
|
28
|
Markel K, Belcher MS, Shih PM. Defining and engineering bioenergy plant feedstock ideotypes. Curr Opin Biotechnol 2019; 62:196-201. [PMID: 31841969 DOI: 10.1016/j.copbio.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 02/04/2023]
Abstract
Ideotypes are theoretical archetypes of crops which serve as a practical framework for plant breeders to critically evaluate what traits they should be targeting for specific applications. With advances in plant biotechnology and a growing urgency to adopt more sustainable practices across our economy, new uses for crops as bioenergy feedstocks may pivot our definition of an ideal crop that is engineered for biomass and bioenergy production, in contrast to food production. Although there is a plethora of specific applications to which plant engineering efforts can contribute, here we highlight recent advances in two broad areas of research: increasing available plant biomass and engineering production of higher value co-products.
Collapse
Affiliation(s)
- Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Michael S Belcher
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick M Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, United States; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States; Genome Center, University of California, Davis, Davis, CA, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
29
|
Costa R, Lourenço A, Oliveira V, Pereira H. Chemical characterization of cork, phloem and wood from different Quercus suber provenances and trees. Heliyon 2019; 5:e02910. [PMID: 31872113 PMCID: PMC6909139 DOI: 10.1016/j.heliyon.2019.e02910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 11/28/2022] Open
Abstract
Sustainability of cork oak (Quercus suber) forests is threatened by biotic and abiotic factors and characterization of potentially differing genetic resources has therefore gained importance. This work addresses the chemical variation of the three tissues of cork oak stems – cork, phloem and wood – in relation to tree and provenance, looking for genetic chemical diversity and for physiological derived differences. The three tissues differ with cork clearly differentiating regarding summative composition, component ratios and monomeric composition. Cork is the only tissue where suberin is present (42.3% o.d. mass) as the main cell wall component, and it has a high content of extractives (11.7%) with significant proportion of lipophilic compounds. Phloem is more lignified than wood (38.0% vs. 23.4%) and has less polysaccharides (49.1% vs. 64.6%) with glucose-to-other sugars relation of 1:1.3 in phloem and 1:0.7 in wood. Analytical pyrolysis showed that lignification is a heterogeneous process and the lignin monomeric composition depends on tissue and cell type: cork lignin has a H:G:S ratio of 1:2.5:0.3 and S/G ratio of 0.12, while phloem and wood lignins have mainly G and S units with a S/G ratio of respectively 1.1 and 2.3. No significant differences were found between the three provenances, but some chemical variation occurred between the trees within a provenance. NIR spectroscopy and principal component analysis differentiated cork, phloem and wood, while the dispersion within each group highlighted the significant tree variability, while provenances were a non-significant factor of chemical variation.
Collapse
Affiliation(s)
- Ricardo Costa
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Ana Lourenço
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Vanda Oliveira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| |
Collapse
|
30
|
Guedes LM, Aguilera N, Ferreira BG, Riquelme S, Sáez-Carrillo K, Becerra J, Pérez C, Bustos E, Isaias RMS. Spatiotemporal variation in phenolic levels in galls of calophyids on Schinus polygama (Anacardiaceae). JOURNAL OF PLANT RESEARCH 2019; 132:509-520. [PMID: 31250145 DOI: 10.1007/s10265-019-01118-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The expression of plant secondary metabolism is strongly controlled by plant both in time and space. Although the variation of secondary metabolites, such as soluble and structural phenolics (e.g., lignins), has been largely observed in gall-inducing insects, and compared to their non-galled host organs, only a few datasets recording such variation are available. Accordingly, the relative importance of spatiotemporal variability in phenolic contents, and the influence of gall developmental stages on the original composition of host organs are poorly discussed. To address this knowledge gap, we histochemically determined the sites of polyphenol and lignin accumulation, and the polyphenol contents in three developmental stages of two calophyid galls and their correspondent host organs. Current results indicate that the compartmentalization of phenolics and lignins on Schinus polygama (Cav.) Cabrera follows a similar pattern in the two-calophyid galls, accumulating in the outer (the external tissue layers) and in the inner tissue compartments (the cell layers in contact with the gall chamber). The non-accumulation in the median compartment (median parenchyma layers of gall wall with vascular bundles, where gall inducer feeds) is important for the inducer, because its mouth apparatus enter in contact with the cells of this compartment. Also, the concentration of phenolics has opposite dynamics, decreasing in leaf galls and increasing in stem galls, in temporal scale, i.e., from maturation toward senescence. The concentration of phenolics in non-galled host organs, and in both galls indicated the extended phenotype of Calophya rubra (Blanchard) and C. mammifex Burckhardt & Basset (Hemiptera: Sternorrhyncha: Psylloidea: Calophyidae) over the same host plant metabolic potentiality.
Collapse
Affiliation(s)
- Lubia M Guedes
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Narciso Aguilera
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Bruno G Ferreira
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Sebastián Riquelme
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Ave. Cordillera 2634, CP 4191996, Coronel, Chile
| | - Katia Sáez-Carrillo
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - José Becerra
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Claudia Pérez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Evelyn Bustos
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Rosy M S Isaias
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-090, Brazil.
| |
Collapse
|
31
|
Liu W, Zhang J, Jiao C, Yin X, Fei Z, Wu Q, Chen K. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat ( Eriobotrya japonica) fruit. HORTICULTURE RESEARCH 2019; 6:49. [PMID: 30962941 PMCID: PMC6441654 DOI: 10.1038/s41438-019-0131-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 05/18/2023]
Abstract
Loquat (Eriobotrya japonica) fruit accumulates lignin during postharvest storage under chilling conditions (0 °C), while low-temperature conditioning (LTC; 5 °C for 6 days followed by transfer to 0 °C) or heat treatment (HT; 40 °C for 4 h followed by transfer to 0 °C) can alleviate lignification. Here we compared transcriptome profiles of loquat fruit samples under LTC or HT to those stored at 0 °C at five time points from day 1 to day 8 after treatment. High-throughput transcriptome sequences were de novo assembled into 53,319 unique transcripts with an N50 length of 1306 bp. A total of 2235 differentially expressed genes were identified in LTC, and 1020 were identified in HT compared to 0 °C. Key genes in the lignin biosynthetic pathway, including EjPAL2, EjCAD1, EjCAD3, 4CL, COMT, and HCT, were responsive to LTC or HT treatment, but they showed different expression patterns during the treatments, indicating that different structural genes could regulate lignification at different treatment stages. Coexpression network analysis showed that these candidate biosynthetic genes were associated with a number of transcription factors, including those belonging to the AP2, MYB, and NAC families. Gene ontology (GO) enrichment analysis of differentially expressed genes indicated that biological processes such as stress responses, cell wall and lignin metabolism, hormone metabolism, and metal ion transport were significantly affected under LTC or HT treatment when compared to 0 °C. Our analyses provide insights into transcriptome responses to postharvest treatments in loquat fruit.
Collapse
Affiliation(s)
- Wenli Liu
- School of Mathematical Science, Zhejiang University, Yuquan Campus, 310027 Hangzhou, P.R. China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, 310058 Hangzhou, P.R. China
| | - Jing Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, 310058 Hangzhou, P.R. China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, 310058 Hangzhou, P.R. China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853 USA
| | - Qingbiao Wu
- School of Mathematical Science, Zhejiang University, Yuquan Campus, 310027 Hangzhou, P.R. China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, 310058 Hangzhou, P.R. China
| |
Collapse
|
32
|
Aschenbrenner J, Marx P, Pietruszka J, Marienhagen J. Microbial Production of Natural and Unnatural Monolignols with
Escherichia coli. Chembiochem 2019; 20:949-954. [DOI: 10.1002/cbic.201800673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Jennifer Aschenbrenner
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Patrick Marx
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jörg Pietruszka
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
- Institute of Bioorganic ChemistryHeinrich Heine University of Düsseldorf at Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jan Marienhagen
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| |
Collapse
|
33
|
Enzymatic hydrolysis of tropical weed xylans using xylanase from Aureobasidium melanogenum PBUAP46 for xylooligosaccharide production. 3 Biotech 2019; 9:56. [PMID: 30729080 DOI: 10.1007/s13205-019-1586-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022] Open
Abstract
The maximum yield of xylanase from Aureobasidium melanogenum PBUAP46 was 5.19 ± 0.08 U ml-1 when cultured in a production medium containing 3.89% (w/v) rice straw and 0.75% (w/v) NaNO3 as carbon and nitrogen sources, respectively, for 72 h. This enzyme catalyzed well and was relatively stable at pH 7.0 and room temperature (28 ± 2 °C). The produced xylanase was used to hydrolyze xylans from four tropical weeds, whereupon it was found that the highest amounts of reducing sugars in the xylan hydrolysates of cogon grass (Imperata cylindrical), Napier grass (Pennisetum purpureum), and vetiver grass (Vetiveria zizanioides) were at 20.44 ± 0.84, 17.50 ± 0.29, and 19.44 ± 0.40 mg 100 mg xylan-1, respectively, but it was not detectable in water hyacinth (Eichhornia crassipes) hydrolysate. The highest combined amount of xylobiose and xylotriose was obtained from vetiver grass; thus, it was selected for further optimization. After optimization, xylanase digestion of vetiver grass xylan at 27.94 U g xylan-1 for 92 h 19 min gave the highest amount of reducing sugars (23.65 ± 1.34 mg 100 mg xylan-1), which were principally xylobiose and xylotriose. The enriched XOs exhibited a prebiotic property, significantly stimulating the growth of Lactobacillus brevis and L. casei by a factor of up to 3.5- and 6.5-fold, respectively, compared to glucose.
Collapse
|
34
|
Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, Jusoh A, Lam WH, Ibrahim MD, Ma NL, Lam SS. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. BIORESOURCE TECHNOLOGY 2018; 266:1-10. [PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
Collapse
Affiliation(s)
- Rock Keey Liew
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Elfina Azwar
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Peter Nai Yuh Yek
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; School of Engineering and Technology, University College of Technology Sarawak, Lot 88, Persiaran Brooke, 96000 Sibu, Sarawak, Malaysia
| | - Xin Yi Lim
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Jo-Han Ng
- Faculty of Engineering and the Environment, University of Southampton Malaysia Campus, Iskandar Puteri, Johor, Malaysia
| | - Ahmad Jusoh
- School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wei Haur Lam
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Peiyang Park Campus, 135 Yaguan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Mohd Danial Ibrahim
- Department of Mechanical & Manufacturing, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Dato Mohd Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Nyuk Ling Ma
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
35
|
Prats-Mateu B, Felhofer M, de Juan A, Gierlinger N. Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? PLANT METHODS 2018; 14:52. [PMID: 29997681 PMCID: PMC6031114 DOI: 10.1186/s13007-018-0320-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once. RESULTS Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained. CONCLUSIONS VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands.
Collapse
Affiliation(s)
- Batirtze Prats-Mateu
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Anna de Juan
- Chemometrics Group, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Notburga Gierlinger
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
- Institute for Building Materials, Eidgenössische Technische Hochschule Zurich Hönggerberg, 8093 Zurich, Switzerland
- Applied Wood Research Laboratory, Empa-Swiss Federal Laboratories for Material Testing and Research, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
36
|
Nam WL, Phang XY, Su MH, Liew RK, Ma NL, Rosli MHNB, Lam SS. Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:9-16. [PMID: 29245037 DOI: 10.1016/j.scitotenv.2017.12.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/09/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Microwave vacuum pyrolysis of palm kernel shell (PKS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach produced biochar containing a highly porous structure with a high BET surface area of up to 270m2/g and low moisture content (≤10wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar recorded an impressive growth rate and a monthly production of up to about 550g of mushroom. A shorter time for mycelium growth on one whole baglog (21days) and the highest yield of Oyster mushroom (550g) were obtained from cultivation medium added with 20g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produced from microwave vacuum pyrolysis of PKS shows exceptional promise as growth promoting material for mushroom cultivation.
Collapse
Affiliation(s)
- Wai Lun Nam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Xue Yee Phang
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Man Huan Su
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nyuk Ling Ma
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | | | - Su Shiung Lam
- Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group, School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
37
|
do Nascimento SV, Magalhães MM, Cunha RL, Costa PHDO, Alves RCDO, de Oliveira GC, Valadares RBDS. Differential accumulation of proteins in oil palms affected by fatal yellowing disease. PLoS One 2018; 13:e0195538. [PMID: 29621343 PMCID: PMC5886584 DOI: 10.1371/journal.pone.0195538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
There is still no consensus on the true origin of fatal yellowing, one of the most important diseases affecting oil palm (Elaeis guineensis Jacq.) plantations. This study involved two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-UPLC-MSE) analyses to identify changes in protein profiles of oil palms affected by FY disease. Oil palm roots were sampled from two growing areas. Differential accumulation of proteins was assessed by comparing plants with and without symptoms and between plants at different stages of FY development. Most of the proteins identified with differential accumulation were those related to stress response and energy metabolism. The latter proteins include the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, related to alcohol fermentation, which were identified in plants with and without symptoms. The presence of these enzymes suggests an anaerobic condition before or during FY. Transketolase, isoflavone reductase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, S-adenosylmethionine synthase, aldehyde dehydrogenase and ferritin, among others, were identified as potential marker proteins and could be used to guide selection of FY-tolerant oil palm genotypes or to understand the source of this anomaly. When comparing different stages of FY, we observed high accumulation of alcohol dehydrogenase and other abiotic stress related-proteins at all disease stages. On the other hand, biological stress-related proteins were more accumulated at later stages of the disease. These results suggest that changes in abiotic factors can trigger FY development, creating conditions for the establishment of opportunistic pathogens.
Collapse
Affiliation(s)
- Sidney Vasconcelos do Nascimento
- Instituto Tecnológico Vale, Belém, Pará, Brazil
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agropecuária, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil
| | | | - Roberto Lisboa Cunha
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agropecuária, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil
- Analysis of sustainable system laboratory, Embrapa Amazônia Oriental, Belém, Pará, Brazil
| | | | | | | | - Rafael Borges da Silva Valadares
- Instituto Tecnológico Vale, Belém, Pará, Brazil
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agropecuária, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil
| |
Collapse
|
38
|
Liew RK, Chong MY, Osazuwa OU, Nam WL, Phang XY, Su MH, Cheng CK, Chong CT, Lam SS. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3388-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Chen A, Wang S. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:30-43. [PMID: 30939256 DOI: 10.1071/fp18099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/15/2018] [Indexed: 05/25/2023]
Abstract
Chilling stress increases the amount of polyphenols, especially lignin, which protects tobacco (Nicotiana tabacum L. cv. k326) from chilling stress. To clarify the molecular biosynthesis mechanism of the key representative compounds, specifically lignin, RNA sequencing and ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass spectrometry technologies were used to construct transcriptomic and metabolomic libraries from the leaves of tobacco plants subjected to normal (25°C) and chilling (4°C) temperature treatments. Transcriptomic libraries from the different samples were sequenced, generating more than 40million raw reads. Among nine samples, metabolomic analysis identified a total of 97 encoding enzymes that function in the key steps of pathways related to polyphenol biosynthesis, where 42 metabolites were also located. An integrated analysis of metabolic and transcriptomic data revealed that most of the intermediate metabolites and enzymes related to lignin biosynthesis were synthesised in the leaves under chilling stress, which suggests that the biosynthesis of lignin plays an important role in the response of tobacco leaves to cold temperatures. In addition, the cold insensitivity of chalcone synthase genes might be considered to be an important rate-limiting factor in the process of precursor substance flow to flavonoid biosynthesis under chilling stress. Furthermore, the upregulated expression of phenylalanine ammonia lyase (PAL), hydroxycinnamoyl transferase (HCT) and cinnamyl-alcohol dehydrogenase (CAD) under chilling stress is the key to an increase in lignin synthesis. This study provides a hypothetical basis for the screening of new active metabolites and the metabolic engineering of polyphenols in tobacco.
Collapse
Affiliation(s)
- Peilu Zhou
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Qiyao Li
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Guangliang Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Na Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Yinju Yang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Wenlong Zeng
- Longyan Tobacco Agricultural Science Institute, Longyan, Fujian 364000, People's Republic of China
| | - Aiguo Chen
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| | - Shusheng Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China
| |
Collapse
|
40
|
Zhang T, Li X, Guo L. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11646-11657. [PMID: 28838235 DOI: 10.1021/acs.langmuir.7b02053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The initial conversion pathways of linkages and their linked monomer units in lignin pyrolysis were investigated comprehensively by ReaxFF MD simulations facilitated by the unique VARxMD for reaction analysis. The simulated molecular model contains 15 920 atoms and was constructed on the basis of Adler's softwood lignin model. The simulations uncover the initial conversion ratio of various linkages and their linked aryl monomers. For linkages and their linked monomer aryl rings of α-O-4, β-O-4 and α-O-4 & β-5, the Cα/Cβ ether bond cracking dominates the initial pathway accounting for at least up to 80% of their consumption. For the linkage of β-β & γ-O-α, both the Cα-O ether bond cracking and its linked monomer aryl ring opening are equally important. Ring-opening reactions dominate the initial consumption of other 4-O-5, 5-5, β-1, β-2, and β-5 linkages and their linked monomers. The ether bond cracking of Cα-O and Cβ-O occurs at low temperature, and the aryl ring-opening reactions take place at relatively high temperature. The important intermediates leading to the stable aryl ring opening are the phenoxy radicals, the bridged five-membered and three-membered rings and the bridged six-membered and three-membered rings. In addition, the reactivity of a linkage and its monomer aryl ring may be affected by other linkages. The ether bond cracking of α-O-4 and β-O-4 linkages can activate its neighboring linkage or monomer ring through the formed phenoxy radicals as intermediates. The important intermediates revealed in this article should be of help in deepening the understanding of the controlling mechanism for producing aromatic chemicals from lignin pyrolysis.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiaoxia Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
41
|
Williams BA, Grant LJ, Gidley MJ, Mikkelsen D. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. Int J Mol Sci 2017; 18:E2203. [PMID: 29053599 PMCID: PMC5666883 DOI: 10.3390/ijms18102203] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
The majority of dietary fibre (DF) originates from plant cell walls. Chemically, DF mostly comprise carbohydrate polymers, which resist hydrolysis by digestive enzymes in the mammalian small intestine, but can be fermented by large intestinal bacteria. One of the main benefits of DF relate to its fermentability, which affects microbial diversity and function within the gastro-intestinal tract (GIT), as well as the by-products of the fermentation process. Much work examining DF tends to focus on various purified ingredients, which have been extracted from plants. Increasingly, the validity of this is being questioned in terms of human nutrition, as there is evidence to suggest that it is the actual complexity of DF which affects the complexity of the GIT microbiota. Here, we review the literature comparing results of fermentation of purified DF substrates, with whole plant foods. There are strong indications that the more complex and varied the diet (and its ingredients), the more complex and varied the GIT microbiota is likely to be. Therefore, it is proposed that as the DF fermentability resulting from this complex microbial population has such profound effects on human health in relation to diet, it would be appropriate to include DF fermentability in its characterization-a functional approach of immediate relevance to nutrition.
Collapse
Affiliation(s)
- Barbara A Williams
- ARC Centre of Excellence for Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Lucas J Grant
- ARC Centre of Excellence for Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Michael J Gidley
- ARC Centre of Excellence for Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Deirdre Mikkelsen
- ARC Centre of Excellence for Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
42
|
Xia J, Liu Y, Yao S, Li M, Zhu M, Huang K, Gao L, Xia T. Characterization and Expression Profiling of Camellia sinensis Cinnamate 4-hydroxylase Genes in Phenylpropanoid Pathways. Genes (Basel) 2017; 8:E193. [PMID: 28763022 PMCID: PMC5575657 DOI: 10.3390/genes8080193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Cinnamate 4-hydroxylase (C4H), a cytochrome P450-dependent monooxygenase, participates in the synthesis of numerous polyphenoid compounds, such as flavonoids and lignins. However, the C4H gene number and function in tea plants are not clear. We screened all available transcriptome and genome databases of tea plants and three C4H genes were identified and named CsC4Ha, CsC4Hb, and CsC4Hc, respectively. Both CsC4Ha and CsC4Hb have 1518-bp open reading frames that encode 505-amino acid proteins. CsC4Hc has a 1635-bp open reading frame that encodes a 544-amino acid protein. Enzymatic analysis of recombinant proteins expressed in yeast showed that the three enzymes catalyzed the formation of p-coumaric acid (4-hydroxy trans-cinnamic acid) from trans-cinnamic acid. Quantitative real-time PCR (qRT-PCR) analysis showed that CsC4Ha was highly expressed in the 4th leaf, CsC4Hb was highly expressed in tender leaves, while CsC4Hc was highly expressed in the young stems. The three CsC4Hs were induced with varying degrees by abiotic stress treatments. These results suggest they may have different subcellular localization and different physiological functions.
Collapse
Affiliation(s)
- Jinxin Xia
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Ming Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Mengqing Zhu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Keyi Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd, Hefei 230036, Anhui, China.
| |
Collapse
|
43
|
Le Roy J, Blervacq AS, Créach A, Huss B, Hawkins S, Neutelings G. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC PLANT BIOLOGY 2017; 17:124. [PMID: 28705193 PMCID: PMC5513022 DOI: 10.1186/s12870-017-1072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Bast fibres are characterized by very thick secondary cell walls containing high amounts of cellulose and low lignin contents in contrast to the heavily lignified cell walls typically found in the xylem tissues. To improve the quality of the fiber-based products in the future, a thorough understanding of the main cell wall polymer biosynthetic pathways is required. In this study we have carried out a characterization of the genes involved in lignin biosynthesis in flax along with some of their regulation mechanisms. RESULTS We have first identified the members of the phenylpropanoid gene families through a combination of in silico approaches. The more specific lignin genes were further characterized by high throughput transcriptomic approaches in different organs and physiological conditions and their cell/tissue expression was localized in the stems, roots and leaves. Laccases play an important role in the polymerization of monolignols. This multigenic family was determined and a miRNA was identified to play a role in the posttranscriptional regulation by cleaving the transcripts of some specific genes shown to be expressed in lignified tissues. In situ hybridization also showed that the miRNA precursor was expressed in the young xylem cells located near the vascular cambium. The results obtained in this work also allowed us to determine that most of the genes involved in lignin biosynthesis are included in a unique co-expression cluster and that MYB transcription factors are potentially good candidates for regulating these genes. CONCLUSIONS Target engineering of cell walls to improve plant product quality requires good knowledge of the genes responsible for the production of the main polymers. For bast fiber plants such as flax, it is important to target the correct genes from the beginning since the difficulty to produce transgenic material does not make possible to test a large number of genes. Our work determined which of these genes could be potentially modified and showed that it was possible to target different regulatory pathways to modify lignification.
Collapse
Affiliation(s)
- Julien Le Roy
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne-Sophie Blervacq
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Anne Créach
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Brigitte Huss
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
44
|
Guerriero G, Behr M, Legay S, Mangeot-Peter L, Zorzan S, Ghoniem M, Hausman JF. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci Rep 2017; 7:4961. [PMID: 28694530 PMCID: PMC5504027 DOI: 10.1038/s41598-017-05200-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023] Open
Abstract
Bast fibres are long extraxylary cells which mechanically support the phloem and they are divided into xylan- and gelatinous-type, depending on the composition of their secondary cell walls. The former, typical of jute/kenaf bast fibres, are characterized by the presence of xylan and a high degree of lignification, while the latter, found in tension wood, as well as flax, ramie and hemp bast fibres, have a high abundance of crystalline cellulose. During their differentiation, bast fibres undergo specific developmental stages: the cells initially elongate rapidly by intrusive growth, subsequently they cease elongation and start to thicken. The goal of the present study is to provide a transcriptomic close-up of the key events accompanying bast fibre development in textile hemp (Cannabis sativa L.), a fibre crop of great importance. Bast fibres have been sampled from different stem regions. The developmental stages corresponding to active elongation and cell wall thickening have been studied using RNA-Seq. The results show that the fibres sampled at each stem region are characterized by a specific transcriptomic signature and that the major changes in cell wall-related processes take place at the internode containing the snap point. The data generated also identify several interesting candidates for future functional analysis.
Collapse
Affiliation(s)
- Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg.
| | - Marc Behr
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Université catholique de Louvain, Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Louvain-la-Neuve, B-1348, Belgium
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Lauralie Mangeot-Peter
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Institut National de la Recherche Agronomique, Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, F-54280, France
| | - Simone Zorzan
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Mohammad Ghoniem
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
45
|
Activation of Magnesium Lignosulfonate and Kraft Lignin: Influence on the Properties of Phenolic Resin-Based Composites for Potential Applications in Abrasive Materials. Int J Mol Sci 2017; 18:ijms18061224. [PMID: 28594358 PMCID: PMC5486047 DOI: 10.3390/ijms18061224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 12/24/2022] Open
Abstract
Magnesium lignosulfonate and kraft lignin were activated by different oxidizing agents for use in phenolic resin composites used for the production of abrasive components. The physicochemical properties of the oxidized materials were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic mechanical-thermal analysis (DMTA) and inverse gas chromatography (IGC). The homogeneity of the model abrasive composites containing the studied products was assessed based on observations obtained using a scanning electron microscope (SEM). FTIR and XPS analysis of the oxidized products indicated that the activation process leads mainly to the formation of carbonyl groups. The IGC technique was used to assess changes in the surface energy and the acid–base properties of the studied biopolymers. The changes in the acid–base properties suggest that more groups acting as electron donors appear on the oxidized surface of the materials. DMTA studies showed that the model composites with 5% magnesium lignosulfonate oxidized by H2O2 had the best thermomechanical properties. Based on the results it was possible to propose a hypothetical mechanism of the oxidation of the natural polymers. The use of such oxidized products may improve the thermomechanical properties of abrasive articles.
Collapse
|
46
|
Xu Z, Lei P, Feng X, Li S, Xu H. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6257-6266. [PMID: 27465513 DOI: 10.1021/acs.jafc.6b02163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Collapse
Affiliation(s)
- Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| |
Collapse
|
47
|
Prats Mateu B, Hauser MT, Heredia A, Gierlinger N. Waterproofing in Arabidopsis: Following Phenolics and Lipids In situ by Confocal Raman Microscopy. Front Chem 2016; 4:10. [PMID: 26973831 PMCID: PMC4770935 DOI: 10.3389/fchem.2016.00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes, and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299, 1600, and 3400 cm(-1) band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobizing changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired.
Collapse
Affiliation(s)
- Batirtze Prats Mateu
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life SciencesVienna, Austria
| | - Marie Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Antonio Heredia
- Department of Molecular Biology and Biochemistry, University of MalagaMalaga, Spain
| | - Notburga Gierlinger
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life SciencesVienna, Austria
- Institute for Building Materials, Eidgenössische Technische Hochschule ZürichZürich, Switzerland
- Applied Wood Research Laboratory, Empa-Swiss Federal Laboratories for Material Testing and ResearchDübendorf, Switzerland
| |
Collapse
|
48
|
Ryu J, Kwon SJ, Sung SY, Kim WJ, Kim DS, Ahn JW, Kim JB, Kim SH, Ha BK, Kang SY. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics 2016. [DOI: 10.1007/s13258-015-0341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Mangeot-Peter L, Legay S, Hausman JF, Guerriero G. How to store plant tissues in the absence of liquid nitrogen? Ethanol preserves the RNA integrity of <em>Cannabis sativa</em> stem tissues. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1312-24. [PMID: 25688574 DOI: 10.1111/pbi.12350] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.
Collapse
Affiliation(s)
- Maxime Chantreau
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Brigitte Chabbert
- INRA, UMR 614 Fractionnement des AgroRessources et Environnement, Reims, France
- UMR 614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims, France
| | - Sylvain Billiard
- UMR CNRS 8198 Laboratoire de Génétique & Evolution des Populations Végétales, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Simon Hawkins
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| | - Godfrey Neutelings
- UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Université Lille Nord de France Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|