1
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
2
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
3
|
Yuan Y, Pang X, Pang J, Wang Q, Zhou M, Lu Y, Xu C, Huang D. Identification and Characterisation of the CircRNAs Involved in the Regulation of Leaf Colour in Quercus mongolica. BIOLOGY 2024; 13:183. [PMID: 38534452 DOI: 10.3390/biology13030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) are important regulatory molecules involved in various biological processes. However, the potential function of circRNAs in the turning red process of Quercus mongolica leaves is unclear. This study used RNA-seq data to identify 6228 circRNAs in leaf samples from four different developmental stages and showed that 88 circRNAs were differentially expressed. A correlation analysis was performed between anthocyanins and the circRNAs. A total of 16 circRNAs that may be involved in regulating the colour of Mongolian oak leaves were identified. CircRNAs may affect the colour of Q. mongolica leaves by regulating auxin, cytokinin, gibberellin, ethylene, and abscisic acid. This study revealed the potential role of circRNAs in the colour change of Q. mongolica leaves.
Collapse
Affiliation(s)
- Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Xinbo Pang
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Jiushuai Pang
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
| | - Miaomiao Zhou
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Yan Lu
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Chenyang Xu
- Hongyashan State-Owned Forest Farm, Baoding 074200, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
4
|
Dhandhanya UK, Mukhopadhyay K, Kumar M. An accretive detection method for in silico identification and validation of circular RNAs in wheat (Triticum aestivum L.) using RT-qPCR. Mol Biol Rep 2024; 51:162. [PMID: 38252357 DOI: 10.1007/s11033-023-09138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are novel class of non-coding RNAs, which are involved in various functions at the transcriptional and post-transcriptional level in response to a fungal pathogen (Puccinia triticina), including microRNA (miRNA) sponge, RNA binding proteins sponge, regulation of parental gene and biomarkers. Detailed analysis of wheat circRNAs is essential to accelerate the regulated expression of fungal miRNAs. Therefore, we suggest a protocol to aid circRNA identification through RNA-Seq data using various algorithms based on perl script followed by validation through divergent primer designing, standard PCR, and RT-qPCR assays. METHODS AND RESULT The divergent primer has been widely used to detect, validate, and quantify back-spliced junction (BSJ) of circRNAs. The procedure covers index file formation, circRNA identification and BSJ detections. However, the laboratory validation of circRNA includes wheat genomic DNA isolation, RNA isolation and its cDNA conversion upto validation. In this study, we identified 28 circRNAs from RNA-Seq of S0 and R0, wherein six circRNAs are commonly present and 75% of the identified circRNAs were belongs to inter-genic, 14% were exonic and intronic category were 11%. Divergent primer designing method successfully validated the two circRNAs via RT-qPCR assay, where circRNA_2 showed less relative expression pattern than circRNA_1 in contrast with housekeeping genes. CONCLUSION Thus, our results of identified and validated circRNAs showed that, this protocol is quite helpful, relatively easy, reliable, and accurate for large datasets as other algorithms need various dependencies and have complex scripts with high chances of error occurrence. Additionally, analysis time will vary depending on the expertise level and the number of RNA-Seq data. This proposed protocol can also be used for a wide range of monocotyledons belonging to the Poaceae plant family.
Collapse
Affiliation(s)
- Umang Kumar Dhandhanya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
6
|
Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Viruses 2023; 15:1697. [PMID: 37632040 PMCID: PMC10458642 DOI: 10.3390/v15081697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.
Collapse
Affiliation(s)
- Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology, ShiGan International College of Science and Technology/ShiGan Health Foundation, Narayangopal Chowk, Kathmandu 44600, Nepal
| | - Yuhai Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
8
|
Jiang W, Long X, Li Z, Hu M, Zhang Y, Lin H, Tang W, Ouyang Y, Jiang L, Chen J, He P, Ouyang X. The Role of Circular RNAs in Ischemic Stroke. Neurochem Res 2023:10.1007/s11064-023-03935-7. [PMID: 37126193 DOI: 10.1007/s11064-023-03935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
Ischemic stroke (IS), a devastating condition characterized by intracranial artery stenosis and middle cerebral artery occlusion leading to insufficient oxygen supply to the brain, is a major cause of death and physical disability worldwide. Recent research has demonstrated the critical role of circular RNAs (circRNAs), a class of covalently enclosed noncoding RNAs that are widespread in eukaryotic cells, in regulating various physiological and pathophysiological cellular processes, including cell apoptosis, autophagy, synaptic plasticity, and neuroinflammation. In the past few years, circRNAs have attracted extensive attention in the field of IS research. This review summarizes the current understanding of the mechanisms underlying the involvement of circRNAs in IS development. A better understanding of circRNA-mediated pathogenic mechanisms in IS may pave the way for translating circRNA research into clinical practice, ultimately improving the clinical outcomes of IS patients.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongquan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
| | - Zhicheng Li
- Collage of Pharmacy, University of South China, Hengyang, Hunan, China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Huiling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Wanying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Pingping He
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Xinping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China.
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| |
Collapse
|
9
|
Liu R, Ma Y, Guo T, Li G. Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. PLANT COMMUNICATIONS 2023; 4:100430. [PMID: 36081344 PMCID: PMC9860190 DOI: 10.1016/j.xplc.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, closed RNA molecules with unique functions that are ubiquitously expressed in all eukaryotes. The biogenesis of circRNAs is regulated by specific cis-acting elements and trans-acting factors in humans and animals. circRNAs mainly exert their biological functions by acting as microRNA sponges, forming R-loops, interacting with RNA-binding proteins, or being translated into polypeptides or proteins in human and animal cells. Genome-wide identification of circRNAs has been performed in multiple plant species, and the results suggest that circRNAs are abundant and ubiquitously expressed in plants. There is emerging compelling evidence to suggest that circRNAs play essential roles during plant growth and development as well as in the responses to biotic and abiotic stress. However, compared with recent advances in human and animal systems, the roles of most circRNAs in plants are unclear at present. Here we review the identification, biogenesis, function, and mechanism of action of plant circRNAs, which will provide a fundamental understanding of the characteristics and complexity of circRNAs in plants.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Ma
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
10
|
Zhang P, Dai M. CircRNA: a rising star in plant biology. J Genet Genomics 2022; 49:1081-1092. [PMID: 35644325 DOI: 10.1016/j.jgg.2022.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which are widespread in eukaryotic cells. As regulatory molecules, circRNAs have various functions, such as regulating gene expression, binding miRNAs or proteins, and being translated into proteins, which are important for cell proliferation and cell differentiation, individual growth and development, as well as many other biological processes. However, compared with that in animal models, studies of circRNAs in plants lags behind and, particularly, the regulatory mechanisms of biogenesis and molecular functions of plant circRNAs remain elusive. Recent studies have shown that circRNAs are wide spread in plants with tissue- or development-specific expression patterns and are responsive to a variety of environmental stresses. In this review, we summarize these advances, focusing on the regulatory mechanisms of biogenesis, molecular and biological functions of circRNAs, and the methods for investigating circRNAs. We also discuss the challenges and the prospects of plant circRNA studies.
Collapse
Affiliation(s)
- Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
12
|
Liu H, Nwafor CC, Piao Y, Li X, Zhan Z, Piao Z. Identification and Characterization of Circular RNAs in Brassica rapa in Response to Plasmodiophora brassicae. Int J Mol Sci 2022; 23:5369. [PMID: 35628175 PMCID: PMC9141718 DOI: 10.3390/ijms23105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants and causes clubroot disease. CircRNAs are noncoding RNAs, widely existing in plant and animal species. Although knowledge of circRNAs has been updated continuously and rapidly, information about circRNAs in the regulation of clubroot disease resistance is extremely limited in Brassica rapa. Here, Chinese cabbage (BJN 222) containing clubroot resistance genes (CRa) against P. brassicae Pb4 was susceptible to PbE. To investigate the mechanism of cicRNAs responsible for clubroot disease resistance in B. rapa, circRNA-seq was performed with roots of 'BJN 222' at 0, 8, and 23 days post-inoculated (dpi) with Pb4 and PbE. A total of 231 differentially expressed circRNAs were identified between the groups. Based on the differentially expressed circRNAs, the circRNA-miRNA-mRNA network was constructed using the target genes directly or indirectly related to plant resistance. Upregulated novel_circ_000495 suppressed the expression of miR5656-y, leading to the upregulation of Bra026508, which might cause plant resistance. Our results provide new insights into clubroot resistance mechanisms and lay a foundation for further studies exploring complex gene regulation networks in B. rapa.
Collapse
Affiliation(s)
- Huishan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Chinedu Charles Nwafor
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Yinglan Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| |
Collapse
|
13
|
Identification and Characterization of circRNAs under Drought Stress in Moso Bamboo (Phyllostachys edulis). FORESTS 2022. [DOI: 10.3390/f13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs formed by 3′-5′ ligation during splicing. They play an important role in the regulation of transcription and miRNA in eukaryotes. Drought is one of the detrimental abiotic stresses that limit plant growth and productivity. How circRNAs influence the response to drought stress in moso bamboo (Phyllostachys edulis) remains elusive. In this study, we investigate the expression pattern of circRNAs in moso bamboo at 6 h, 12 h, 24 h and 48 h after drought treatment by deep sequencing and bioinformatics analysis and identify 4931 circRNAs, 52 of which are differentially expressed (DEcircRNAs) in drought-treated and untreated moso bamboo. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the host genes that generate the DEcircRNAs indcate that these DEcircRNAs are predicted to be involved in biochemical processes in response to drought, such as ubiquitin-mediated proteolysis, calcium-dependent protein kinase phosphorylation, amino acid biosynthesis and plant hormone signal transduction including abscisic acid. In addition, some circRNAs are shown to act as sponges for 291 miRNAs. Taken together, our results characterize the transcriptome profiles of circRNAs in drought responses and provide new insights into resistance breeding of moso bamboo.
Collapse
|
14
|
Wang L, Li J, Guo B, Xu L, Li L, Song X, Wang X, Zeng X, Wu L, Niu D, Sun K, Sun X, Zhao H. Exonic Circular RNAs Are Involved in Arabidopsis Immune Response Against Bacterial and Fungal Pathogens and Function Synergistically with Corresponding Linear RNAs. PHYTOPATHOLOGY 2022; 112:608-619. [PMID: 34445896 DOI: 10.1094/phyto-09-20-0398-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNAs) are a group of covalently closed RNAs, and their biological function is largely unknown. In this study, we focused on circRNAs that are generated from exon back-splicing (exonic circRNAs). The linear RNA counterparts encode functional proteins so that we can compare and investigate the relationship between circular and linear RNAs. We compared circRNA expression profiles between untreated and Pseudomonas syringae-infected Arabidopsis and identified and experimentally validated differentially expressed exonic circRNAs by multiple approaches. We found that exonic circRNAs are preferentially enriched in biological processes that associate with biotic and abiotic stress responses. We discovered that circR194 and circR4022 are involved in plant response against P. syringae infection, whereas circR11208 is involved in response against Botrytis cinerea infection. Intriguingly, our results indicate that these exonic circRNAs function synergistically with their corresponding linear RNAs. Furthermore, circR4022 and circR11208 also play substantial roles in Arabidopsis tolerance to salt stress. This study extends our understanding of the molecular functions of plant circRNAs.
Collapse
Affiliation(s)
- Lin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohuan Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Leyao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoning Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebin Zeng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Lihua Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Sun
- Big Data Research Center, College of Information Science, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaoyong Sun
- Big Data Research Center, College of Information Science, Shandong Agricultural University, Tai'an 271018, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Ghorbani A, Izadpanah K, Tahmasebi A, Afsharifar A, Moghadam A, Dietzgen RG. Characterization of maize miRNAs responsive to maize Iranian mosaic virus infection. 3 Biotech 2022; 12:69. [PMID: 35223355 PMCID: PMC8837769 DOI: 10.1007/s13205-022-03134-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) play key regulatory roles in the plant's response to biotic and abiotic stresses and have fundamental functions in plant-virus interactions. The study of changes in miRNAs in response to virus infection can provide molecular details for a better understanding of virus-host interactions. Maize Iranian mosaic virus (MIMV) infects maize and certain other poaceous plants but miRNA changes in response to MIMV infection are unknown. In the present study, we compared the miRNA profiles of MIMV-infected and uninfected maize and characterized their predicted roles in response to the virus. Small RNA sequencing of maize identified 257 conserved miRNAs of 26 conserved families in uninfected and MIMV-infected maize libraries. Among them, miR395, miR166 and miR156 family members were highly represented. Small RNA data were confirmed using RT-qPCR. In addition, 33 potential novel miRNAs were predicted. The data show that 13 miRNAs were up-regulated and 113 were down-regulated in response to MIMV infection. Several of those miRNAs are known to be important in the response to plant pathogens. To determine the potential roles of individual miRNAs in response to MIMV, miRNA targets, predicted interactions with circular RNAs and comparative transcriptome data were analyzed. The expression profiles of different miRNAs in response to MIMV provide novel insights into the roles of miRNAs in the interaction between MIMV and maize plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03134-1.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| | | | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| |
Collapse
|
16
|
Tahaei SA, Nasri M, Soleymani A, Ghooshchi F, Oveysi M. Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112355. [PMID: 34834718 PMCID: PMC8623739 DOI: 10.3390/plants10112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/30/2023]
Abstract
Among all economically important plant species in the world, grapevine (Vitis vinifera L.) is the most cultivated fruit plant. It has a significant impact on the economies of many countries through wine and fresh and dried fruit production. In recent years, the grape and wine industry has been facing outbreaks of known and emerging viral diseases across the world. Although high-throughput sequencing (HTS) has been used extensively in grapevine virology, the application and potential of third-generation sequencing have not been explored in understanding grapevine viruses and their impact on the grapevine. Nanopore sequencing, a third-generation technology, can be used for the direct sequencing of both RNA and DNA with minimal infrastructure. Compared to other HTS methods, the MinION nanopore platform is faster and more cost-effective and allows for long-read sequencing. Due to the size of the MinION device, it can be easily carried for field viral disease surveillance. This review article discusses grapevine viruses, the principle of third-generation sequencing platforms, and the application of nanopore sequencing technology in grapevine virus detection, virus-plant interactions, as well as the characterization of viral RNA modifications.
Collapse
Affiliation(s)
- Vahid Jalali Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Dong Xu
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada;
| | - Mamadou Lamine Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| |
Collapse
|
18
|
Niu M, Ju Y, Lin C, Zou Q. Characterizing viral circRNAs and their application in identifying circRNAs in viruses. Brief Bioinform 2021; 23:6377516. [PMID: 34585234 DOI: 10.1093/bib/bbab404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/19/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism, which play an important role in a variety of biological activities. Viruses can encode circRNA, and viral circRNAs have been found in multiple single-stranded and double-stranded viruses. However, the characteristics and functions of viral circRNAs remain unknown. Sequence alignment showed that viral circRNAs are less conserved than circRNAs in animal, indicating that the viral circRNAs may evolve rapidly. Through the analysis of the sequence characteristics of viral circRNAs and circRNAs in animal, it was found that viral circRNAs and animals circRNAs are similar in nucleic acid composition, but have obvious differences in secondary structure and autocorrelation characteristics. Based on these characteristics of viral circRNAs, machine learning algorithms were employed to construct a prediction model to identify viral circRNA. Additionally, analysis of the interaction between viral circRNA and miRNAs showed that viral circRNA is expected to interact with 518 human miRNAs, and preliminary analysis of the role of viral circRNA. And it has been also found that viral circRNAs may be involved in many KEGG pathways related to nervous system and cancer. We curated an online server, and the data and code are available: http://server.malab.cn/viral-CircRNA/.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
19
|
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs. Methods Mol Biol 2021; 2362:119-145. [PMID: 34195961 DOI: 10.1007/978-1-0716-1645-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs derived from exonic, intronic, and intergenic regions from precursor messenger RNAs (pre-mRNA), where a noncanonical back-splicing event occurs, in which the 5' and 3' ends are attached by covalent bond. CircRNAs participate in the regulation of gene expression at the transcriptional and posttranscriptional level primarily as miRNA and RNA-binding protein (RBP) sponges, but also involved in the regulation of alternative RNA splicing and transcription. CircRNAs are widespread and abundant in plants where they have been involved in stress responses and development. Through the analysis of all publications in this field in the last five years, we can summarize that the identification of these molecules is carried out through next generation sequencing studies, where samples have been previously treated to eliminate DNA, rRNA, and linear RNAs as a means to enrich circRNAs. Once libraries are prepared, they are sequenced and subsequently studied from a bioinformatics point of view. Among the different tools for identifying circRNAs, we can highlight CIRI as the most used (in 60% of the published studies), as well as CIRCExplorer (20%) and find_circ (20%). Although it is recommended to use more than one program in combination, and preferably developed specifically to treat with plant samples, this is not always the case. It should also be noted that after identifying these circular RNAs, most of the authors validate their findings in the laboratory in order to obtain bona fide results.
Collapse
|
20
|
Liu D, Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0275. [PMID: 34018386 PMCID: PMC8330541 DOI: 10.20892/j.issn.2095-3941.2020.0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers and the leading causes of death among women worldwide, and its morbidity rate is growing. Discovery of novel biomarkers is necessary for early BC detection, treatment, and prognostication. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs with covalently closed continuous loops, have been found to have a crucial role in tumorigenesis. Studies have demonstrated that circRNAs are aberrantly expressed in the tumor tissues and plasma of patients with BC, and they modulate gene expression affecting the proliferation, metastasis, and chemoresistance of BC by specifically binding and regulating the expression of microRNAs (miRNAs). Therefore, circRNAs can be used as novel potential diagnostic and prognostic markers, and therapeutic targets for BC. This article summarizes the properties, functions, and regulatory mechanisms of circRNAs, particularly current research on their association with BC proliferation, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| |
Collapse
|
21
|
Sun J, Dong Y, Wang C, Xiao S, Jiao Z, Gao C. Identification and characterization of melon circular RNAs involved in powdery mildew responses through comparative transcriptome analysis. PeerJ 2021; 9:e11216. [PMID: 33959417 PMCID: PMC8053381 DOI: 10.7717/peerj.11216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of newly discovered non-coding RNAs that are typically derived from a genome's exonic, intronic, and intergenic regions. Recent studies of circRNAs in animals and plants have shown that circRNAs are vital in response to various abiotic and biotic stresses. Powdery mildew disease (PM) is a serious fungal disease threatening the melon industry. We performed whole transcriptome sequencing using the leaves of a PM-resistant (M1) and a PM-susceptible (B29) melon to identify circRNAs and determine their molecular functions. A total of 303 circRNAs were identified and >50% circRNAs were derived from exonic regions. Expression levels were significantly altered in 17 and 23 circRNAs after PM infections in B29 and M1, respectively. Melon circRNAs may participate in the response to biotic stimuli, oxidation reduction, metabolic processes, and the regulation of gene expression based on the functional annotation of circRNA parental genes. Furthermore, 27 circRNAs were predicted to be potential targets or 'sponges' for 18 microRNAs (miRNAs). Our results are the first to identify and characterize circRNA functions in melon and may contribute to a better understanding of the role and regulatory mechanisms of circRNAs in resisting PM.
Collapse
Affiliation(s)
- Jianlei Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yumei Dong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongqi Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shouhua Xiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zigao Jiao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetable, Vegetable Science Observation and Experiment Station in Huang huai District of Ministry of Agriculture (Shandong), Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
22
|
Zhang H, Liu S, Li X, Yao L, Wu H, Baluška F, Wan Y. An Antisense Circular RNA Regulates Expression of RuBisCO Small Subunit Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:665014. [PMID: 34108983 PMCID: PMC8181130 DOI: 10.3389/fpls.2021.665014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 05/17/2023]
Abstract
Circular RNA (circRNA) is a novel class of endogenous long non-coding RNA (lncRNA) and participates in diverse physiological process in plants. From the dataset obtained by high-throughput RNA sequencing, we identified a circRNA encoded by the sense strand of the exon regions spanning two RuBisCO small subunit genes, RBCS2B and RBCS3B, in Arabidopsis thaliana. We further applied the single specific primer-polymerase chain reaction (PCR) and Sanger sequencing techniques to verify this circRNA and named it ag-circRBCS (antisense and across genic-circular RNA RBCS). Using quantitative real-time PCR (qRT-PCR), we found that ag-circRBCS shares a similar rhythmic expression pattern with other RBCS genes. The expression level of ag-circRBCS is 10-40 times lower than the expression levels of RBCS genes in the photosynthetic organs in Arabidopsis, whereas the Arabidopsis root lacked ag-circRBCS expression. Furthermore, we used the delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) to deliver in vitro synthesized ag-circRBCS into Arabidopsis seedlings. Our results indicate that ag-circRBCS could significantly depress the expression of RBCS. Given that ag-circRBCS was expressed at low concentration in vivo, we suggest that ag-circRBCS may represent a fine-tuning mechanism to regulating the expression of RBCS genes and protein content in Arabidopsis.
Collapse
Affiliation(s)
- He Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuai Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xinyu Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Lijuan Yao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Hongyang Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - František Baluška
- Institute of Molecular and Cellular Botany, Bonn University, Bonn, Germany
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Yinglang Wan
| |
Collapse
|
23
|
Shrestha N, Bujarski JJ. Long Noncoding RNAs in Plant Viroids and Viruses: A Review. Pathogens 2020; 9:E765. [PMID: 32961969 PMCID: PMC7559573 DOI: 10.3390/pathogens9090765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular, single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle mechanism. Viroids interact with host processes in complex ways, emerging as one of the most productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms. Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs, small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate. They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.
Collapse
Affiliation(s)
- Nipin Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - Józef J. Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
24
|
Zhang P, Li S, Chen M. Characterization and Function of Circular RNAs in Plants. Front Mol Biosci 2020; 7:91. [PMID: 32509801 PMCID: PMC7248317 DOI: 10.3389/fmolb.2020.00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are covalently closed-loop single-stranded RNA molecules ubiquitously expressing in eukaryotes. As an important member of the endogenous ncRNA family, circRNAs are associated with diverse biological processes and can regulate transcription, modulate alternative splicing, and interact with miRNAs or proteins. Compared to abundant advances in animals, studies of circRNAs in plants are rapidly emerging. The databases and analysis tools for plant circRNAs are constantly being developed. Large numbers of circRNAs have been identified and characterized in plants and proved to play regulatory roles in plant growth, development, and stress responses. Here, we review the biogenesis, characteristics, bioinformatics resources, and biological functions of plant circRNAs, and summarize the distinct circularization features and differentially expression patterns comparison with animal-related results.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sida Li
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Yu J, Xu F, Wei Z, Zhang X, Chen T, Pu L. Epigenomic landscape and epigenetic regulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1467-1489. [PMID: 31965233 DOI: 10.1007/s00122-020-03549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
Epigenetic regulation has been implicated in the control of multiple agronomic traits in maize. Here, we review current advances in our understanding of epigenetic regulation, which has great potential for improving agronomic traits and the environmental adaptability of crops. Epigenetic regulation plays vital role in the control of complex agronomic traits. Epigenetic variation could contribute to phenotypic diversity and can be used to improve the quality and productivity of crops. Maize (Zea mays L.), one of the most widely cultivated crops for human food, animal feed, and ethanol biofuel, is a model plant for genetic studies. Recent advances in high-throughput sequencing technology have made possible the study of epigenetic regulation in maize on a genome-wide scale. In this review, we discuss recent epigenetic studies in maize many achieved by Chinese research groups. These studies have explored the roles of DNA methylation, posttranslational modifications of histones, chromatin remodeling, and noncoding RNAs in the regulation of gene expression in plant development and environment response. We also provide our future prospects for manipulating epigenetic regulation to improve crops.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziwei Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
26
|
Sun Y, Zhang H, Fan M, He Y, Guo P. Genome-wide identification of long non-coding RNAs and circular RNAs reveal their ceRNA networks in response to cucumber green mottle mosaic virus infection in watermelon. Arch Virol 2020; 165:1177-1190. [PMID: 32232674 DOI: 10.1007/s00705-020-04589-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play vital roles in plant defense responses against viral infections. However, there is no systematic understanding of lncRNAs and circRNAs and their competing endogenous RNA (ceRNA) networks in watermelon under cucumber green mottle mosaic virus (CGMMV) stress. Here, we present the characterization and expression profiles of lncRNAs and circRNAs in watermelon leaves 48-h post-inoculation (48 hpi) with CGMMV, with mock inoculation as a control. Deep sequencing analysis revealed 2373 lncRNAs and 606 circRNAs in the two libraries. Among them, 67 lncRNAs (40 upregulated and 27 downregulated) and 548 circRNAs (277 upregulated and 271 downregulated) were differentially expressed (DE) in the 48 hpi library compared with the control library. Furthermore, 263 cis-acting matched lncRNA-mRNA pairs were detected for 49 of the DE-lncRNAs. KEGG pathway analysis of the cis target genes of the DE-lncRNAs revealed significant associations with phenylalanine metabolism, the citrate cycle (TCA cycle), and endocytosis. Additionally, 30 DE-lncRNAs were identified as putative target mimics of 33 microRNAs (miRNAs), and 153 DE-circRNAs were identified as putative target mimics of 88 miRNAs. Furthermore, ceRNA networks of lncRNA/circRNA-miRNA-mRNA in response to CGMMV infection are described, with 12 DE-lncRNAs and 65 DE-circRNAs combining with 22 miRNAs and competing for the miRNA binding sites on 29 mRNAs. The qRT-PCR validation of selected lncRNAs and circRNAs showed a general correlation with the high-throughput sequencing results. This study provides a valuable resource of lncRNAs and circRNAs involved in the response to CGMMV infection in watermelon.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiqing Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingan Guo
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
27
|
Vaschetto LM, Litholdo CG, Sendín LN, Terenti Romero CM, Filippone MP. Cereal Circular RNAs (circRNAs): An Overview of the Computational Resources for Identification and Analysis. Methods Mol Biol 2020; 2072:157-163. [PMID: 31541445 DOI: 10.1007/978-1-4939-9865-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) are a widespread class of endogenous noncoding RNAs and they have been studied in the past few years, implying important biological functions in all kingdoms of life. Recently, circRNAs have been identified in many plant species, including cereal crops, showing differential expression during stress response and developmental programs, which suggests their role in these process. In the following years, it is expected that insights into the functional roles of circRNAs can be used by cereal scientists and molecular breeders with the aim to develop new strategies for crop improvement. Here, we briefly outline the current knowledge about circRNAs in plants and we also outline available computational resources for their validation and analysis in cereal species.
Collapse
Affiliation(s)
- Luis M Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Córdoba, Argentina.
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Córdoba, Argentina.
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, USA.
| | - Celso Gaspar Litholdo
- Centre National pour la Recherche Scientifique (CNRS)/Université de Perpignan Via Domitia (UPVD)-Laboratoire Génome et Développement des Plantes (LGDP-UMR5096), Perpignan, France
| | - Lorena Noelia Sendín
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Claudia Mabel Terenti Romero
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria San Luis (INTA, EEA SAN LUIS), San Luis, Argentina
| | - María Paula Filippone
- Universidad Nacional de Tucumán, Facultad de Agronomía y Zootecnia, (UNT-FAZ), Tucumán, Argentina
| |
Collapse
|
28
|
Mu Y, Xie F, Huang Y, Yang D, Xu G, Wang C, Wu Q. Circular RNA expression profile in peripheral whole blood of lung adenocarcinoma by high: Throughput sequencing. Medicine (Baltimore) 2019; 98:e17601. [PMID: 31626137 PMCID: PMC6824818 DOI: 10.1097/md.0000000000017601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LA) is a most common form of non-small cell lung cancer (NSCLC). To date, there are still no effective early diagnosis methods for patients to be cured in time. Noncoding RNA plays an important role in oncogenesis and tumor development. The expression profile of circular RNA (circRNA) in peripheral whole blood (PWB) of LA has not been systematically investigated. In this study, we identified the differentially expressed (DE) circRNAs in PWB of LA by high-throughput sequencing. METHODS Five paired LA and normal participants PWB samples were chosen to investigate the expression profile of circRNAs by high-throughput sequencing. Twenty LA and 10 normal controls PWB samples were subjected to reverse-transcription polymerase chain reaction (RT-PCR) for validation of circRNAs expression profile. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and circRNA-miRNA network analysis was also performed to predict the function of circRNAs in PWB. RESULTS A total of 10566 circRNAs were identified and annotated, most of the circRNAs were exonic (78.14%). Statistical analysis revealed 4390 DE circRNAs, in which were 3009 upregulated circRNAs and1381downregulated circRNAs in LA. RT-PCR results showed that circRNA expression in LA was higher than that in controls. GO functional analysis, KEGG pathway analysis, and circRNA-miRNA network analysis all showed that circRNAs correlated with tumor development and progression to a certain degree. The current study is the first to systematically characterize and annotate circRNA expression in PWB of LA. Some host genes of the DE circRNAs were involved in tumor signaling pathway and had complicated correlations with tumor related miRNAs, indicating that circRNAs might involve in development and progression of LA. CONCLUSIONS Our study revealed that circRNAs were abnormally expressed in PWB of LA, which might offer potential targets for the early diagnosis of the disease and new genetic insights into LA.
Collapse
Affiliation(s)
- Yinyu Mu
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital,
| | - Fuyi Xie
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital,
| | - YunFei Huang
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital,
| | - Dongdong Yang
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital,
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital,
| | | | - Qiaoping Wu
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili East Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
29
|
Wang Y, Xiong Z, Li Q, Sun Y, Jin J, Chen H, Zou Y, Huang X, Ding Y. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition. BMC PLANT BIOLOGY 2019; 19:340. [PMID: 31382873 PMCID: PMC6683460 DOI: 10.1186/s12870-019-1944-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are known to play an important role in the regulation of gene expression in eukaryotes. Photo-thermosensitive genic male sterile (PTGMS) is a very important germplasm resource in two-line hybrid rice breeding. Although many circRNAs have been identified in rice (Oryza sativa L.), little is known about the biological roles of circRNAs in the fertility transition of the PTGMS rice line. RESULTS In the present study, RNA-sequencing libraries were constructed from the young panicles of the Wuxiang S sterile line rice (WXS (S)) and its fertile line rice (WXS (F)) at three development stages with three biological replicates. A total of 9994 circRNAs were obtained in WXS rice based on high-throughput strand-specific RNA sequencing and bioinformatic approaches, of which 5305 were known circRNAs and 4689 were novel in rice. And 14 of 16 randomly selected circRNAs were experimentally validated with divergent primers. Our results showed that 186 circRNAs were significantly differentially expressed in WXS (F) compared with WXS (S), of which 97, 87 and 60 circRNAs were differentially expressed at the pollen mother cell (PMC) formation stage (P2), the meiosis stage (P3) and the microspore formation stage (P4), respectively. Fertility specific expression patterns of eight circRNAs were analysis by qRT-PCR. Gene ontology (GO) and KEGG pathway analysis of the parental genes of differentially expressed circRNAs (DECs) revealed that they mainly participated in various biological processes such as development, response to stimulation, hormonal regulation, and reproduction. Furthermore, 15 DECs were found to act as putative miRNA sponges to involved in fertility transition in PTGMS rice line. CONCLUSION In the present study, the abundance and characteristics of circRNAs were investigated in the PTGMS rice line using bioinformatic approaches. Moreover, the expression patterns of circRNAs were different between WXS (F) and WXS (S). Our findings primarily revealed that circRNAs might be endogenous noncoding regulators of flower and pollen development, and were involved in the fertility transition in the PTGMS rice line, and guide the production and application of two-line hybrid rice.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyang Xiong
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Qian Li
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yueyang Sun
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yu Zou
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | | | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
30
|
Xu Y, Ren Y, Lin T, Cui D. Identification and characterization of CircRNAs involved in the regulation of wheat root length. Biol Res 2019; 52:19. [PMID: 30947746 PMCID: PMC6448277 DOI: 10.1186/s40659-019-0228-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.
Collapse
Affiliation(s)
- Yanhua Xu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.,College of life science, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangqun Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
31
|
Zhang G, Diao S, Zhang T, Chen D, He C, Zhang J. Identification and characterization of circular RNAs during the sea buckthorn fruit development. RNA Biol 2019; 16:354-361. [PMID: 30681395 DOI: 10.1080/15476286.2019.1574162] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As a rising star of noncoding RNA, circular RNAs (circRNAs) have a covalently closed loop structure, which formed by 3'-5' ligation during splicing. A few circRNAs were identified and thought to be transcriptional noise due to cognitive defect over the past 40 years. Recently, with the development of high-throughput RNA sequencing techniques and specific algorithms for circRNA detection and quantification, plenty of potential circRNAs were identified in many species which play important roles in various biological processes. However, researches on circRNAs in fruit ripening process were lacking. Here, we totally identified 2616 circRNAs in sea buckthorn fruit development process, which uniformly distributed in sea buckthorn chromosome. Among them, 1721 (65.8%) circRNAs were arising from the exons of their host genes, 252 circRNAs were identified as the differentially expressed circRNAs (DEcircRNAs) between three different development stages, and 181 (71.8%) DEcircRNAs had sequence similarity with 235 identified circRNAs from five know plant species. Functional annotation revealed that host genes of DEcircRNAs were predicted to be involved in carotenoid biosynthesis, lipid synthesis and plant hormone signal transduction. Additionally, 53 DEcircRNAs were predicted as the corresponding nine miRNAs sponges in sea buckthorn. Divergent reverse-transcription PCR and RT-qPCR were used for validate the differential expression and back-splicing sites of six DEcircRNAs. These results revealed the role of circRNAs in sea buckthorn fruit ripening process and promoted the noncoding RNA researches in plants.
Collapse
Affiliation(s)
- Guoyun Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Songfeng Diao
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China.,b Non-timber Forestry Research and Development Center, Chinese Academy of Forestry , Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry Administration , Zhengzhou , China
| | - Tong Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Daoguo Chen
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Caiyun He
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Jianguo Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China.,c Collaborative Innovation Center of Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing , China
| |
Collapse
|