1
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Liu Y, Li J, Shi J, Pan Y, Yang S, Xue Y. Combined metabolome and transcriptome analysis reveals the key pathways involved in the responses of soybean plants to high Se stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117262. [PMID: 39476650 DOI: 10.1016/j.ecoenv.2024.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
High selenium (Se) levels can induce toxicity, inhibit growth, and affect gene expression and metabolite content in plants. However, the molecular mechanism by which high Se stress affects soybean plants remains unclear. This study examined the responses of soybean leaves and roots to high Se stress using transcriptome and metabolome analyses. High Se stress significantly inhibited soybean root growth, reduced leaf area, and affected the antioxidant enzyme system in roots and leaves, resulting in the accumulation of malondialdehyde (MDA). High Se stress increased indoleacetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) in the roots by 3.34-fold, 8.94-fold, 0.25-fold, and 5.65-fold, respectively. Similarly, high Se stress increased IAA, ABA, JA, and SA in the leaves by 1.96-fold, 10.54-fold, 2.03-fold, and 4.22-fold, respectively. In addition, high Se stress affected ion absorption and transport in soybean plants. Transcriptome results showed that there were 10,038 differentially expressed genes (DEGs) in soybean roots and 5811 DEGs in leaves, which affected the expression of antioxidant enzymes, ion transport and hormone-related genes. Metabolome results revealed that there were 277 differentially expressed metabolites (DEMs) in soybean leaves and 312 DEMs in roots. Soybean roots and leaves were significantly enriched in the "β-alanine metabolism" pathway under high Se stress, with differential expression of Aldehyde dehydrogenase (ALDH), Amine oxidase (AO), and other related genes, thereby relieving oxidative stress. This study improves our understanding of the molecular mechanisms underlying the responses of soybean plants to high Se stress and provides a basis for breeding Se-enriched soybean plants.
Collapse
Affiliation(s)
- Ying Liu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Jianyu Li
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianning Shi
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuhu Pan
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoxia Yang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Fuenzalida M, Gómez MI, Ferrada E, Díaz C, Escudero V, González-Guerrero M, Jordana X, Roschzttardtz H. Using an embryo specific promoter to modify iron distribution pattern in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111931. [PMID: 38030036 DOI: 10.1016/j.plantsci.2023.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Iron is an essential micronutrient for life. During the development of the seed, iron accumulates during embryo maturation. In Arabidopsis thaliana, iron mainly accumulates in the vacuoles of only one cell type, the cell layer that surrounds provasculature in hypocotyl and cotyledons. Iron accumulation pattern in Arabidopsis is an exception in plant phylogeny, most part of the dicot embryos accumulate iron in several cell layers including cortex and, in some cases, even in protodermis. It remains unknown how does iron reach the internal cell layers of the embryo, and in particular, the molecular mechanisms responsible of this process. Here, we use transgenic approaches to modify the iron accumulation pattern in an Arabidopsis model. Using the SDH2-3 embryo-specific promoter, we were able to express VIT1 ectopically in both a wild type background and a mutant vit1 background lacking expression of this vacuolar iron transporter. These manipulations modify the iron distribution pattern in Arabidopsis from one cell layer to several cell layers, including protodermis, cortex cells, and the endodermis. Interestingly, total seed iron content was not modified compared with the wild type, suggesting that iron distribution in embryos is not involved in the control of the total iron amount accumulated in seeds. This experimental model can be used to study the processes involved in iron distribution patterning during embryo maturation and its evolution in dicot plants.
Collapse
Affiliation(s)
- Marlene Fuenzalida
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - María Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Evandro Ferrada
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cristóbal Díaz
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Spain; Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Spain
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
4
|
Cai J, Longo A, Dickstein R. Expression and mutagenesis studies in the Medicago truncatula iron transporter MtVTL8 confirm its role in symbiotic nitrogen fixation and reveal amino acids essential for transport. FRONTIERS IN PLANT SCIENCE 2024; 14:1306491. [PMID: 38239208 PMCID: PMC10794610 DOI: 10.3389/fpls.2023.1306491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
The model legume Medicago truncatula establishes a symbiosis with soil bacteria (rhizobia) that carry out symbiotic nitrogen fixation (SNF) in plant root nodules. SNF requires the exchange of nutrients between the plant and rhizobia in the nodule that occurs across a plant-derived symbiosome membrane. One iron transporter, belonging to the Vacuolar iron Transporter-Like (VTL) family, MtVTL8, has been identified as essential for bacteria survival and therefore SNF. In this work we investigated the spatial expression of MtVTL8 in nodules and addressed whether it could be functionally interchangeable with a similar nodule-expressed iron transporter, MtVTL4. Using a structural model for MtVTL8 and the previously hypothesized mechanism for iron transport in a phylogenetically-related Vacuolar Iron Transporter (VIT), EgVIT1 with known crystal structure, we identified critical amino acids and obtained their mutants. Mutants were tested in planta for complementation of an SNF defective line and in an iron sensitive mutant yeast strain. An extended phylogenetic assessment of VTLs and VITs showed that amino acids critical for function are conserved differently in VTLs vs. VITs. Our studies showed that some amino acids are essential for iron transport leading us to suggest a model for MtVTL8 function, one that is different for other iron transporters (VITs) studied so far. This study extends the understanding of iron transport mechanisms in VTLs as well as those used in SNF.
Collapse
|
5
|
Krishna TPA, Ceasar SA, Maharajan T. Biofortification of Crops to Fight Anemia: Role of Vacuolar Iron Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3583-3598. [PMID: 36802625 DOI: 10.1021/acs.jafc.2c07727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant-based foods provide all the crucial nutrients for human health. Among these, iron (Fe) is one of the essential micronutrients for plants and humans. A lack of Fe is a major limiting factor affecting crop quality, production, and human health. There are people who suffer from various health problems due to the low intake of Fe in their plant-based foods. Anemia has become a serious public health issue due to Fe deficiency. Enhancing Fe content in the edible part of food crops is a major thrust area for scientists worldwide. Recent progress in nutrient transporters has provided an opportunity to resolve Fe deficiency or nutritional problems in plants and humans. Understanding the structure, function, and regulation of Fe transporters is essential to address Fe deficiency in plants and to improve Fe content in staple food crops. In this review, we summarized the role of Fe transporter family members in the uptake, cellular and intercellular movement, and long-distance transport of Fe in plants. We draw insights into the role of vacuolar membrane transporters in the crop for Fe biofortification. We also provide structural and functional insights into cereal crops' vacuolar iron transporters (VITs). This review will help highlight the importance of VITs for improving the Fe biofortification of crops and alleviating Fe deficiency in humans.
Collapse
Affiliation(s)
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
6
|
Krishna TPA, Maharajan T, Ceasar SA. The Role of Membrane Transporters in the Biofortification of Zinc and Iron in Plants. Biol Trace Elem Res 2023; 201:464-478. [PMID: 35182385 DOI: 10.1007/s12011-022-03159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/11/2022] [Indexed: 01/11/2023]
Abstract
Over three billion people suffer from various health issues due to the low supply of zinc (Zn) and iron (Fe) in their food. Low supply of micronutrients is the main cause of malnutrition and biofortification could help to solve this issue. Understanding the molecular mechanisms of biofortification is challenging. The membrane transporters are involved in the uptake, transport, storage, and redistribution of Zn and Fe in plants. These transporters are also involved in biofortification and help to load the Zn and Fe into the endosperm of the seeds. Very little knowledge is available on the role and functions of membrane transporters involved in seed biofortification. Understanding the mechanism and role of membrane transporters could be helpful to improve biofortification. In this review, we provide the details on membrane transporters involved in the uptake, transport, storage, and redistribution of Zn and Fe. We also discuss available information on transporters involved in seed biofortification. This review will help plant breeders and molecular biologists understand the importance and implications of membrane transporters for seed biofortification.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India.
| |
Collapse
|
7
|
Hua YP, Wang Y, Zhou T, Huang JY, Yue CP. Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC PLANT BIOLOGY 2022; 22:234. [PMID: 35534803 PMCID: PMC9088122 DOI: 10.1186/s12870-022-03627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plants worldwide are often stressed by low Fe availability around the world, especially in aerobic soils. Therefore, the plant growth, seed yield, and quality of crop species are severely inhibited under Fe deficiency. Fe metabolism in plants is controlled by a series of complex transport, storage, and regulatory mechanisms in cells. Allohexaploid wheat (Triticum aestivum L.) is a staple upland crop species that is highly sensitive to low Fe stresses. Although some studies have been previously conducted on the responses of wheat plants to Fe deficiency, the key mechanisms underlying adaptive responses are still unclear in wheat due to its large and complex genome. RESULTS Transmission electron microscopy showed that the chloroplast structure was severely damaged under Fe deficiency. Paraffin sectioning revealed that the division rates of meristematic cells were reduced, and the sizes of elongated cells were diminished. ICP-MS-assisted ionmics analysis showed that low-Fe stress significantly limited the absorption of nutrients, including N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B nutrients. High-throughput transcriptome sequencing identified 378 and 2,619 genome-wide differentially expressed genes (DEGs) were identified in the shoots and roots between high-Fe and low-Fe conditions, respectively. These DEGs were mainly involved in the Fe chelator biosynthesis, ion transport, photosynthesis, amino acid metabolism, and protein synthesis. Gene coexpression network diagrams indicated that TaIRT1b-4A, TaNAS2-6D, TaNAS1a-6A, TaNAS1-6B, and TaNAAT1b-1D might function as key regulators in the adaptive responses of wheat plants to Fe deficiency. CONCLUSIONS These results might help us fully understand the morpho-physiological and molecular responses of wheat plants to low-Fe stress, and provide elite genetic resources for the genetic modification of efficient Fe use.
Collapse
Affiliation(s)
- Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
8
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|
9
|
Höller S, Küpper H, Brückner D, Garrevoet J, Spiers K, Falkenberg G, Andresen E, Peiter E. Overexpression of METAL TOLERANCE PROTEIN8 reveals new aspects of metal transport in Arabidopsis thaliana seeds. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:23-29. [PMID: 34546650 DOI: 10.1111/plb.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
METAL TOLERANCE PROTEIN8 (MTP8) of Arabidopsis thaliana is a member of the CATION DIFFUSION FACILITATOR (CDF) family of proteins that transports primarily manganese (Mn), but also iron (Fe). MTP8 mediates Mn allocation to specific cell types in the developing embryo, and Fe re-allocation as well as Mn tolerance during imbibition. We analysed if an overexpression of MTP8 driven by the CaMV 35S promoter has an effect on Mn tolerance during imbibition and on Mn and Fe storage in seeds, which would render it a biofortification target. Fe, Mn and Zn concentrations in MTP8-overexpressing lines in wild type and vit1-1 backgrounds were analysed by ICP-MS. Distribution of metals in intact seeds was determined by synchrotron µXRF tomography. MTP8 overexpression led to a strongly increased Mn tolerance of seeds during imbibition, supporting its effectiveness in loading excess Mn into the vacuole. In mature seeds, MTP8 overexpression did not cause a consistent increase in Mn and Fe accumulation, and it did not change the allocation pattern of these metals. Zn concentrations were consistently increased in bulk samples. The results demonstrate that Mn and Fe allocation is not determined primarily by the MTP8 expression pattern, suggesting either a cell type-specific provision of metals for vacuolar sequestration by upstream transport processes, or the determination of MTP8 activity by post-translational regulation.
Collapse
Affiliation(s)
- S Höller
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - H Küpper
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - D Brückner
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - J Garrevoet
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - K Spiers
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - E Andresen
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - E Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
10
|
Khoudi H. Significance of vacuolar proton pumps and metal/H + antiporters in plant heavy metal tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:384-393. [PMID: 33937997 DOI: 10.1111/ppl.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Soil and water are among the most valuable resources on earth. Unfortunately, their contamination with heavy metals has become a global problem. Heavy metals are not biodegradable and cannot be chemically degraded; therefore, they tend to accumulate in soils or to be transported by streaming water and contaminate both surface and groundwater. Cadmium (Cd) has no known biological function but is one of the most toxic metals. It represents a serious environmental concern since its accumulation in soils is associated with health risks to plants, animals and humans. On the other hand, copper (Cu) and zinc (Zn) are heavy metals that are indispensable to plants but become toxic when their concentration in soils exceeds a certain optimal level. Plants have evolved many mechanisms to cope with heavy metal toxicity; vacuolar sequestration is one of them. Vacuolar sequestration can be achieved through either phytochelatin-dependent or phytochelatin-independent pathways. Most of the transgenic plants meant for phytoremediation described in the literature result from the manipulation of genes involved in the phytochelatin-dependent pathway. However, recent evidence has emerged to support the importance of the phytochelatin-independent pathway in heavy metal sequestration into the vacuole, with metal/H+ antiporters and proton pumps playing an important role. In this review, the importance of vacuolar proton pumps and metal/H+ antiporters transporting Cd, Cu, and Zn is discussed. In addition, the recent advances in the production of transgenic plants with potential application in phytoremediation and food safety through the manipulation of genes encoding V-PPase proton pumps is described.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
11
|
Ram H, Sardar S, Gandass N. Vacuolar Iron Transporter (Like) proteins: Regulators of cellular iron accumulation in plants. PHYSIOLOGIA PLANTARUM 2021; 171:823-832. [PMID: 33580885 DOI: 10.1111/ppl.13363] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Iron is not only important for plant physiology, but also a very important micronutrient in human diets. The vacuole is the main site for accumulation of excess amounts of various nutrients and toxic substances in plant cells. During the past decade, many Vacuolar Iron Transporter (VIT) and VIT-Like (VTL) genes have been identified and shown to play important roles in iron homeostasis in different plants. Furthermore, recent reports identified novel roles of these transporter genes in symbiotic nitrogen fixation (SNF) in legume crops as well as in the blue coloration of petals in flowers. The literature indicates their universal role in Fe transport across different tissues (grains, nodules, flowers) to different biological processes (cellular iron homeostasis, SNF, petal coloration) in different plants. Here, we have systematically reviewed different aspects, such as structure, molecular evolution, expression, and function of VIT/VTL proteins. This will help future studies aimed at functional analysis of VIT/VTL genes in other plant species, vacuolar transportation mechanisms, and iron biofortification at large.
Collapse
Affiliation(s)
- Hasthi Ram
- National Institute of Plant Genome Research, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Nishu Gandass
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
12
|
Opportunities and challenges for biofortification of cassava to address iron and zinc deficiency in Nigeria. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2020.100478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Sorribes-Dauden R, Peris D, Martínez-Pastor MT, Puig S. Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi. Comput Struct Biotechnol J 2020; 18:3712-3722. [PMID: 33304466 PMCID: PMC7714665 DOI: 10.1016/j.csbj.2020.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
Collapse
Key Words
- BLOSUM, BLOcks SUbstitution Matrix
- CBC, CCAAT-binding core complex
- CRD, Cysteine-rich domain
- CS, Consistency score
- Ccc1
- Cg, Candida glabrata
- Eg, Eucalyptus grandis
- Fe, Iron
- Fungi
- H, Helix
- Hap, Heme activator protein
- ISC, Iron-sulfur luster
- Iron detoxification
- Iron regulation
- Iron transport
- MAFFT, Multiple Alignment using Fast Fourier Transform
- MBD, Metal-binding domain
- ML, Maximum-likelihood
- NRAMP, Natural Resistance-Associated Macrophage Protein
- Plants
- ROS, Reactive oxygen species
- TMD, Transmembrane domain
- VIT, Vacuolar iron transporter
- VIT1
- VTL, Vacuolar iron transporter-like
- Vacuole
- YRE, Yap response elements
- Yeast
- bZIP, basic leucine-zipper
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
14
|
Connorton JM, Balk J. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. PLANT & CELL PHYSIOLOGY 2019; 60:1447-1456. [PMID: 31058958 PMCID: PMC6619672 DOI: 10.1093/pcp/pcz079] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 05/19/2023]
Abstract
Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.
Collapse
Affiliation(s)
- James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
15
|
Kato T, Kumazaki K, Wada M, Taniguchi R, Nakane T, Yamashita K, Hirata K, Ishitani R, Ito K, Nishizawa T, Nureki O. Crystal structure of plant vacuolar iron transporter VIT1. NATURE PLANTS 2019; 5:308-315. [PMID: 30742036 DOI: 10.1038/s41477-019-0367-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The iron ion is an essential cofactor in several vital enzymatic reactions, such as DNA replication, oxygen transport, and respiratory and photosynthetic electron transfer chains, but its excess accumulation induces oxidative stress in cells. Vacuolar iron transporter 1 (VIT1) is important for iron homeostasis in plants, by transporting cytoplasmic ferrous ions into vacuoles. Modification of the VIT1 gene leads to increased iron content in crops, which could be used for the treatment of human iron deficiency diseases. Furthermore, a VIT1 from the malaria-causing parasite Plasmodium is considered as a potential drug target for malaria. Here we report the crystal structure of VIT1 from rose gum Eucalyptus grandis, which probably functions as a H+-dependent antiporter for Fe2+ and other transition metal ions. VIT1 adopts a novel protein fold forming a dimer of five membrane-spanning domains, with an ion-translocating pathway constituted by the conserved methionine and carboxylate residues at the dimer interface. The second transmembrane helix protrudes from the lipid membrane by about 40 Å and connects to a three-helical bundle, triangular cytoplasmic domain, which binds to the substrate metal ions and stabilizes their soluble form, thus playing an essential role in their transport. These mechanistic insights will provide useful information for the further design of genetically modified crops and the development of anti-malaria drugs.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Kumazaki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Miki Wada
- Department of computational biology and medical sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Reiya Taniguchi
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Kunio Hirata
- RIKEN SPring-8 Center, Sayo, Japan
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency, Kawaguchi, Japan
| | - Ryuichiro Ishitani
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Ito
- Department of computational biology and medical sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Tomohiro Nishizawa
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Narayanan N, Beyene G, Chauhan RD, Gaitán-Solís E, Gehan J, Butts P, Siritunga D, Okwuonu I, Woll A, Jiménez-Aguilar DM, Boy E, Grusak MA, Anderson P, Taylor NJ. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat Biotechnol 2019; 37:144-151. [PMID: 30692693 PMCID: PMC6784895 DOI: 10.1038/s41587-018-0002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 11/20/2018] [Indexed: 02/01/2023]
Abstract
Less than 10% of the estimated average requirement (EAR) for iron and zinc is provided by consumption of storage roots of the staple crop cassava (Manihot esculenta Crantz) in West African human populations. We used genetic engineering to improve mineral micronutrient concentrations in cassava. Overexpression of the Arabidopsis thaliana vacuolar iron transporter VIT1 in cassava accumulated three- to seven-times-higher levels of iron in transgenic storage roots than nontransgenic controls in confined field trials in Puerto Rico. Plants engineered to coexpress a mutated A. thaliana iron transporter (IRT1) and A. thaliana ferritin (FER1) accumulated iron levels 7-18 times higher and zinc levels 3-10 times higher than those in nontransgenic controls in the field. Growth parameters and storage-root yields were unaffected by transgenic fortification in our field data. Measures of retention and bioaccessibility of iron and zinc in processed transgenic cassava indicated that IRT1 + FER1 plants could provide 40-50% of the EAR for iron and 60-70% of the EAR for zinc in 1- to 6-year-old children and nonlactating, nonpregnant West African women.
Collapse
Affiliation(s)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Jackson Gehan
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Paula Butts
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Ihuoma Okwuonu
- National Root Crops Research Institute, Umudike, Nigeria
| | - Arthur Woll
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | | | - Erick Boy
- Harvest Plus/International Food Policy Research Institute, Washington, DC, USA
| | - Michael A Grusak
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Paul Anderson
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
17
|
Chauhan RD, Beyene G, Taylor NJ. Multiple morphogenic culture systems cause loss of resistance to cassava mosaic disease. BMC PLANT BIOLOGY 2018; 18:132. [PMID: 29940871 PMCID: PMC6020238 DOI: 10.1186/s12870-018-1354-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/17/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Morphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies. We previously reported that CMD2-type cassava (Manihot esculenta) cultivars lose resistance to cassava mosaic disease (CMD) when passed through somatic embryogenesis. As a result, these plants cannot be developed as products for deployment where CMD is endemic such as sub-Saharan Africa or the Indian sub-continent. RESULT In order to increase understanding of this phenomenon, 21 African cassava cultivars were screened for resistance to CMD after regeneration through somatic embryogenesis. Fifteen cultivars were shown to retain resistance to CMD through somatic embryogenesis, confirming that the existing transformation and gene editing systems can be employed in these genetic backgrounds without compromising resistance to geminivirus infection. CMD2-type cultivars were also subjected to plant regeneration via caulogenesis and meristem tip culture, resulting in 25-36% and 5-10% of regenerated plant lines losing resistance to CMD respectively. CONCLUSIONS This study provides clear evidence that multiple morphogenic systems can result in loss of resistance to CMD, and that somatic embryogenesis per se is not the underlying cause of this phenomenon. The information described here is critical for interpreting genomic, transcriptomic and epigenomic datasets aimed at understanding CMD resistance mechanisms in cassava.
Collapse
Affiliation(s)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO USA
| | | |
Collapse
|
18
|
Muhammad I, Jing XQ, Shalmani A, Ali M, Yi S, Gan PF, Li WQ, Liu WT, Chen KM. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules 2018; 23:molecules23051163. [PMID: 29757203 PMCID: PMC6099960 DOI: 10.3390/molecules23051163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shi Yi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
19
|
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics 2017; 9:813-823. [PMID: 28686269 PMCID: PMC5708359 DOI: 10.1039/c7mt00136c] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Collapse
Affiliation(s)
- James M Connorton
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jorge Rodríguez-Celma
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
20
|
Wang X, Zhong F, Woo CH, Miao Y, Grusak MA, Zhang X, Tu J, Wong YS, Jiang L. A rapid and efficient method to study the function of crop plant transporters in Arabidopsis. PROTOPLASMA 2017; 254:737-747. [PMID: 27240439 DOI: 10.1007/s00709-016-0987-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/13/2016] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is an essential micronutrient for humans. Fe deficiency disease is widespread and has led to extensive studies on the mechanisms of Fe uptake and storage, especially in staple food crops such as rice. However, studies of functionally related genes in rice and other crops are often time and space demanding. Here, we demonstrate that transgenic Arabidopsis suspension culture cells and Arabidopsis plants can be used as an efficient expression system for gain-of-function study of selected transporters, using Fe transporters as a proof-of-principle. The vacuolar membrane transporters OsVIT1 and OsVIT2 have been described to be important for iron sequestration, and disruption of these two genes leads to Fe accumulation in rice seeds. In this study, we have taken advantage of the fluorescent-tagged protein GFP-OsVIT1, which functionally complements the Fe hypersensitivity of ccc1 yeast mutant, to generate transgenic Arabidopsis suspension cell lines and plants. GFP-OsVIT1 was shown to localize on the vacuolar membrane using confocal microscopy and immunogold EM. More importantly, the Fe concentration, as well as the concentration of Zn, in the transgenic cell lines and plants were significantly increased compared to that in the WT. Taken together, our study shows that the heterologous expression of rice vacuolar membrane transporter OsVIT1 in Arabidopsis system is functional and effectively enhances iron accumulation, indicating an useful approach for studying other putative transporters of crop plants in this system.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fudi Zhong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Hang Woo
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yansong Miao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Michael A Grusak
- Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, USA
| | - Xiaobo Zhang
- Institute of Crop Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yum Shing Wong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Wilson MC, Mutka AM, Hummel AW, Berry J, Chauhan RD, Vijayaraghavan A, Taylor NJ, Voytas DF, Chitwood DH, Bart RS. Gene expression atlas for the food security crop cassava. THE NEW PHYTOLOGIST 2017; 213:1632-1641. [PMID: 28116755 PMCID: PMC5516207 DOI: 10.1111/nph.14443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/18/2016] [Indexed: 05/17/2023]
Abstract
Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.
Collapse
Affiliation(s)
- Mark C. Wilson
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Andrew M. Mutka
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Aaron W. Hummel
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | | | | | - Nigel J. Taylor
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel H. Chitwood
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Rebecca S. Bart
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| |
Collapse
|
22
|
Tan GZH, Das Bhowmik SS, Hoang TML, Karbaschi MR, Johnson AAT, Williams B, Mundree SG. Finger on the Pulse: Pumping Iron into Chickpea. FRONTIERS IN PLANT SCIENCE 2017; 8:1755. [PMID: 29081785 PMCID: PMC5646179 DOI: 10.3389/fpls.2017.01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops-this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM) remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice.
Collapse
Affiliation(s)
- Grace Z. H. Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta S. Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thi M. L. Hoang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mohammad R. Karbaschi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Sagadevan G. Mundree
| |
Collapse
|
23
|
Vasconcelos MW, Gruissem W, Bhullar NK. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 2016; 44:8-15. [PMID: 27780080 DOI: 10.1016/j.copbio.2016.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Plant-based foods offer a wide range of nutrients that are essential for human and animal health. Among these nutrients, iron stands out as one of the most important micronutrients. Increasing the iron content in many staple and non-staple plant foods continues to be a goal of many scientists around the world. However, the success of such initiatives has sometimes fallen short of their expected targets. In this review we highlight the most recent and promising results that have contributed to increasing the iron content in different crops. We also discuss methods that to date have been used to reach iron biofortification goals and new strategies that we believe are most promising for crop biofortification in the future. Plant anatomical, physiological and metabolic hurdles still need to be tackled for making progress on further increasing currently reached levels of micronutrient improvements. New strategies need to take into account growing environmental challenges that may constrain biofortification efforts.
Collapse
Affiliation(s)
- Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
24
|
Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, Martinez J, Díaz P, López C, Roca WM, Tohme J. The potential of using biotechnology to improve cassava: a review. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2016; 52:461-478. [PMID: 27818605 PMCID: PMC5071364 DOI: 10.1007/s11627-016-9776-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/06/2016] [Indexed: 05/26/2023]
Abstract
The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into the future. The history of the development of the first transgenic cassava plant serves as the basis to explore molecular aspects of somatic embryogenesis and friable embryogenic callus production. We analyze complex plant-pathogen interactions to profit from such knowledge to help cassava fight bacterial diseases and look at candidate genes possibly involved in resistance to viruses and whiteflies-the two most important traits of cassava. The review also covers the analyses of main achievements in transgenic-mediated nutritional improvement and mass production of healthy plants by tissue culture and synthetic seeds. Finally, the perspectives of using genome editing and the challenges associated to climate change for further improving the crop are discussed. During the last 30 yr, great advances have been made in cassava using biotechnology, but they need to scale out of the proof of concept to the fields of cassava growers.
Collapse
Affiliation(s)
- Paul Chavarriaga-Aguirre
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Alejandro Brand
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Adriana Medina
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Mónica Prías
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Roosevelt Escobar
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Juan Martinez
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| | - Paula Díaz
- Biology Department, Universidad Nacional de Colombia, Carrera 30 No. 45-03. Edificio 421, Bogotá, Colombia
| | - Camilo López
- Biology Department, Universidad Nacional de Colombia, Carrera 30 No. 45-03. Edificio 421, Bogotá, Colombia
| | - Willy M Roca
- International Potato Center-CIP, Av. La Molina 1895, Lima 12, P.O. Box 1558, Lima, Perú
| | - Joe Tohme
- Agrobiodiversity Research Area, International Center for tropical Agriculture-CIAT, AA 6713 Cali, Colombia
| |
Collapse
|
25
|
Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1192. [PMID: 27547212 PMCID: PMC4974246 DOI: 10.3389/fpls.2016.01192] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants.
Collapse
Affiliation(s)
- Khurram Bashir
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
| | - Sultana Rasheed
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
- Core Research for Evolutional Science and Technology – Japan Science and Technology Agency, KawaguchiJapan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, TokyoJapan
| |
Collapse
|
26
|
Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S. Vacuolar Iron Transporter BnMEB2 Is Involved in Enhancing Iron Tolerance of Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1353. [PMID: 27679642 DOI: 10.3389/fpls201601353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 05/22/2023]
Abstract
Iron toxicity is a nutrient disorder that severely affects crop development and yield in some soil conditions. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT) members are involved in this process and play essential roles in iron storage and transport. In this study, we identified a rapeseed VIT gene BnMEB2 (BnaC07g30170D) homologs to Arabidopsis MEB2 (At5g24290). Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old) leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other VIT genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.
Collapse
Affiliation(s)
- Wei Zhu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Rongfang Zhou
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Minqiang Tang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture Sciences Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences Guiyang, China
| | - Caihua Dong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| |
Collapse
|
27
|
Zhu W, Zuo R, Zhou R, Huang J, Tang M, Cheng X, Liu Y, Tong C, Xiang Y, Dong C, Liu S. Vacuolar Iron Transporter BnMEB2 Is Involved in Enhancing Iron Tolerance of Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1353. [PMID: 27679642 PMCID: PMC5020681 DOI: 10.3389/fpls.2016.01353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 05/05/2023]
Abstract
Iron toxicity is a nutrient disorder that severely affects crop development and yield in some soil conditions. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT) members are involved in this process and play essential roles in iron storage and transport. In this study, we identified a rapeseed VIT gene BnMEB2 (BnaC07g30170D) homologs to Arabidopsis MEB2 (At5g24290). Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old) leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other VIT genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.
Collapse
Affiliation(s)
- Wei Zhu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Rongfang Zhou
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Junyan Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Minqiang Tang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural SciencesGuiyang, China
| | - Caihua Dong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
- *Correspondence: Caihua Dong,
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture of PRC, Oil Crops Research Institute, Chinese Academy of Agriculture SciencesWuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei UniversityWuhan, China
| |
Collapse
|