1
|
Zhou H, Song X, Lu MZ. Growth-regulating factor 15-mediated vascular cambium differentiation positively regulates wood formation in hybrid poplar ( Populus alba × P. glandulosa). FRONTIERS IN PLANT SCIENCE 2024; 15:1343312. [PMID: 38425797 PMCID: PMC10902170 DOI: 10.3389/fpls.2024.1343312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Introduction Hybrid poplars are industrial trees in China. An understanding of the molecular mechanism underlying wood formation in hybrid poplars is necessary for molecular breeding. Although the division and differentiation of vascular cambial cells is important for secondary growth and wood formation, the regulation of this process is largely unclear. Methods In this study, mPagGRF15 OE and PagGRF15-SRDX transgenic poplars were generated to investigate the function of PagGRF15. RNA-seq and qRT-PCR were conducted to analyze genome-wide gene expression, while ChIP‒seq and ChIP-PCR were used to identified the downstream genes regulated by PagGRF15. Results and discussion We report that PagGRF15 from hybrid poplar (Populus alba × P. glandulosa), a growth-regulating factor, plays a critical role in the regulation of vascular cambium activity. PagGRF15 was expressed predominantly in the cambial zone of vascular tissue. Overexpression of mPagGRF15 (the mutated version of GRF15 in the miR396 target sequence) in Populus led to decreased plant height and internode number. Further stem cross sections showed that the mPagGRF15 OE plants exhibited significant changes in vascular pattern with an increase in xylem and a reduction in phloem. In addition, cambium cell files were decreased in the mPagGRF15 OE plants. However, dominant suppression of the downstream genes of PagGRF15 using PagGRF15-SRDX showed an opposite phenotype. Based on the RNA-seq and ChIP-seq results, combining qRT-PCR and ChIP-PCR analysis, candidate genes, such as WOX4b, PXY and GID1.3, were obtained and found to be mainly involved in cambial activity and xylem differentiation. Accordingly, we speculated that PagGRF15 functions as a positive regulator mediating xylem differentiation by repressing the expression of the WOX4a and PXY genes to set the pace of cambial activity. In contrast, PagGRF15 mediated the GA signaling pathway by upregulating GID1.3 expression to stimulate xylem differentiation. This study provides valuable information for further studies on vascular cambium differentiation mechanisms and genetic improvement of the specific gravity of wood in hybrid poplars.
Collapse
Affiliation(s)
- Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Xiao L, Fang Y, Zhang H, Quan M, Zhou J, Li P, Wang D, Ji L, Ingvarsson PK, Wu HX, El-Kassaby YA, Du Q, Zhang D. Natural variation in the prolyl 4-hydroxylase gene PtoP4H9 contributes to perennial stem growth in Populus. THE PLANT CELL 2023; 35:4046-4065. [PMID: 37522322 PMCID: PMC10615208 DOI: 10.1093/plcell/koad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.
Collapse
Affiliation(s)
- Liang Xiao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871,China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Li Ji
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083,China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala,Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, 90183 Umeå,Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4,Canada
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083,China
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| |
Collapse
|
3
|
Du J, Wang Y, Chen W, Xu M, Zhou R, Shou H, Chen J. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. MOLECULAR PLANT 2023; 16:809-828. [PMID: 36895162 DOI: 10.1016/j.molp.2023.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
The secondary vascular tissue emanating from meristems is central to understanding how vascular plants such as forest trees evolve, grow, and regulate secondary radial growth. However, the overall molecular characterization of meristem origins and developmental trajectories from primary to secondary vascular tissues in woody tree stems is technically challenging. In this study, we combined high-resolution anatomic analysis with a spatial transcriptome (ST) technique to define features of meristematic cells in a developmental gradient from primary to secondary vascular tissues in poplar stems. The tissue-specific gene expression of meristems and derived vascular tissue types were accordingly mapped to specific anatomical domains. Pseudotime analyses were used to track the origins and changes of meristems throughout the development from primary to secondary vascular tissues. Surprisingly, two types of meristematic-like cell pools within secondary vascular tissues were inferred based on high-resolution microscopy combined with ST, and the results were confirmed by in situ hybridization of, transgenic trees, and single-cell sequencing. The rectangle shape procambium-like (PCL) cells develop from procambium meristematic cells and are located within the phloem domain to produce phloem cells, whereas fusiform shape cambium zone (CZ) meristematic cells develop from fusiform metacambium meristematic cells and are located inside the CZ to produce xylem cells. The gene expression atlas and transcriptional networks spanning the primary transition to secondary vascular tissues generated in this work provide new resources for studying the regulation of meristem activities and the evolution of vascular plants. A web server (https://pgx.zju.edu.cn/stRNAPal/) was also established to facilitate the use of ST RNA-seq data.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Yichen Wang
- Hangzhou Botanical Garden, Taoyuanling Road, Hangzhou, Zhejiang 310013, China
| | - Wenfan Chen
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingling Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ruhong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, Zhejiang 310058, China; Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Wang L, Hou J, Xu H, Zhang Y, Huang R, Wang D, He XQ. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. PLANT COMMUNICATIONS 2023; 4:100494. [PMID: 36419363 PMCID: PMC10030372 DOI: 10.1016/j.xplc.2022.100494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runzhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, Liou PC, Sun YH, Shuai P, Su JC, Ku C, Lin YCJ. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol 2023; 24:3. [PMID: 36624504 PMCID: PMC9830878 DOI: 10.1186/s13059-022-02845-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.
Collapse
Affiliation(s)
- Chia-Chun Tung
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Che Kuo
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Ling Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jhong-He Yu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-En Huang
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pin-Chien Liou
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chuan Ku
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Shen D, Holmer R, Kulikova O, Mannapperuma C, Street NR, Yan Z, van der Maden T, Bu F, Zhang Y, Geurts R, Magne K. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1366-1386. [PMID: 33735477 PMCID: PMC9543857 DOI: 10.1111/tpj.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Rens Holmer
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Zhichun Yan
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Thomas van der Maden
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Yuanyuan Zhang
- Laboratory of Plant PhysiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708 PBThe Netherlands
- Present address:
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Kévin Magne
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris‐SaclayCNRSINRAEUniv EvryOrsay91405France
| |
Collapse
|
7
|
Lopes ST, Sobral D, Costa B, Perdiguero P, Chaves I, Costa A, Miguel CM. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. TREE PHYSIOLOGY 2020; 40:129-141. [PMID: 31860724 DOI: 10.1093/treephys/tpz118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 05/23/2023]
Abstract
Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.
Collapse
Affiliation(s)
- Susana T Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Sobral
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Bruno Costa
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Perdiguero
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Augusta Costa
- Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês 2780-157 Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Zhu Y, Song D, Zhang R, Luo L, Cao S, Huang C, Sun J, Gui J, Li L. A xylem-produced peptide PtrCLE20 inhibits vascular cambium activity in Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:195-206. [PMID: 31199056 PMCID: PMC6920164 DOI: 10.1111/pbi.13187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
In trees, lateral growth of the stem occurs through cell divisions in the vascular cambium. Vascular cambium activity is regulated by endogenous developmental programmes and environmental cues. However, the underlying mechanisms that regulate cambium activity are largely unknown. Genomic, biochemical and genetic approaches were used here to elucidate the role of PtrCLE20, a CLAVATA3 (CLV3)/embryo surrounding region (ESR)-related peptide gene, in the regulation of lateral growth in Populus. Fifty-two peptides encoded by CLE genes were identified in the genome of Populus trichocarpa. Among them PtrCLE20 transcripts were detected in developing xylem while the PtrCLE20 peptide was mainly localized in vascular cambium cells. PtrCLE20 acted in repressing vascular cambium activity indicated by that upregulation of PtrCLE20 resulted in fewer layers of vascular cambium cells with repressed expression of the genes related to cell dividing activity. PtrCLE20 peptide also showed a repression effect on the root growth of Populus and Arabidopsis, likely through inhibiting meristematic cell dividing activity. Together, the results suggest that PtrCLE20 peptide, produced from developing xylem cells, plays a role in regulating lateral growth by repression of cambium activity in trees.
Collapse
Affiliation(s)
- Yingying Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- Present address:
State Key Laboratory of Grassland Agro-EcosystemInstitute of Innovation Ecology, Lanzhou UniversityLanzhou730000China
| | - Dongliang Song
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Rui Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Laifu Luo
- School of Life ScienceLanzhou UniversityLanzhouChina
| | - Shumin Cao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Cheng Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Laigeng Li
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
9
|
Cabello JV, Chan RL. Arabidopsis and sunflower plants with increased xylem area show enhanced seed yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:717-732. [PMID: 31009150 DOI: 10.1111/tpj.14356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Plant architecture plasticity determines the efficiency at harvesting and plays a major role defining biomass and seed yield. We observed that several previously described transgenic genotypes exhibiting increased seed yield also show wider stems and more vascular bundles than wild-type plants. Here, the relationship between these characteristics and seed yield was investigated. Hanging weight on the main stem of Arabidopsis plants provoked significant stem widening. Such widening was accompanied by an increase in the number of vascular bundles and about 100% of yield increase. In parallel, lignin deposition diminished. Vascular bundle formation started in the upper internode and continued downstream. AUX/LAX carriers were essential for this response. The increase of vascular bundles was reverted 3 weeks after the treatment leading to an enlarged xylem area. Aux1, lax1, and lax3 mutant plants were also able to enlarge their stems after the treatment, whereas lax2 plants did not. However, none of these mutants exhibited more vascular bundles or seed yield compared with untreated plants. Weight-induced xylem area enhancement and increased seed yield were also observed in sunflower plants. Altogether these results showed a strong correlation between the number of vascular bundles and enhanced seed yield under a long-day photoperiod. Furthermore, changes in the levels of auxin carriers affected both these processes in the same manner, suggesting that there may be an underlying causality.
Collapse
Affiliation(s)
- Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional N° 168 km. 0, Paraje El Pozo, (3000), Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional N° 168 km. 0, Paraje El Pozo, (3000), Santa Fe, Argentina
| |
Collapse
|
10
|
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. The Dynamics of Cambial Stem Cell Activity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:293-319. [PMID: 30822110 DOI: 10.1146/annurev-arplant-050718-100402] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stem cell populations in meristematic tissues at distinct locations in the plant body provide the potency of continuous plant growth. Primary meristems, at the apices of the plant body, contribute mainly to the elongation of the main plant axes, whereas secondary meristems in lateral positions are responsible for the thickening of these axes. The stem cells of the vascular cambium-a secondary lateral meristem-produce the secondary phloem (bast) and secondary xylem (wood). The sites of primary and secondary growth are spatially separated, and mobile signals are expected to coordinate growth rates between apical and lateral stem cell populations. Although the underlying mechanisms have not yet been uncovered, it seems likely that hormones, peptides, and mechanical cues orchestrate primary and secondary growth. In this review, we highlight the current knowledge and recent discoveries of how cambial stem cell activity is regulated, with a focus on mobile signals and the response of cambial activity to environmental and stress factors.
Collapse
Affiliation(s)
- Urs Fischer
- KWS SAAT SE, 37555 Einbeck, Germany
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Johnsson C, Jin X, Xue W, Dubreuil C, Lezhneva L, Fischer U. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. PHYSIOLOGIA PLANTARUM 2019; 165:673-689. [PMID: 29808599 PMCID: PMC7379297 DOI: 10.1111/ppl.12766] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 05/18/2023]
Abstract
Wood formation in higher plants is a complex and costly developmental process regulated by a complex network of transcription factors, short peptide signals and hormones. Correct spatiotemporal initiation of differentiation and downstream developmental stages is vital for proper wood formation. Members of the NAC (NAM, ATAF1/2 and CUC) family of transcription factors are described as top level regulators of xylem cell fate and secondary cell wall (SCW) deposition, but the signals initiating their transcription have yet to be elucidated. We found that treatment of Populus stems with auxin repressed transcription of NAC transcription factors associated with fiber and SCW formation and induced vessel-specific NACs, whereas gibberellic acid (GA) induced the expression of both classes of NAC domain transcription factors involved in wood formation. These transcriptional changes were reflected in alterations of stem anatomy, i.e. auxin treatment reduced cell wall thickness, whereas GA had a promotive effect on SCW deposition and on the rate of wood formation. Similar changes were observed on treatment of Arabidopsis thaliana stems with GA or the synthetic auxin NAA. We also observed corresponding changes in PIN5 overexpressing lines, where interference with auxin transport leads to premature SCW deposition and formation of additional fiber bundles. Together, this suggests wood formation is regulated by an integrated readout of both auxin and GA, which, in turn, controls expression of fiber and vessel specific NACs.
Collapse
Affiliation(s)
- Christoffer Johnsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Stora Enso ABFalunSweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Weiya Xue
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Carole Dubreuil
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Lina Lezhneva
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
12
|
Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development 2019; 146:146/1/dev171355. [PMID: 30626594 PMCID: PMC6340147 DOI: 10.1242/dev.171355] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards. Despite the importance and intriguing dynamics of the cambium, the functional characterization of its stem cells is hampered by the lack of experimental tools for accessing distinct cambium sub-domains. Here, we use the hypocotyl of Arabidopsis thaliana to map stem cell activity in the proliferating cambium. Through pulse labeling and genetically encoded lineage tracing, we find that a single bifacial stem cell generates both xylem and phloem cell lineages. This cell is characterized by a specific combination of PXY (TDR), SMXL5 and WOX4 gene activity and a high division rate in comparison with tissue-specific progenitors. Our analysis provides a cellular fate map of radial plant growth, and suggests that stem cell quiescence is not a general prerequisite for life-long tissue production. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: A single bifacial stem cell that is characterized by the combined activity of PXY (TDR), SMXL5 and WOX4 genes generates both wood and bast during radial plant growth.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Lebovka
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Vadir López-Salmerón
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Fischer U, Teichmann T. The ERECTA and ERECTA-like genes control a developmental shift during xylem formation in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1562-1563. [PMID: 28164341 DOI: 10.1111/nph.14440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Urs Fischer
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Thomas Teichmann
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Goettingen, 37077, Germany
| |
Collapse
|
14
|
Bhalerao RP, Fischer U. Environmental and hormonal control of cambial stem cell dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:79-87. [PMID: 27965368 DOI: 10.1093/jxb/erw466] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Perennial trees have the amazing ability to adjust their growth rate to both adverse and favorable seasonally reoccurring environmental conditions over hundreds of years. In trunks and stems, the basis for the tuning of seasonal growth rate is the regulation of cambial stem cell activity. Cambial stem cell quiescence and dormancy protect the tree from potential physiological and genomic damage caused by adverse growing conditions and may permit a long lifespan. Cambial dormancy and longevity are both aspects of a tree's life for which the study of cambial stem cell behavior in the annual model plant Arabidopsis is inadequate. Recent functional analyses of hormone perception and catabolism mutants in Populus indicate that shoot-derived long-range signals, as well as local cues, steer cambial activity. Auxin is central to the regulation of cambial activity and probably also maintenance. Emerging genome editing and phenotyping technologies will enable the identification of down-stream targets of hormonal action and facilitate the genetic dissection of complex traits of cambial biology.
Collapse
Affiliation(s)
- Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Urs Fischer
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| |
Collapse
|