1
|
Amoako FK, Sagervanshi A, Hussain MA, Pitann B, Mühling KH. Transcriptional and physiological analyses uncover the mineralization and uptake mechanisms of phytic acid in symbiotically grown Vicia faba plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108723. [PMID: 38749376 DOI: 10.1016/j.plaphy.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 μM KH2PO4; LPi and HPi), and phytic acid (200 μM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.
Collapse
Affiliation(s)
- Frank K Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Amit Sagervanshi
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Md Arif Hussain
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Sun X, Zhang H, Yang Z, Xing X, Fu Z, Li X, Kong Y, Li W, Du H, Zhang C. Overexpression of GmPAP4 Enhances Symbiotic Nitrogen Fixation and Seed Yield in Soybean under Phosphorus-Deficient Condition. Int J Mol Sci 2024; 25:3649. [PMID: 38612461 PMCID: PMC11011270 DOI: 10.3390/ijms25073649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.
Collapse
Affiliation(s)
- Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Huantao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Zhao Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
3
|
Sulieman S, Sheteiwy MS, Abdelrahman M, Tran LSP. γ-Aminobutyric acid (GABA) in N 2-fixing-legume symbiosis: Metabolic flux and carbon/nitrogen homeostasis in responses to abiotic constraints. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108362. [PMID: 38266561 DOI: 10.1016/j.plaphy.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.
Collapse
Affiliation(s)
- Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan.
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX, 79409, USA.
| |
Collapse
|
4
|
Wei N, Chen A, Guo X, Zhang S, Song L, Gan N, Zheng L, Jia Y, Li J. Changes in nitrogen metabolism of phosphorus-starved bloom-forming cyanobacterium Microcystis aeruginosa: Implications for nutrient management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166832. [PMID: 37673240 DOI: 10.1016/j.scitotenv.2023.166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The surplus of nitrogen plays a key role in the maintenance of cyanobacterial bloom when phosphorus has already been limited. However, the interplay between high nitrogen and low phosphorus conditions is not fully understood. Nitrogen metabolism is critical for the metabolism of cyanobacteria. Transcriptomic analysis in the present study suggested that nitrogen metabolism and ribosome biogenesis were the two most significantly changed pathways in long-term phosphorus-starved bloom-forming cyanobacteria Microcystis aeruginosa FACHB-905. Notably, the primary glutamine synthetase/glutamate synthase cycle, crucial for nitrogen metabolism, was significantly downregulated. Concurrently, nitrogen uptake showed a marked decrease due to reduced expression of nitrogen source transporters. The content of intracellular nitrogen reservoir phycocyanin also showed a drastic decrease upon phosphorus starvation. Our study demonstrated that long-term phosphorus-starved cells also suffered from nitrogen deficiency because of the reduction in nitrogen assimilation, which might be limited by the reduced ribosome biogenesis and the shortage of adenosine triphosphate. External nitrogen supply will not change the transcriptions of nitrogen metabolism-related genes significantly like that under phosphorus-rich conditions, but still help to maintain the survival of phosphorus-starved cells. The study deepens our understanding about the survival strategies of Microcystis cells under phosphorus starvation and the mutual dependence between nitrogen and phosphorus, which would provide valuable information for nutrient management in the eutrophicated water body.
Collapse
Affiliation(s)
- Nian Wei
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Aifa Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xiaohe Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jie Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
Solangi F, Zhu X, Khan S, Rais N, Majeed A, Sabir MA, Iqbal R, Ali S, Hafeez A, Ali B, Ercisli S, Kayabasi ET. The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability. ACS OMEGA 2023; 8:23271-23282. [PMID: 37426212 PMCID: PMC10324088 DOI: 10.1021/acsomega.3c00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Phosphorus (P) is one of the six key elements in plant nutrition and effectively plays a vital role in all major metabolic activities. It is an essential nutrient for plants linked to human food production. Although abundantly present in both organic and inorganic forms in soil, more than 40% of cultivated soils are commonly deficient in P concentration. Then, the P inadequacy is a challenge to a sustainable farming system to improve the food production for an increasing population. It is expected that the whole world population will rise to 9 billion by 2050 and, therefore, it is necessary at the same time for agricultural strategies broadly to expand food production up to 80% to 90% by handling the global dilemma which has affected the environment by climatic changes. Furthermore, the phosphate rock annually produced about 5 million metric tons of phosphate fertilizers per year. About 9.5 Mt of phosphorus enters human food through crops and animals such as milk, egg, meat, and fish and is then utilized, and 3.5 Mt P is physically consumed by the human population. Various new techniques and current agricultural practices are said to be improving P-deficient environments, which might help meet the food requirements of an increasing population. However, 4.4% and 3.4% of the dry biomass of wheat and chickpea, respectively, were increased under intercropping practices, which was higher than that in the monocropping system. A wide range of studies showed that green manure crops, especially legumes, improve the soil-available P content of the soil. It is noted that inoculation of arbuscular mycorrhizal fungi could decrease the recommended phosphate fertilizer rate nearly 80%. Agricultural management techniques to improve soil legacy P use by crops include maintaining soil pH by liming, crop rotation, intercropping, planting cover crops, and the consumption of modern fertilizers, in addition to the use of more efficient crop varieties and inoculation with P-solubilizing microorganisms. Therefore, exploring the residual phosphorus in the soil is imperative to reduce the demand for industrial fertilizers while promoting long-term sustainability on a global scale.
Collapse
Affiliation(s)
- Farheen Solangi
- Research
Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xingye Zhu
- Research
Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shumaila Khan
- Khwaja
Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab 64200, Pakistan
| | - Nazia Rais
- Department
of Soil Science, Sindh Agriculture University, Tandojam, Sindh 70060, Pakistan
| | - Asma Majeed
- Institute
of Agro-Industry and Environment, The Islamia
University of Bahawalpur Pakistan, Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Azeem Sabir
- Institute
of Forest Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Punjab 63100, Pakistan
| | - Shehzad Ali
- Department
of Environmental Sciences, Quaid-i-Azam
University, Islamabad 45320, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF Agro,
Ata Teknokent, TR-25240 Erzurum, Türkiye
| | - Ehlinaz Torun Kayabasi
- Department
of Agricultural Economy, Faculty of Agriculture, Kocaeli University, 41285 Kartepe, Türkiye
| |
Collapse
|
6
|
Zhong Y, Tian J, Li X, Liao H. Cooperative interactions between nitrogen fixation and phosphorus nutrition in legumes. THE NEW PHYTOLOGIST 2023; 237:734-745. [PMID: 36324147 DOI: 10.1111/nph.18593] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.
Collapse
Affiliation(s)
- Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Yao Y, Yuan H, Wu G, Ma C, Gong Z. Proteome Analysis of the Soybean Nodule Phosphorus Response Mechanism and Characterization of Stress-Induced Ribosome Structural and Protein Expression Changes. FRONTIERS IN PLANT SCIENCE 2022; 13:908889. [PMID: 35755677 PMCID: PMC9218819 DOI: 10.3389/fpls.2022.908889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), and 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilization to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
Collapse
Affiliation(s)
- Yubo Yao
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Xing X, Du H, Yang Z, Li X, Kong Y, Li W, Zhang C. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC PLANT BIOLOGY 2022; 22:161. [PMID: 35365088 PMCID: PMC8973899 DOI: 10.1186/s12870-022-03556-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Biological nitrogen fixation (BNF) is an important nitrogen source for legume plants, and highly efficient nitrogen fixation requires sufficient phosphorus (P). However, the mechanism of maintaining nitrogen fixation of the legume nodules under low P concentration remains largely unknown. RESULTS A nodule-localized SPX protein, GmSPX8, was discovered by transcriptome and functional analysis of its role in N2 fixation was characterized in soybean nodules. GmSPX8 was preferentially expressed in nodules and its expression was gradually increased during nodule development. And also the expression pattern was investigated using reporter gene β-glucuronidase (GUS) driven by the promoter of GmSPX8. GmSPX8 was greatly induced and the GUS activity was increased by 12.2% under P deficiency. Overexpression of GmSPX8 in transgenic plants resulted in increased nodule number, nodule fresh weight and nitrogenase activity by 15.0%, 16.0%, 42.5%, subsequently leading to increased N and P content by 17.0% and 19.0%, while suppression of GmSPX8 showed significantly impaired nodule development and nitrogen fixation efficiency under low P stress. These data indicated that GmSPX8 conferred nodule development and nitrogen fixation under low P condition. By yeast two-hybrid screening, GmPTF1 was identified as a potential interacting protein of GmSPX8, which was further confirmed by BiFC, Y2H and pull down assay. Transcript accumulation of GmPTF1 and its downstream genes such as GmEXLB1 and EXPB2 were increased in GmSPX8 overexpressed transgenic nodules, and in the presence of GmSPX8, the transcriptional activity of GmPTF1 in yeast cells and tobacco leaves was greatly enhanced. CONCLUSIONS In summary, these findings contribute novel insights towards the role of GmSPX8 in nodule development and nitrogen fixation partly through interacting with GmPTF1 in soybean under low P condition.
Collapse
Affiliation(s)
- Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
9
|
Qin X, Pan H, Xiao J, Tang L, Zheng Y. Increased nodular P level induced by intercropping stimulated nodulation in soybean under phosphorus deficiency. Sci Rep 2022; 12:1991. [PMID: 35132108 PMCID: PMC8821619 DOI: 10.1038/s41598-022-05668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Low P availability is a vital constraint for nodulation and efficient N2 fixation of legume, including soybean. To elucidate the mechanisms involved in nodule adaption to low P availability under legume/cereal intercropping systems, two experiments consisting of three cropping patterns (monocropped soybean, monocropped maize, soybean/maize intercropping) were studied under both sufficient- and deficient-P levels. Our results demonstrated that intercropped soybean with maize showed a higher nodulation and N2 fixation efficiency under low P availability than monocropped soybean as evidenced by improvement in the number, dry weight and nitrogenase activity of nodules. These differences might be attributed to increase in P level in intercropping-induced nodules under low P supply, which was caused by the elevated activities of phytase and acid phosphatases in intercropping-induced nodules. Additionally, the enhanced expression of phytase gene in nodules supplied with deficient P level coincided with an increase in phytase and acid phosphatase activities. Our results revealed a mechanism for how intercropped maize stimulated nodulation and N2 fixation of soybean under P deficient environments, where enhanced synthesis of phytase and acid phosphatases in intercropping-induced nodules, and stimulated nodulation and N2 fixation.
Collapse
Affiliation(s)
- Xiaomin Qin
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, China
| | - Haonan Pan
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingxiu Xiao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Tang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yi Zheng
- Yunnan Open University, Kunming, 650599, China.
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Zhuang Q, Xue Y, Yao Z, Zhu S, Liang C, Liao H, Tian J. Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1422-1438. [PMID: 34587329 DOI: 10.1111/tpj.15520] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency adversely affects nodule development as reflected by reduced nodule fresh weight in legume plants. Though mechanisms underlying nodule adaptation to P deficiency have been studied extensively, it remains largely unknown which regulator mediates nodule adaptation to P deficiency. In this study, GUS staining and quantitative reverse transcription-PCR analysis reveal that the SPX member GmSPX5 is preferentially expressed in soybean (Glycine max) nodules. Overexpression of GmSPX5 enhanced soybean nodule development particularly under phosphate (Pi) sufficient conditions. However, the Pi concentration was not affected in soybean tissues (i.e., leaves, roots, and nodules) of GmSPX5 overexpression or suppression lines, which distinguished it from other well-known SPX members functioning in control of Pi homeostasis in plants. Furthermore, GmSPX5 was observed to interact with the transcription factor GmNF-YC4 in vivo and in vitro. Overexpression of either GmSPX5 or GmNF-YC4 significantly upregulated the expression levels of five asparagine synthetase-related genes (i.e., GmASL2-6) in soybean nodules. Meanwhile, yeast one-hybrid and luciferase activity assays strongly suggested that interactions of GmSPX5 and GmNF-YC4 activate GmASL6 expression through enhancing GmNF-YC4 binding of the GmASL6 promoter. These results not only demonstrate the GmSPX5-GmNF-YC4-GmASL6 regulatory pathway mediating soybean nodule development, but also considerably improve our understanding of SPX functions in legume crops.
Collapse
Affiliation(s)
- Qingli Zhuang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yingbin Xue
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, P.R. China
| | - Zhufang Yao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Shengnan Zhu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350000, P.R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China
| |
Collapse
|
11
|
Nieva AS, Romero FM, Erban A, Carrasco P, Ruiz OA, Kopka J. Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. J Fungi (Basel) 2021; 7:765. [PMID: 34575803 PMCID: PMC8468338 DOI: 10.3390/jof7090765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
Root fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition. However, few studies have investigated other plant-fungal interactions that take place in the root environment with regard to phosphate nutrition. In the present research work, we aimed to analyze the effect of extreme Pi starvation and the fungal endophyte Fusarium solani on the model Lotus japonicus and the crop L. tenuis. We conducted metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) on plant tissues under optimal conditions, severe Pi starvation and F.solani presence. By combining statistical and correlation network analysis strategies, we demonstrated the differential outcomes of the two plant species against the combination of treatments. The combination of nutritional stress and Fusarium presence activated significant modifications in the metabolism of L. japonicus affecting the levels of sugars, polyols and some amino acids. Our results display potential markers for further inspection of the factors related to plant nutrition and plant-fungal interactions.
Collapse
Affiliation(s)
- Amira Susana Nieva
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
- Postdoctoral Fellow—Deutscher Akademischer Austauschdienst (DAAD), Kennedyallee 50, 53175 Bonn, Germany
| | - Fernando Matías Romero
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| | - Pedro Carrasco
- Institut de Biotecnològia i Biomedicina (BIOTECMED), Universitat de València, Av. Doctor Moliner 50, 46100 Burjassot, Spain;
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martin (UNSAM), Av. Intendente Marino Km 8.2, Chascomús 7130, Argentina; (F.M.R.); (O.A.R.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Mühlenberg 1, 14476 Potsdam, Germany; (A.E.); (J.K.)
| |
Collapse
|
12
|
Bosse MA, Silva MBD, Oliveira NGRMD, Araujo MAD, Rodrigues C, Azevedo JPD, Reis ARD. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:512-521. [PMID: 34171572 DOI: 10.1016/j.plaphy.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 05/20/2023]
Abstract
Legume plants from Fabaceae family (phylogenetic group composed by three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae) can fix atmospheric nitrogen (N2) into ammonia (NH3) by the symbiotic relationship with rhizobia bacteria. These bacteria respond chemotactically to certain compounds released by plants such as sugars, amino acids and organic acids. Root secretion of isoflavonoids acts as inducers for nod genes in rhizobia and ABC transporters and ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) at apoplast are related to the exudation of genistein and daidzein in soybean roots. Biological nitrogen fixation (BNF) occurs inside the nodule by the action of nitrogenase enzyme, which fixes N2 into NH3, which is converted into ureides (allantoin and allantoic acid). In this review, we bring together the latest findings on flavonoids biosynthesis and ureide metabolism in several legume plant species. We emphasize how flavonoids induce nod genes in rhizobia, affecting chemotaxis, nodulation, ureide production, growth and yield of legume plants. Mainly, isoflavonoids daidzein and genistein are responsible for nod genes activation in the rhizobia bacteria. Flavonoids also play an important role during nodule organogenesis by acting as auxin transporter inhibitors in root cells, especially in indeterminate nodules. The ureides are the main N transport form in tropical legumes and they are catabolized in leaves and other sink tissues to produce amino acids and proteins needed for plant growth and yield.
Collapse
Affiliation(s)
- Marco Antônio Bosse
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | | | | | | | - Cleverson Rodrigues
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
13
|
Pueyo JJ, Quiñones MA, Coba de la Peña T, Fedorova EE, Lucas MM. Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:644218. [PMID: 33747024 PMCID: PMC7966414 DOI: 10.3389/fpls.2021.644218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N-P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and integrating N-P interactive regulation is becoming the aim of some recent works. Lupins are singular plants, as, under N and P deficiencies, they are capable to develop new organs, the N2-fixing symbiotic nodules, and some species can also transform their root architecture to form cluster roots, hundreds of short rootlets that alter their metabolism to induce a high-affinity P transport system and enhance synthesis and secretion of organic acids, flavonoids, proteases, acid phosphatases, and proton efflux. These modifications lead to mobilization in the soil of, otherwise unavailable, P. White lupin (Lupinus albus) represents a model plant to study cluster roots and for understanding plant acclimation to nutrient deficiency. It tolerates simultaneous P and N deficiencies and also enhances uptake of additional nutrients. Here, we present the structural and functional modifications that occur in conditions of P and N deficiencies and lead to the organogenesis and altered metabolism of nodules and cluster roots. Some known N and P signaling mechanisms include different factors, including phytohormones and miRNAs. The combination of the individual N and P mechanisms uncovers interactive regulation pathways that concur in nodules and cluster roots. L. albus interlinks N and P recycling processes both in the plant itself and in nature.
Collapse
Affiliation(s)
- José J. Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | | | | | - Elena E. Fedorova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | |
Collapse
|
14
|
Nguyen NNT, Clua J, Vetal PV, Vuarambon DJ, De Bellis D, Pervent M, Lepetit M, Udvardi M, Valentine AJ, Poirier Y. PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:196-209. [PMID: 33631809 PMCID: PMC8133656 DOI: 10.1093/plphys/kiaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.
Collapse
Affiliation(s)
- Nga N T Nguyen
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Joaquin Clua
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Pallavi V Vetal
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Electron Microscopy Facility, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Michael Udvardi
- The Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Alexander J Valentine
- Botany & Zoology Department, University of Stellenbosch, Matieland 7602, South Africa
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Author for communication:
| |
Collapse
|
15
|
Wang Y, Yang Z, Kong Y, Li X, Li W, Du H, Zhang C. GmPAP12 Is Required for Nodule Development and Nitrogen Fixation Under Phosphorus Starvation in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:450. [PMID: 32499790 PMCID: PMC7243344 DOI: 10.3389/fpls.2020.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Nodulation process in legume plants is essential for biological nitrogen fixation during which process a large amount of phosphorus (P) is required. Under P deficiency, nodule formation is greatly affected, and induction of purple acid phosphatases (PAPs) is an adaptive strategy for nodules to acquire more P. However, regulation roles of PAPs in nodules remain largely understood. In this study, by transcriptome sequencing technology, five PAP genes were found to be differentially expressed, which led to the greatly increased acid phosphatase (APase) and phytase activities in soybean mature nodules under P starvation conditions; and among the five PAP genes, GmPAP12 had the highest transcript level, and RT-PCR indicated expression of GmPAP12 was gradually increasing during nodule development. GUS activity driven by GmPAP12 promoter was also significantly induced in low phosphorus conditions. Further functional analysis showed that under low phosphorus stress, overexpression of GmPAP12 resulted in higher nodule number, fresh weight, and nitrogenase activity as well as the APase activity than those of control plant nodules, whereas the growth performance and APase activity of nodules on hairy roots were greatly lower when GmPAP12 was suppressed, indicating that GmPAP12 may promote P utilization in soybean nodules under low P stress, which thus played an important role in nodulation and biological nitrogen fixation. Moreover, P1BS elements were found in the promoter of GmPAP12, and yeast one-hybrid experiment further proved the binding of P1BS by transcription factor GmPHR1 in the promoter of GmPAP12. At last, overexpression and suppression of GmPHR1 in nodules indeed caused highly increased and decreased expression of GmPAP12, respectively, indicating that GmPAP12 is regulated by GmPHR1 in soybean nodules. Taken together, these data suggested that GmPAP12 was a novel soybean PAP involved in the P utilization and metabolism in soybean root nodules and played an important role in the growth and development of root nodules and biological nitrogen fixation.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Escudero V, Abreu I, del Sastre E, Tejada-Jiménez M, Larue C, Novoa-Aponte L, Castillo-González J, Wen J, Mysore KS, Abadía J, Argüello JM, Castillo-Michel H, Álvarez-Fernández A, Imperial J, González-Guerrero M. Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. FRONTIERS IN PLANT SCIENCE 2020; 10:1780. [PMID: 32082345 PMCID: PMC7003136 DOI: 10.3389/fpls.2019.01780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Eric del Sastre
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Camille Larue
- EcoLab, Université de Toulouse, CNRS, Toulouse, France
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Jorge Castillo-González
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, United States
| | | | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - José M. Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Robles-Aguilar AA, Grunert O, Hernandez-Sanabria E, Mysara M, Meers E, Boon N, Jablonowski ND. Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine ( Lupinus angustifolius). FRONTIERS IN PLANT SCIENCE 2020; 11:572741. [PMID: 33329631 PMCID: PMC7717983 DOI: 10.3389/fpls.2020.572741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 05/11/2023]
Abstract
Intensive agriculture and horticulture heavily rely on the input of fertilizers to sustain food (and feed) production. However, high carbon footprint and pollution are associated with the mining processes of P and K, and the artificial nitrogen fixation for the production of synthetic fertilizers. Organic fertilizers or recovered nutrients from different waste sources can be used to reduce the environmental impact of fertilizers. We tested two recovered nutrients with slow-release patterns as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as a nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in lupine plants. Plant performance was not affected by the fertilizer applied; however, N recovery was higher from the organic fertilizer than from struvite. As root architecture is fundamental for plant productivity, variations in root structure and length as a result of soil nutrient availability driven by plant-bacteria interactions were compared showing also no differences between fertilizers. However, fertilized plants were considerably different in the root length and morphology compared with the no fertilized plants. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed that the fertilizer applied had a significant impact on the associations and functionality of the bacteria inhabiting the growing medium used. The type of fertilizer significantly influenced the interindividual dissimilarities in the most abundant genera between treatments. This means that different plant species have a distinct effect on modulating the associated microbial community, but in the case of lupine, the fertilizer had a bigger effect than the plant itself. These novel insights on interactions between recovered fertilizers, plant, and associated microbes can contribute to developing sustainable crop production systems.
Collapse
Affiliation(s)
- Ana A. Robles-Aguilar
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Oliver Grunert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Greenyard Horticulture, Ghent, Belgium
| | - Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Bacteriology, VIB – KU Leuven Center for Microbiology, Rega Institute, Leuven, Belgium
| | - Mohamed Mysara
- Unit of Microbiology, Belgian Nuclear Research Center, StudieCentrum voor Kernenergie⋅Centre d’étude de l’Energie Nucléaire (SCK⋅CEN), Mol, Belgium
- Department of Bioscience Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
- *Correspondence: Nico Boon,
| | - Nicolai D. Jablonowski
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
- Nicolai D. Jablonowski,
| |
Collapse
|
18
|
Sulieman S, Kusano M, Ha CV, Watanabe Y, Abdalla MA, Abdelrahman M, Kobayashi M, Saito K, Mühling KH, Tran LSP. Divergent metabolic adjustments in nodules are indispensable for efficient N 2 fixation of soybean under phosphate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110249. [PMID: 31623782 DOI: 10.1016/j.plantsci.2019.110249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The main objective of the present study was to characterize the symbiotic N2 fixation (SNF) capacity and to elucidate the underlying mechanisms for low-Pi acclimation in soybean plants grown in association with two Bradyrhizobium diazoefficiens strains which differ in SNF capacity (USDA110 vs. CB1809). In comparison with the USDA110-soybean, the CB1809-soybean association revealed a greater SNF capacity in response to Pi starvation, as evidenced by relative higher plant growth and higher expression levels of the nifHDK genes. This enhanced Pi acclimation was partially related to the efficient utilization to the overall carbon (C) budget of symbiosis in the CB1809-induced nodules compared with that of the USDA110-induced nodules under low-Pi provision. In contrast, the USDA110-induced nodules favored other metabolic acclimation mechanisms that expend substantial C cost, and consequently cause negative implications on nodule C expenditure during low-Pi conditions. Fatty acids, phytosterols and secondary metabolites are characterized among the metabolic pathways involved in nodule acclimation under Pi starvation. While USDA110-soybean association performed better under Pi sufficiency, it is very likely that the CB1809-soybean association is better acclimatized to cope with Pi deficiency owing to the more effective functional plasticity and lower C cost associated with these nodular metabolic arrangements.
Collapse
Affiliation(s)
- Saad Sulieman
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
19
|
Pérez-Fernández M, Míguez-Montero Á, Valentine A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. PLANTS (BASEL, SWITZERLAND) 2019; 8:E334. [PMID: 31500171 PMCID: PMC6783971 DOI: 10.3390/plants8090334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022]
Abstract
We investigated the impact of phosphorus nutrition on plant growth and biological nitrogen fixation in four leguminous plants in the Tribe Genistea. The main objective of the study was to analyze Phosphorus and Nitrogen use efficiency under drought. We also tested for the effects of rhizobial inoculation on plant performance. Plants inoculated with Rhizobium strains isolated from plants of the four species growing in the wild were cropped under controlled conditions in soils with either low P (5 µM) or high P (500 µM). The experiment was replicated in the presence and absence of plant irrigation to test for the effects of drought stress of inoculated and non-inoculated plants under the two P levels of fertilization. Low-P treatments increased nodule production while plant biomass and shoot and root P and N contents where maximum at high P. Low P (5 µM) in the growing media, resulted in greater N accumulated in plants, coupled with greater phosphorus and nitrogen uptake efficiencies. Drought reduced the relative growth rate over two orders of magnitude or more, depending on the combination of plant species and treatment. Genista cinerea had the lowest tolerance to water scarcity, whereas Genista florida and Retama sphaerocarpa were the most resistant species to drought. Drought resistance was enhanced in the inoculated plants. In the four species, and particularly in Echinospartum barnadesii, the inoculation treatment clearly triggered N use efficiency, whereas P use efficiency was greater in the non-inoculated irrigated plants. Nodulation significantly increased in plants in the low P treatments, where plants showed a greater demand for N. The physiological basis for the four species being able to maintain their growth at low P levels and to respond to the greater P supply, is through balanced acquisition of P and N to meet the plants' nutritional needs.
Collapse
Affiliation(s)
- María Pérez-Fernández
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Ángel Míguez-Montero
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Alexandre Valentine
- Department of Botany and Zoology, Stellenbosch University, 7602 Matieland, South Africa.
| |
Collapse
|
20
|
Zhang S, Tang D, Korpelainen H, Li C. Metabolic and physiological analyses reveal that Populus cathayana males adopt an energy-saving strategy to cope with phosphorus deficiency. TREE PHYSIOLOGY 2019; 39:1630-1645. [PMID: 31237332 DOI: 10.1093/treephys/tpz074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 05/27/2023]
Abstract
Dioecious trees have evolved sex-specific adaptation strategies to cope with inorganic phosphorus (Pi) limitation. Yet, little is known about the effects of Pi limitation on plant metabolism, particularly in dioecious woody plants. To identify potential gender-specific metabolites appearing in response to Pi limitation in poplars, we studied the metabolic and ionomic responses in the roots and leaves of Populus cathayana Rehd males and females exposed to a 60-day period of Pi deficiency. Besides significant decreases in phosphorus contents in both Pi-deficient roots and leaves, the calcium level decreased significantly and the sulfur content increased significantly in Pi-deficient male roots, while the zinc and ferrum contents increased significantly in Pi-deficient female roots. Inorganic P deficiency caused a smaller change in the abscisic acid content, but a significant increase in the jasmonic acid content was detected in both leaves and roots. Salicylic acid significantly decreased under Pi deficiency in male leaves and female roots. Changes were found in phospholipids and phosphorylated metabolites (e.g., fructose-6-phosphate, glycerol-3-phosphate, glucose-6-phosphate, phosphoric acid and inositol-1-phosphate) in roots and leaves. Both P. cathayana males and females relied on inorganic pyrophosphate-dependent but not on Pi-dependent glycolysis under Pi-deficient conditions. Sex-specific metabolites in leaves were primarily in the category of primary metabolites (e.g., amino acids), while in roots primarily in the category of secondary metabolites (e.g., organic acids) and sugars. The metabolome analysis revealed that sexually different pathways occurred mainly in amino acid metabolism, and the tissue-related differences were in the shikimate pathway and glycolysis. We observed changes in carbon flow, reduced root biomass and increased amino acid contents in P. cathayana males but not in females, which indicated that males have adopted an energy-saving strategy to adapt to Pi deficiency. Thus, this study provides new insights into sex-specific metabolic responses to Pi deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Duoteng Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
21
|
Stevens GG, Pérez-Fernández MA, Morcillo RJL, Kleinert A, Hills P, Brand DJ, Steenkamp ET, Valentine AJ. Roots and Nodules Response Differently to P Starvation in the Mediterranean-Type Legume Virgilia divaricata. FRONTIERS IN PLANT SCIENCE 2019; 10:73. [PMID: 30804964 PMCID: PMC6370976 DOI: 10.3389/fpls.2019.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.
Collapse
Affiliation(s)
- Gary G. Stevens
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | | | - Rafael J. L. Morcillo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Aleysia Kleinert
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Paul Hills
- Institute for Plant Biotechnology, Stellenbosch University, Matieland, South Africa
| | - D. Jacobus Brand
- NMR Unit, Central Analytical Facility, Stellenbosch University, Matieland, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
22
|
Challenges in Using Precision Agriculture to Optimize Symbiotic Nitrogen Fixation in Legumes: Progress, Limitations, and Future Improvements Needed in Diagnostic Testing. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8050078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|
24
|
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:48-56. [PMID: 28969802 DOI: 10.1016/j.plantsci.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE.
Collapse
Affiliation(s)
- Julien Verzeaux
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Bertrand Hirel
- Intitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, RD10, F-78026 Versailles Cedex, France.
| | - Frédéric Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Thierry Tétu
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| |
Collapse
|