1
|
Begum K, Das A, Ahmed R, Akhtar S, Kulkarni R, Banu S. Genome-wide analysis of respiratory burst oxidase homolog ( Rboh) genes in Aquilaria species and insight into ROS-mediated metabolites biosynthesis and resin deposition. FRONTIERS IN PLANT SCIENCE 2024; 14:1326080. [PMID: 38405033 PMCID: PMC10893762 DOI: 10.3389/fpls.2023.1326080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Respiratory burst oxidase homolog (Rboh) generates reactive oxygen species (ROS) as a defense response during biotic and abiotic stress. In Aquilaria plants, wounding and fungal infection result in biosynthesis and deposition of secondary metabolites as defense responses, which later form constituents of fragrant resinous agarwood. During injury and fungal invasion, Aquilaria tree generates ROS species via the Rboh enzymes. Despite the implication of Rboh genes in agarwood formation, no comprehensive genomic-level study of the Rboh gene family in Aquilaria is present. A systematic illustration of their role during stress and involvement in initiating signal cascades for agarwood metabolite biosynthesis is missing. In this study, 14 Rboh genes were retrieved from genomes of two Aquilaria species, A. agallocha and A. sinensis, and were classified into five groups. The promoter regions of the genes had abundant of stress-responsive elements. Protein-protein network and in silico expression analysis suggested their functional association with MAPK proteins and transcription factors such as WRKY and MYC2. The study further explored the expression profiles of Rboh genes and found them to be differentially regulated in stress-induced callus and stem tissue, suggesting their involvement in ROS generation during stress in Aquilaria. Overall, the study provides in-depth insight into two Rboh genes, AaRbohC and AaRbohA, highlighting their role in defense against fungal and abiotic stress, and likely during initiation of agarwood formation through modulation of genes involved in secondary metabolites biosynthesis. The findings presented here offer valuable information about Rboh family members, which can be leveraged for further investigations into ROS-mediated regulation of agarwood formation in Aquilaria species.
Collapse
Affiliation(s)
- Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
2
|
Guo M, Tian P, Li Q, Meng B, Ding Y, Liu Y, Li Y, Yu L, Li J. Gallium Nitrate Enhances Antimicrobial Activity of Colistin against Klebsiella pneumoniae by Inducing Reactive Oxygen Species Accumulation. Microbiol Spectr 2023; 11:e0033423. [PMID: 37272820 PMCID: PMC10434156 DOI: 10.1128/spectrum.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections. IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Mingjuan Guo
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Tian
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingqing Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bao Meng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuting Ding
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Yasheng Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Disease, The Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Hao Z, Wu H, Zheng R, Li R, Zhu Z, Chen Y, Lu Y, Cheng T, Shi J, Chen J. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:716-733. [PMID: 36575581 DOI: 10.1111/tpj.16077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) is widely used for studying the mechanisms of embryo development. However, little is known about the underlying mechanisms, especially in woody plants. Previous studies have established an SE system for Chinese fir (Cunninghamia lanceolata), but this system is genotype-dependent, which limits its application in practice. Here, we found that phytosulfokine (PSK), a plant peptide hormone, can not only increase SE efficiency, but also establish SE in recalcitrant genotypes of C. lanceolata. Proembryogenic mass (PEM) browning and determination of hydrogen peroxide (H2 O2 ) content by 2',7'-dichlorofluorescein staining indicated that a reactive oxygen species (ROS) burst occurred rapidly after PEMs were transferred to SE induction medium. Transcriptome analysis and quantitative reverse transcriptase-PCR validation showed that PSK treatment helped to maintain ROS homeostasis by decreasing the activity of peroxidases in early SE induction. This PSK-regulated redox microenvironment might be helpful to induce expression of SE-related genes like WOX2 in early SE induction. Further analyses suggested that PSK promotes SE induction in C. lanceolata partially through decreasing H2 O2 levels, which is necessary but not sufficient for SE induction in recalcitrant genotypes of C. lanceolata. Furthermore, heterologous overexpression of ClPSK in Arabidopsis led to enhanced SE induction and resistance to H2 O2 stress. Taken together, our study reveals a biological function for the plant peptide hormone PSK, extends our knowledge about SE in woody trees, and provides a valuable tool for establishing an efficient and genotype-independent SE system in C. lanceolata and other coniferous trees.
Collapse
Affiliation(s)
- Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hua Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Rui Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zeli Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ye Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
4
|
Zhang N, Xue S, Song J, Zhou X, Zhou D, Liu X, Hong Z, Xu D. Effects of various artificial agarwood-induction techniques on the metabolome of Aquilaria sinensis. BMC PLANT BIOLOGY 2021; 21:591. [PMID: 34903180 PMCID: PMC8667428 DOI: 10.1186/s12870-021-03378-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.
Collapse
Affiliation(s)
- Ningnan Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Shiyu Xue
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Jie Song
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Xiuren Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dahao Zhou
- Huazhou Yuanlai Agarwood Limited Company, Huazhou, 525100 China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| |
Collapse
|
5
|
Hu B, Hu S, Chen Z, Vymazal J. Employ of arbuscular mycorrhizal fungi for pharmaceuticals ibuprofen and diclofenac removal in mesocosm-scale constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124524. [PMID: 33243641 DOI: 10.1016/j.jhazmat.2020.124524] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of arbuscular mycorrhizal fungi (AMF) colonization on the growth of wetland plants (Glyceria maxima), and treatment performance in constructed wetlands (CWs) under the stress of pharmaceuticals ibuprofen (IBU) and diclofenac (DCF). Results showed that the growth of G. maxima was significantly increased by AMF colonization. AMF significantly increased the activities of antioxidant enzymes (peroxidase and superoxide dismutase) and soluble protein content in wetland plants, but the contents of malondialdehyde and O2•- were reduced. The removal efficiencies of TOC, PO43--P, NH4+-N, and TN were increased in AMF+ treatments by 6%, 11%, 15% and 11%, respectively. AMF increased the removal efficiencies of IBU and DCF by 6-14% and 2-21%, respectively, and reduced the content of their metabolites (2-OH IBU, CA IBU and 4'-OH DCF) in the effluent. Besides, the presence of AMF increased the contents of IBU and DCF in plant roots, while decreased their transportation to shoots. AMF symbiosis decreased the contents of IBU metabolites (2-OH IBU and CA IBU) but increased the contents of DCF metabolite (4'-OH DCF) in the roots of the host plant. In conclusion, these results indicated that AMF plays a promising role in CWs for emerging pollutants removal.
Collapse
Affiliation(s)
- Bo Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic.
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| |
Collapse
|
6
|
Cui J, Jiang N, Meng J, Yang G, Liu W, Zhou X, Ma N, Hou X, Luan Y. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato- Phytophthora infestans interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:933-946. [PMID: 30472748 DOI: 10.1111/tpj.14173] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 05/09/2023]
Abstract
Our previous studies indicated that tomato WRKY1 transcription factor acts as a positive regulator during tomato resistance to Phytophthora infestans. However, the molecular mechanism of WRKY1-mediated resistance regulation remains unclear. Here, we used a comparative transcriptome analysis between wild-type and WRKY1-overexpressing tomato plants to identify differentially expressed genes (DEGs) and long non-coding RNAs (DELs), and we examined long non-coding RNA (lncRNA)-gene networks. The promoter sequences of the upregulated DEGs and DELs were analyzed. Among 1073 DEGs and 199 DELs, 1 kb 5'-upstream regions of 59 DEGs and 22 DELs contain the W-box, the target sequence of the WRKY1. The results of promoter-β-glucuronidase (GUS) fusion and yeast one-hybrid assay showed that lncRNA33732 was activated by WRKY1 through sequence-specific interactions with the W-box element in its promoter. The overexpression and silencing analysis of lncRNA33732 in tomato showed that lncRNA33732 acts as a positive regulator and enhanced tomato resistance to P. infestans by induction of the expression of respiratory burst oxidase (RBOH) and increase in the accumulation of H2 O2 . When the expression of RBOH gene was inhibited in tomato plants, H2 O2 accumulation decreased and resistance were impaired. These findings suggest that lncRNA33732 activated by WRKY1 induces RBOH expression to increase H2 O2 accumulation in early defense reaction of tomato to P. infestans attack. Our results provide insights into the WRKY1-lncRNA33732-RBOH module involved in the regulation of H2 O2 accumulation and resistance to P. infestans, as well as provide candidates to enhance broad-spectrum resistance to pathogens in tomato.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Weiwei Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoxu Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Ma
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Xinxin Hou
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|