1
|
Huang B, Huang W, Liu Z, Peng Y, Qu Y, Zhou W, Huang J, Shu H, Wen Q. Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in Camellia chekiangoleosa. Int J Mol Sci 2024; 26:132. [PMID: 39795989 PMCID: PMC11719897 DOI: 10.3390/ijms26010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new Camellia chekiangoleosa variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels. This study indicates that the incomplete structure of chloroplast-like vesicles, the decrease in blue-green chlorophyll a, and the increase in yellow-green chlorophyll b in yellowing leaves are the direct causes of yellowing-leaf formation. The high expression of genes that catalyze the degradation of chlorophyll a (PAO and RCCR) and its conversion to chlorophyll b (CAO) in yellowing leaves leads to a decrease in the chlorophyll a content, while the low expression of CLH genes is the main reason for the increase in the chlorophyll b content. We also found transcription factors such as ERF, E2F, WRKY, MYB, TPC, TGA, and NFYC may regulate their expression. RT-qPCR assays of 12 DEGs confirm the RNA-seq results. This study will provide a foundation for investigating the transcriptional and regulatory mechanisms of leaf color changes.
Collapse
Affiliation(s)
- Bin Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Wenyin Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Zhenyu Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yixuan Peng
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Yanshu Qu
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Wencai Zhou
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Jianjian Huang
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Huili Shu
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| | - Qiang Wen
- Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China; (B.H.); (W.H.); (Y.P.); (Y.Q.); (W.Z.); (J.H.); (H.S.)
| |
Collapse
|
2
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024; 5:101073. [PMID: 39205390 PMCID: PMC11671761 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Qiao H, Zheng Y, Hou X, Shi L. An integrated transcriptome and physiological analysis of nitrogen use efficiency in rice ( Oryza sativa L. ssp. indica) under drought stress. Front Genet 2024; 15:1483113. [PMID: 39553474 PMCID: PMC11564168 DOI: 10.3389/fgene.2024.1483113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Nitrogen is a critical nutrient vital for crop growth. However, our current understanding of nitrogen use efficiency (NUE) under drought remains inadequate. To delve into the molecular mechanisms underlying NUE under drought, a transcriptome and physiological co-expression analysis was performed in rice, which is particularly sensitive to drought. We conducted a pot experiment using rice grown under normal irrigation, mild drought stress, and severe drought stress. Compared to the normal treatment, drought stress led to a significant reduction in NUE across growth stages, with decreases ranging from 2.18% to 31.67%. Totals of 4,424 and 2,452 genes were identified as NUE-related DEGs that showed differential expressions (DEGs) and significantly correlated with NUE (NUE-related) under drought in the vegetative and reproductive stages, respectively. Interestingly, five genes involved in nitrogen metabolism were found in the overlapped genes of these two sets. Furthermore, the two sets of NUE-related DEGs were enriched in glyoxylate and dicarboxylate metabolism, as well as carbon fixation in photosynthetic organisms. Several genes in these two pathways were identified as hub genes in the two sets of NUE-related DEGs. This study offers new insights into the molecular mechanism of rice NUE under drought in agricultural practices and provides potential genes for breeding drought-resistant crops with high NUE.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China
| | - Yufan Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Han Qiao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wen R, Zhu M, Yu J, Kou L, Ahmad S, Wei X, Jiao G, Hu S, Sheng Z, Zhao F, Tang S, Shao G, Yu H, Hu P. Photosynthesis regulates tillering bud elongation and nitrogen-use efficiency via sugar-induced NGR5 in rice. THE NEW PHYTOLOGIST 2024; 243:1440-1454. [PMID: 38923565 DOI: 10.1111/nph.19921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice. Deficiency of DTN1 results in the reduced photosynthetic rate and decreased contents of sucrose and other sugars in both leaves and axillary buds, and the reduced tiller number in dtn1 mutant could be partially rescued by exogenous sucrose treatment. Furthermore, we found that the expression of nitrogen-mediated tiller growth response 5 (NGR5) was remarkably decreased in shoot base of dtn1-2, which can be activated by sucrose treatment. Overexpression of NGR5 in the dtn1-2 could partially rescue the reduced tiller number, and the tiller number of dtn1-2 was insensitive to nitrogen supply. This work demonstrated that the sugar level regulated by photosynthesis and DTN1 could positively regulate NGR5 expression, which coordinates the cross-talk between carbon and nitrate to control tiller bud outgrowth in rice.
Collapse
Affiliation(s)
- Rui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junming Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
5
|
Li T, Hou X, Sun Z, Ma B, Wu X, Feng T, Ai H, Huang X, Li R. Characterization of FBA genes in potato ( Solanum tuberosum L.) and expression patterns in response to light spectrum and abiotic stress. Front Genet 2024; 15:1364944. [PMID: 38686025 PMCID: PMC11057440 DOI: 10.3389/fgene.2024.1364944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Fructose-1, 6-bisphosphate aldolase (FBA) plays vital roles in plant growth, development, and response to abiotic stress. However, genome-wide identification and structural characterization of the potato (Solanum tuberosum L.) FBA gene family has not been systematically analyzed. In this study, we identified nine StFBA gene members in potato, with six StFBA genes localized in the chloroplast and three in the cytoplasm. The analysis of gene structures, protein structures, and phylogenetic relationships indicated that StFBA genes were divided into Class I and II, which exhibited significant differences in structure and function. Synteny analysis revealed that segmental duplication events promoted the expansion of the StFBA gene family. Promoter analysis showed that most StFBA genes contained cis-regulatory elements associated with light and stress responses. Expression analysis showed that StFBA3, StFBA8, and StFBA9 showing significantly higher expression levels in leaf, stolon, and tuber under blue light, indicating that these genes may improve photosynthesis and play an important function in regulating the induction and expansion of microtubers. Expression levels of the StFBA genes were influenced by drought and salt stress, indicating that they played important roles in abiotic stress. This work offers a theoretical foundation for in-depth understanding of the evolution and function of StFBA genes, as well as providing the basis for the genetic improvement of potatoes.
Collapse
Affiliation(s)
- Ting Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xinyue Hou
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Zhanglun Sun
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Bin Ma
- Country College of Life Sciences, Shihezi University, Shihezi, China
| | - Xingxing Wu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Tingting Feng
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ruining Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
6
|
Liu S, Xiong Z, Zhang Z, Wei Y, Xiong D, Wang F, Huang J. Exploration of chlorophyll fluorescence characteristics gene regulatory in rice ( Oryza sativa L.): a genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1234866. [PMID: 37746023 PMCID: PMC10513790 DOI: 10.3389/fpls.2023.1234866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorophyll content and fluorescence parameters are crucial indicators to evaluate the light use efficiency in rice; however, the correlations among these parameters and the underlying genetic mechanisms remain poorly understood. Here, to clarify these issues, we conducted a genome-wide association study (GWAS) on 225 rice accessions. In the phenotypic and Mendelian randomization (MR) analysis, a weak negative correlation was observed between the chlorophyll content and actual quantum yield of photosystem II (Φ I I ). The phenotypic diversity observed in SPAD, N P Q t , Φ N P Q , and F v / F m among accessions was affected by genetic background. Furthermore, the GWAS identified 78 SNPs and 17 candidate genes significantly associated with SPAD, N P Q t , Φ I I , Φ N P Q , q L and q P . Combining GWAS on 225 rice accessions with transcriptome analysis of two varieties exhibiting distinct fluorescence characteristics revealed two potential candidate genes (Os03g0583000 from Φ I I & q P traits and Os06g0587200 from N P Q t trait), which are respectively associated with peroxisomes, and protein kinase catalytic domains might involve in regulating the chlorophyll content and chlorophyll fluorescence. This study provides novel insights into the correlation among chlorophyll content and fluorescence parameters and the genetic mechanisms in rice, and offers valuable information for the breeding of rice with enhanced photosynthetic efficiency.
Collapse
Affiliation(s)
- Sicheng Liu
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhuang Xiong
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuolin Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Youbo Wei
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongliang Xiong
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Wang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Cui C, Lu Q, Zhao Z, Lu S, Duan S, Yang Y, Qiao Y, Chen L, Hu YG. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits. PLANTA 2022; 255:114. [PMID: 35507093 DOI: 10.1007/s00425-022-03888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Rht5 was narrowed to an approximately 1 Mb interval and had pleiotropic effects on plant height, spike length and grain size. TraesCS3B02G025600 was predicted as the possible candidate gene. Plant height is an important component related to plant architecture, lodging resistance, and yield performance. The utilization of dwarf genes has made great contributions to wheat breeding and production. In this study, two F2 populations derived from the crosses of Jinmai47 and Ningchun45 with Marfed M were employed to identify the genetic region of reduce plant height 5 (Rht5), and their derived lines were used to evaluate its effects on plant height and main agronomic traits. Rht5 was fine-mapped between markers Kasp-25 and Kasp-23, in approximately 1 Mb region on chromosome 3BS, which harbored 17 high-confidence annotated genes based on the reference genome of Chinese Spring (IWGSC RefSeq v1.1). TraesCS3B02G025600 were predicted as the possible candidate gene based on its differential expression and sequence variation between dwarf and tall lines and parents. The results of phenotypic evaluation showed that Rht5 had pleiotropic effects on plant height, spike length, culm diameter, grain size and grain yield. The plant height of Rht5 dwarf lines was reduced by an average of 32.67% (32.53 cm) and 27.84% (33.62 cm) in the Jinmai47 and Ningchun45 population, respectively. While Rht5 showed significant and negative pleiotropic effects on culm diameter, aboveground biomass, grain yield, spike length, spikelet number, grain number per spike, grain size, grain weight and filling degree of basal second internode. The culm lodging resistance index (CLRI) of dwarf lines was significantly higher than that of tall lines in the two population. In conclusion, these results lay a foundation for understanding the dwarfing mechanism of Rht5.
Collapse
Affiliation(s)
- Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhangchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Li W, Huang L, Liu N, Pandey MK, Chen Y, Cheng L, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Varshney RK, Liao B, Jiang H. Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts. Int J Mol Sci 2021; 22:7266. [PMID: 34298903 PMCID: PMC8306169 DOI: 10.3390/ijms22147266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/02/2022] Open
Abstract
Sucrose content is a crucial indicator of quality and flavor in peanut seed, and there is a lack of clarity on the molecular basis of sucrose metabolism in peanut seed. In this context, we performed a comprehensive comparative transcriptome study on the samples collected at seven seed development stages between a high-sucrose content variety (ICG 12625) and a low-sucrose content variety (Zhonghua 10). The transcriptome analysis identified a total of 8334 genes exhibiting significantly different abundances between the high- and low-sucrose varieties. We identified 28 differentially expressed genes (DEGs) involved in sucrose metabolism in peanut and 12 of these encoded sugars will eventually be exported transporters (SWEETs). The remaining 16 genes encoded enzymes, such as cell wall invertase (CWIN), vacuolar invertase (VIN), cytoplasmic invertase (CIN), cytosolic fructose-bisphosphate aldolase (FBA), cytosolic fructose-1,6-bisphosphate phosphatase (FBP), sucrose synthase (SUS), cytosolic phosphoglucose isomerase (PGI), hexokinase (HK), and sucrose-phosphate phosphatase (SPP). The weighted gene co-expression network analysis (WGCNA) identified seven genes encoding key enzymes (CIN, FBA, FBP, HK, and SPP), three SWEET genes, and 90 transcription factors (TFs) showing a high correlation with sucrose content. Furthermore, upon validation, six of these genes were successfully verified as exhibiting higher expression in high-sucrose recombinant inbred lines (RILs). Our study suggested the key roles of the high expression of SWEETs and enzymes in sucrose synthesis making the genotype ICG 12625 sucrose-rich. This study also provided insights into the molecular basis of sucrose metabolism during seed development and facilitated exploring key candidate genes and molecular breeding for sucrose content in peanuts.
Collapse
Affiliation(s)
- Weitao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liangqiang Cheng
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Science, Guiyang 550006, China;
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| |
Collapse
|
9
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
10
|
Gao D, Sun W, Wang D, Dong H, Zhang R, Yu S. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice. Sci Rep 2020; 10:3726. [PMID: 32111928 PMCID: PMC7048734 DOI: 10.1038/s41598-020-60593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Leaf chlorophyll content is an important physiological indicator of plant growth, metabolism and nutritional status, and it is highly correlated with leaf nitrogen content and photosynthesis. In this study, we report the cloning and identification of a xylan glucuronosyltransferase gene (OsGUX1) that affects relative chlorophyll content in rice leaf. Using a set of chromosomal segment substitution lines derived from a cross of wild rice accession ACC10 and indica variety Zhenshan 97 (ZS97), we identified numerous quantitative trait loci for relative chlorophyll content. One major locus of them for relative chlorophyll content was mapped to a 10.3-kb region that contains OsGUX1. The allele OsGUX1AC from ACC10 significantly decreases nitrogen content and chlorophyll content of leaf compared with OsGUX1ZS from ZS97. The overexpression of OsGUX1 reduced chlorophyll content, and the suppression of this gene increased chlorophyll content of rice leaf. OsGUX1 is located in Golgi apparatus, and highly expressed in seedling leaf and the tissues in which primary cell wall synthesis occurring. Our experimental data indicate that OsGUX1 is responsible for addition of glucuronic acid residues onto xylan and participates in accumulation of cellulose and hemicellulose in the cell wall deposition, thus thickening the primary cell wall of mesophyll cells, which might lead to reduced chlorophyll content in rice leaf. These findings provide insights into the association of cell wall components with leaf nitrogen content in rice.
Collapse
Affiliation(s)
- Dawei Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Xie S, Nie L, Zheng Y, Wang J, Zhao M, Zhu S, Hou J, Chen G, Wang C, Yuan L. Comparative Proteomic Analysis Reveals That Chlorophyll Metabolism Contributes to Leaf Color Changes in Wucai ( Brassica campestris L.) Responding to Cold Acclimation. J Proteome Res 2019; 18:2478-2492. [PMID: 31038978 DOI: 10.1021/acs.jproteome.9b00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlorophyll is a vital photosynthetic pigment that plays a key role in plant development, participating in light energy capture and energy conversion. In this study, a novel wucai ( Brassica campestris L.) germplasm with green outer leaves and yellow inner leaves at the adult stage (W7-2) was used to examine chlorophyll metabolism response to cold acclimation. A green leaf wucai genotype without leaf color changes named W7-1 was selected as the control to evaluate the chlorophyll metabolism changes of W7-2. Compared to W7-1, the contents of chlorophyll a (Chl a) and chlorophyll b (Chl b) in W7-2 were significantly reduced at five developmental stages (13, 21, 29, 37, and 45 days after planting (DAP)). An iTRAQ-based quantitative proteomic analysis was carried out at 21 and 29 DAP according to the leaf color changes in both of genotypes. 1409 proteins were identified, while 218 of them displayed differential accumulations between W7-2 and W7-1 during the two developmental stages. The differentially expressed proteins (DEPs) mainly assigned to chlorophyll biosynthesis, photosynthesis, carbohydrate metabolism, ribosome metabolism and posttranslational modification. Among these DEPs, NADPH-protochlorophyllide oxidoreductase (PORB) and Mg-protoporphyrin IX chelatase 1 (CHLI1) were the key enzymes participating in chlorophyll (Chl) biosynthesis, which was down-regulated at 21 DAP and up-regulated at 29 DAP in W7-2 compared with W7-1, respectively. The expression analysis of genes of three subunits of Mg-chelatase ( CHLI1, CHLD, and CHLH), Genomes Uncoupled 4 ( GUN4), and Thioredoxin ( TRX3) associated with chlorophyll metabolism also displayed significant down-regulation in W7-2. In particular, PORB showed significant up-regulation in W7-2, significantly affecting chlorophyll biosynthesis. Additionally, differences in chlorophyll metabolism between W7-2 and W7-1 were in terms of altered photosynthesis, carbohydrate, and energy metabolism. We found that the transcription levels of most photosynthesis proteins showed significantly lower levels, and the genes expression level, associated with carbohydrate and energy metabolism, were lower in W7-2 than in W7-1. Therefore, the present study results help understand the physiological and molecular mechanisms underlying leaf coloring responding to cold acclimation.
Collapse
Affiliation(s)
- Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Wanjiang Vegetable Industrial Technology Institute , Maanshan , Anhui 238200 , China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Wanjiang Vegetable Industrial Technology Institute , Maanshan , Anhui 238200 , China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Wanjiang Vegetable Industrial Technology Institute , Maanshan , Anhui 238200 , China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui , 130 West Changjiang Road , Hefei , Anhui 230036 , China.,Wanjiang Vegetable Industrial Technology Institute , Maanshan , Anhui 238200 , China
| |
Collapse
|
12
|
Rice gene SDL / RNRS1 , encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development. Gene 2017; 627:351-362. [DOI: 10.1016/j.gene.2017.05.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
|