1
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unveiling the bacterial diversity and potential of the Avicennia marina ecosystem for enhancing plant resilience to saline conditions. ENVIRONMENTAL MICROBIOME 2024; 19:101. [PMID: 39633419 PMCID: PMC11619459 DOI: 10.1186/s40793-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Avicennia marina ecosystems are critical for coastal protection, water quality enhancement, and biodiversity support. These unique ecosystems thrive in extreme saline conditions and host a diverse microbiome that significantly contributes to plant resilience and growth. Global food security is increasingly threatened by crop yield losses due to abiotic stresses, including saline soils. Traditional plant breeding for salt tolerance is both costly and time-consuming. This study explores the potential of bacteria from A. marina to enhance plant growth under saline conditions, emphasizing their ecological significance. RESULTS We analyzed the microbiome of A. marina from the Red Sea coast using high-throughput Illumina sequencing and culture-dependent methods across various compartments (bulk soil, rhizosphere, rhizoplane, roots, and leaves). Our findings revealed distinct compartment-specific microbial communities, with Proteobacteria being the dominant phylum. Functional predictions indicated diverse microbial roles in metal uptake and plant growth promotion (PGP). Remarkably, our culture-dependent methods allowed us to recover 56% of the bacterial diversity present in the microbiome, resulting in the isolation and characterization of 256 bacterial strains. These isolates were screened for PGP traits, including salt and heat tolerance, siderophore production, and pectinase activity. Out of the 77 bacterial isolates tested, 11 demonstrated a significant ability to enhance Arabidopsis growth under salt stress. CONCLUSIONS Our study highlights the ecological significance of mangrove microbiomes and the potential of culture collections in offering innovative solutions for ecological restoration and crop production in saline conditions. The unique collection of mangrove bacteria, particularly from the rhizosphere and endophytes, showcases significant PGP traits and stress tolerance capabilities. These findings emphasize the importance of functional traits, such as salt tolerance, in the recruitment of endophytic bacteria by plants over taxonomic affiliation. The identified bacterial strains hold potential not only for developing biofertilizers to improve crop productivity but also for ecological restoration projects aimed at rehabilitating saline-degraded lands, thereby contributing to overall ecosystem health and sustainability.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Nourashrafeddin SM, Ramandi A, Seifi A. Rhizobacteria isolated from xerophyte Haloxylon ammodendron manipulate root system architecture and enhance drought and salt tolerance in Arabidopsis thaliana. Int Microbiol 2024; 27:337-347. [PMID: 37392309 DOI: 10.1007/s10123-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The objective of this study was to identify bacteria from the rhizosphere of the black saxaul (Haloxylon ammodendron) and test the possibility of using the bacteria for enhancement of drought and/or salt tolerance in the model plant, Arabidopsis thaliana. We collected rhizosphere and bulk soil samples from a natural habitat of H. ammodendron in Iran and identified 58 morphotypes of bacteria that were enriched in the rhizosphere. From this collection, we focused our further experiments on eight isolates. Microbiological analyses showed that these isolates have different levels of tolerance to heat, salt, and drought stresses, and showed different capabilities of auxin production and phosphorous solubilization. We first tested the effects of these bacteria on the salt tolerance of Arabidopsis on agar plate assays. The bacteria substantially influenced the root system architecture, but they were not effective in increasing salt tolerance significantly. Pot assays were then conducted to evaluate the effects of the bacteria on salt or drought tolerance of Arabidopsis on peat moss. Results showed that three of these bacteria (Pseudomonas spp. and Peribacillus sp.) effectively enhanced drought tolerance in Arabidopsis, so that while none of the mock-inoculated plants survived after 19 days of water withholding, the survival rate was 50-100% for the plants that were inoculated with these bacteria. The positive effects of the rhizobacteria on a phylogenetically-distant plant species imply that the desert rhizobacteria may be used to enhance abiotic stress in crops.
Collapse
Affiliation(s)
| | - Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Yu Z, Wang Z, Liu L. Electrophysiological techniques in marine microalgae study: A new perspective for harmful algal bloom (HAB) research. HARMFUL ALGAE 2024; 134:102629. [PMID: 38705615 DOI: 10.1016/j.hal.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
5
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Giannelli G, Mattarozzi M, Gentili S, Fragni R, Maccari C, Andreoli R, Visioli G. A novel PGPR strain homologous to Beijerinckia fluminensis induces biochemical and molecular changes involved in Arabidopsis thaliana salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108187. [PMID: 38100889 DOI: 10.1016/j.plaphy.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
The use of PGPR is widely accepted as a promising tool for a more sustainable agricultural production and improved plant abiotic stress resistance. This study tested the ability of PVr_9, a novel bacterial strain, homologous to Beijerinckia fluminensis, to increase salt stress tolerance in A. thaliana. In vitro plantlets inoculated with PVr_9 and treated with 150 mM NaCl showed a reduction in primary root growth inhibition compared to uninoculated ones, and a leaf area significantly less affected by salt. Furthermore, salt-stressed PVr_9-inoculated plants had low ROS and 8-oxo-dG, osmolytes, and ABA content along with a modulation in antioxidant enzymatic activities. A significant decrease in Na+ in the leaves and a corresponding increase in the roots were also observed in salt-stressed inoculated plants. SOS1, NHX1 genes involved in plant salt tolerance, were up-regulated in PVr_9-inoculated plants, while different MYB genes involved in salt stress signal response were down-regulated in both roots and shoots. Thus, PVr_9 was able to increase salt tolerance in A. thaliana, thereby suggesting a role in ion homeostasis by reducing salt stress rather than inhibiting total Na+ uptake. These results showed a possible molecular mechanism of crosstalk between PVr_9 and plant roots to enhance salt tolerance, and highlighted this bacterium as a promising PGPR for field applications on agronomical crops.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, Parma, Italy
| | - Chiara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
7
|
BiBi A, Bibi S, Al-Ghouti MA, Abu-Dieyeh MH. Isolation and evaluation of Qatari soil rhizobacteria for antagonistic potential against phytopathogens and growth promotion in tomato plants. Sci Rep 2023; 13:22050. [PMID: 38086854 PMCID: PMC10716397 DOI: 10.1038/s41598-023-49304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Plant growth promoting rhizobacteria are a diverse group of microorganisms that enhance the growth of plants under various conditions. In this study, 55 isolates of endogenous rhizobacteria were collected from the rhizosphere of Avicennia marina, Suaeda vermiculata, Salsola soda, Anabasis setifera, Salicornia europaea, Arthrocnemum macrostachyum, Limonium axillare, Tetraena qatarensis, Aeluropus lagopoides, and Prosopis juliflora. The isolates were evaluated in-vitro for their antagonist potential against Fusarium oxysporum and Botrytis cinerea using the dual culture technique, where the maximum growth inhibition reached 49% and 57%, respectively. In-vivo evaluation was accomplished to determine the growth-promoting potential of the rhizobacteria under greenhouse conditions where the strain ANABR3 (Bacillus subtilis) showed the strongest growth-promoting effects. Further in-vivo testing regarding the effectiveness of rhizobacteria in the presence of the phytopathogen was also completed using the Hoagland medium. LEMR3 and SALIR5 (both identified as two strains of B. subtilis) supported the tomato seedlings to overcome the disease and significantly (p ≤ 0.05) increased above and belowground biomass compared to the control. Additionally, several characterizing tests were carried out on the selected strains, these strains were found to possess numerous features that promote plant growth directly and indirectly such as the production of IAA, HCN, hydrolytic enzymes, ACC deaminase, NH3, and some rhizobacteria were capable of phosphate solubilization. In conclusion, this study showed that local rhizobacterial isolates collected from arid lands possess valuable traits, making them promising bio-control agents and bio-fertilizers for agricultural purposes.
Collapse
Affiliation(s)
- Amina BiBi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Scieances, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammed H Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
8
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
9
|
Ramandi A, Nourashrafeddin SM, Marashi SH, Seifi A. Microbiome contributes to phenotypic plasticity in saffron crocus. World J Microbiol Biotechnol 2022; 39:9. [PMID: 36369477 DOI: 10.1007/s11274-022-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Saffron crocus is a sterile plant species that propagates vegetatively, and consequently, narrow genetic variation is detected in this species. Besides the narrow genetic variation, there is significant phenotypic variation in different traits in this plant. Here we tested this hypothesis that plant microbiome is a major contributor to the phenotypic variation. We focused our analysis on culturable bacteria that were dominant in saffron fields with high stigma yield compared to the fields with low stigma yield. Following this strategy, four rhizospheric (Cupriavidus metallidurans, Bacillus sp., Solibacillus sp., and Planococcus sp.) and two endophytic bacteria (Serratia oryzae and S. odorifera) were identified. The effects of the bacteria on the growth and development of the model plant Arabidopsis were assessed both in agar plate and pot assays. Results showed that these bacteria influence the vegetative growth and flowering time of Arabidopsis. In the next step, corms of saffron were inoculated with these bacteria and the growth and development of the saffron plants were monitored for five months. Remarkably, inoculation of the bacteria had significant influence on vegetative growth, flowering time, and stigma yield of saffron crocus. Furthermore, one of the bacteria, C. metallidurans, is reported here for the first time as a naturally occurring plant-associated bacteria. Altogether our results suggest that plant microbiome is an important factor in phenotypic variation in saffron crocus.
Collapse
Affiliation(s)
- Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Seyyed Hassan Marashi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
10
|
Srinivasan J, Khadka J, Novoplansky N, Gillor O, Grafi G. Endophytic Bacteria Colonizing the Petiole of the Desert Plant Zygophyllum dumosum Boiss: Possible Role in Mitigating Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040484. [PMID: 35214818 PMCID: PMC8924888 DOI: 10.3390/plants11040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Zygophyllum dumosum is a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance. Twenty-one distinct endophytes were isolated by culturing from surface-sterile petioles and identified by sequencing of the 16S rDNA. Sequence alignments and the phylogenetic tree clustered the isolated endophytes into two phyla, Firmicutes and Actinobacteria. Most isolated endophytes displayed a relatively slow growth on nutrient agar, which was accelerated by adding petiole extracts. Metabolic analysis of selected endophytes showed several common metabolites whose level is affected by petiole extract in a species-dependent manner including phosphoric acid, pyroglutamic acid, and glutamic acid. Other metabolites appear to be endophyte-specific metabolites, such as proline and trehalose, which were implicated in stress tolerance. These results demonstrate the existence of multiple endophytic bacteria colonizing Z. dumosum petioles with the potential role in maintaining cell integrity and functionality via synthesis of multiple beneficial metabolites that mitigate stress and contribute to stress tolerance.
Collapse
Affiliation(s)
- Jansirani Srinivasan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Correspondence:
| |
Collapse
|
11
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
12
|
Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance. Proc Natl Acad Sci U S A 2021; 118:2107417118. [PMID: 34772809 PMCID: PMC8609655 DOI: 10.1073/pnas.2107417118] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Although plant growth–promoting bacteria (PGPB) enhance the performance of plants, only a few mechanisms have been identified so far. We show that the sulfur metabolisms in both PGPB Enterobacter sp. SA187 and Arabidopsis plants play a key role in plant salt stress tolerance. Salt stress induces a sulfur starvation response in plants that is attenuated by SA187. Arabidopsis sulfur metabolic mutants are hypersensitive to salt stress but can be rescued by SA187. Most plant sulfur metabolism occurs in chloroplasts and is linked to stress-induced accumulation of reactive oxygen species that is suppressed by SA187. This work reveals that plant salt stress tolerance requires the coordinated regulation of the sulfur metabolic pathways in both beneficial microbe and host plant. Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.
Collapse
|
13
|
Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. BIOLOGY 2021; 10:biology10100961. [PMID: 34681060 PMCID: PMC8533330 DOI: 10.3390/biology10100961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Simple Summary Endophytes are microbes that live inside plants without causing negative effects in their hosts. All land plants are known to have endophytes, and these endophytes have the capacity to be transferred between plants. Taking endophytes from desert plants, which grow in low-nutrient, high-stress environments, and transferring them to crop plants may alleviate some of the challenges being faced by the agricultural industry, such as increasing drought frequency and rising opposition to chemical use in agriculture. Studies have shown that desert endophytes have the capacity to increase nutrient uptake and increase plant resistance to drought and heat stress, salt stress, and pathogen attack. Currently, the agricultural industry focuses on using irrigation, chemical fertilizers, and chemical pesticides to solve such issues, which can be extremely damaging to the environment. While there is still a lot that is unknown about endophytes, particularly desert plant endophytes, current research provides evidence that desert plant endophytes could be an environmentally friendly alternative to the conventional solutions being applied today. Abstract Deserts are challenging places for plants to survive in due to low nutrient availability, drought and heat stress, water stress, and herbivory. Endophytes—microbes that colonize and infect plant tissues without causing apparent disease—may contribute to plant success in such harsh environments. Current knowledge of desert plant endophytes is limited, but studies performed so far reveal that they can improve host nutrient acquisition, increase host tolerance to abiotic stresses, and increase host resistance to biotic stresses. When considered in combination with their broad host range and high colonization rate, there is great potential for desert endophytes to be used in a commercial agricultural setting, especially as croplands face more frequent and severe droughts due to climate change and as the agricultural industry faces mounting pressure to break away from agrochemicals towards more environmentally friendly alternatives. Much is still unknown about desert endophytes, but future studies may prove fruitful for the discovery of new endophyte-based biofertilizers, biocontrol agents, and abiotic stress relievers of crops.
Collapse
|
14
|
Synek L, Rawat A, L'Haridon F, Weisskopf L, Saad MM, Hirt H. Multiple strategies of plant colonization by beneficial endophytic Enterobacter sp. SA187. Environ Microbiol 2021; 23:6223-6240. [PMID: 34472197 DOI: 10.1111/1462-2920.15747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
Although many endophytic plant growth-promoting rhizobacteria have been identified, relatively little is still known about the mechanisms by which they enter plants and promote plant growth. The beneficial endophyte Enterobacter sp. SA187 was shown to maintain the productivity of crops in extreme agricultural conditions. Here we present that roots of its natural host (Indigofera argentea), alfalfa, tomato, wheat, barley and Arabidopsis are all efficiently colonized by SA187. Detailed analysis of the colonization process in Arabidopsis showed that colonization already starts during seed germination, where seed-coat mucilage supports SA187 proliferation. The meristematic zone of growing roots attracts SA187, allowing epiphytic colonization in the elongation zone. Unlike primary roots, lateral roots are significantly less epiphytically colonized by SA187. Root endophytic colonization was found to occur by passive entry of SA187 at lateral-root bases. However, SA187 also actively penetrates the root epidermis by enzymatic disruption of plant cell wall material. In contrast to roots, endophytic colonization of shoots occurs via stomata, whereby SA187 can actively re-open stomata similarly to pathogenic bacteria. In summary, several entry strategies were identified that allow SA187 to establish itself as a beneficial endophyte in several plant species, supporting its use as a plant growth-promoting bacterium in agriculture systems.
Collapse
Affiliation(s)
- Lukas Synek
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, 165 02, Czech Republic
| | - Anamika Rawat
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Maged M Saad
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Heribert Hirt
- Darwin 21, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, Vienna, 1030, Austria
| |
Collapse
|
15
|
The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants. Microorganisms 2021; 9:microorganisms9081729. [PMID: 34442808 PMCID: PMC8398416 DOI: 10.3390/microorganisms9081729] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
Endophytic microorganisms present inside the host plant play an essential role in host fitness, nutrient supply and stress tolerance. Endophytes are often used in sustainable agriculture as biofertilizers, biopesticides and as inoculants to mitigate abiotic stresses including salinity, drought, cold and pH variation in the soil. In changing climatic conditions, abiotic stresses create global challenges to achieve optimum crop yields in agricultural production. Plants experience stress conditions that involve endogenous boosting of their immune system or the overexpression of their defensive redox regulatory systems with increased reactive oxygen species (ROS). However, rising stress factors overwhelm the natural redox protection systems of plants, which leads to massive internal oxidative damage and death. Endophytes are an integral internal partner of hosts and have been shown to mitigate abiotic stresses via modulating local or systemic mechanisms and producing antioxidants to counteract ROS in plants. Advancements in omics and other technologies have been made, but potential application of endophytes remains largely unrealized. In this review article, we will discuss the diversity, population and interaction of endophytes with crop plants as well as potential applications in abiotic stress management.
Collapse
|
16
|
Redha A, Al-Hasan R, Afzal M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23258-23272. [PMID: 33443733 PMCID: PMC8113142 DOI: 10.1007/s11356-020-12271-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/28/2020] [Indexed: 05/30/2023]
Abstract
While heavy metals (HMs) naturally occur in soil, anthropogenic activities can increase the level of these toxic elements. Conocarpus lancifolius Engl. (Combretaceae) was investigated as a potential phytoremediator of soils contaminated with HM containing crude oil. This study assessed the potential of C. lancifolius (CL), a locally available plant species in Kuwait, for resolving local issues of the HM-contaminated soils. The absorption, accumulation, and distribution of three toxic HMs (Cd, Ni, and Pb) and essential metals (Fe, Mg, and metalloid Se) were examined, and their role in plant toxicity and tolerance was evaluated. Conocarpus lancifolius plants were exposed to two different concentrations of single and mixed HMs for 30 days. The accumulation of HMs was determined in the roots, leaves, stems, and the soil using ICP/MS. Biomass, soil pH, proline and protein content, and bioaccumulation, extraction, and translocation factors were measured. The bioaccumulation, extraction, and transcription factors were all >1, indicating CC is a hyperaccumulator of HM. The HM accumulation in CL was concentration-dependent and depended on whether the plants were exposed to individual or mixed HMs. The C.C leaves, stems, and roots showed a significant accumulation of antioxidant constituents, such as proline, protein, Fe, Mg, and Se. There was an insignificant increase in the soil pH, and a decrease in plant biomass and a significant increase in protein, and osmoprotective-proline as a result of the interaction of mixed heavy metals that are more toxic than single heavy metals. This study indicates that C. lancifolius is a good candidate for phytoremediation of multiple HM-contaminated soils. Further studies to establish the phyto-physiological effect of multiple heavy metals are warranted.
Collapse
Affiliation(s)
- Amina Redha
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Redha Al-Hasan
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Afzal
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait.
- , Gainesville, USA.
| |
Collapse
|
17
|
Complete Genome Sequence of Cellulomonas sp. JZ18, a Root Endophytic Bacterium Isolated from the Perennial Desert Tussock-Grass Panicum turgidum. Curr Microbiol 2021; 78:1135-1141. [PMID: 33683416 DOI: 10.1007/s00284-021-02429-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulomonas sp. JZ18 is a gram-positive, rod shaped bacterium that was previously isolated from the root endosphere of the perennial desert tussock-grass Panicum turgidum. Genome coverage of PacBio sequencing was approximately 199X. Genome assembly generated a single chromosome of 7,421,843 base pairs with a guanine-cytosine (GC) content of 75.60% with 3240 protein coding sequences, 361 pseudo genes, three ribosomal RNA operons, three non-coding RNAs and 45 transfer RNAs. Comparison of JZ18's genome with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that JZ18 might potentially belong to a new species. Functional analysis revealed the presence of genes that may complement previously observed biochemical and plant phenotypes. Furthermore, the presence of a number of enzymes could be of potential use in industrial processes as biocatalysts. Genome sequencing and analysis, coupled with comparative genomics, of endophytic bacteria for their potential plant growth promoting activities under different soil conditions will accelerate the knowledge and applications of biostimulants in sustainable agriculture.
Collapse
|
18
|
HUO XIAOWEI, WANG YUE, ZHANG DAWEI, GAO TING, LIU MENGMENG. Characteristics and Diversity of Endophytic Bacteria in Endangered Chinese Herb Glehnia littoralis Based on Illumina Sequencing. Pol J Microbiol 2020; 69:283-291. [PMID: 33574857 PMCID: PMC7810123 DOI: 10.33073/pjm-2020-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 11/05/2022] Open
Abstract
Glehnia littoralis is an endangered medicinal plant growing in the coastal ecological environment and plays an important role in coastal ecosystems. The endophytes in the plant have a significant role in promoting plant growth and enhancing plant stress resistance. However, the endophytic bacterial structure associated with halophyte G. littoralis is still not revealed. In this project, the construction and diversity of endophytic bacterial consortium associated with different tissues of G. littoralis were illustrated with high throughput sequencing of the V3-V4 region of the bacterial 16S rRNA. The results resolved that the diversity and richness of endophytic bacteria were significantly higher in root than in leaf and stem. The operational taxonomic units (OTU) analysis demonstrated that the Actinobacteria and Proteobacteria were dominant in all the samples at the phylum level, and Pseudomonas, Bacillus, Rhizobium were the dominant genera. Our results unraveled that the bacterial communities differed among different tissues of G. littoralis. Endophytic bacterial communities in leaf and stem shared more similarity than that in the root. Furthermore, the difference of bacteria community and structure among different tissues were also detected by principal coordinate analysis. Taken altogether, we can conclude that the bacterial communities of different tissues are unique, which could facilitate understanding the diversity of endophytic bacteria in G. littoralis.
Collapse
Affiliation(s)
- XIAOWEI HUO
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - YUE WANG
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - DAWEI ZHANG
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - TING GAO
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources (Shanghai Chenshan Botanical Garden), Shanghai, China
| | - MENGMENG LIU
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
19
|
Alsharif W, Saad MM, Hirt H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front Microbiol 2020; 11:1666. [PMID: 32793155 PMCID: PMC7387410 DOI: 10.3389/fmicb.2020.01666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A large portion of the earth's surface consists of arid, semi-arid and hyper-arid lands. Life in these regions is profoundly challenged by harsh environmental conditions of water limitation, high levels of solar radiation and temperature fluctuations, along with soil salinity and nutrient deficiency, which have serious consequences on plant growth and survival. In recent years, plants that grow in such extreme environments and their naturally associated beneficial microbes have attracted increased interest. The rhizosphere, rhizosheath, endosphere, and phyllosphere of desert plants display a perfect niche for isolating novel microbes. They are well adapted to extreme environments and offer an unexploited reservoir for bio-fertilizers and bio-control agents against a wide range of abiotic and biotic stresses that endanger diverse agricultural ecosystems. Their properties can be used to improve soil fertility, increase plant tolerance to various environmental stresses and crop productivity as well as benefit human health and provide enough food for a growing human population in an environment-friendly manner. Several initiatives were launched to discover the possibility of using beneficial microbes. In this review, we will be describing the efforts to explore the bacterial diversity associated with desert plants in the arid, semi-arid, and hyper-arid regions, highlighting the latest discoveries and applications of plant growth promoting bacteria from the most studied deserts around the world.
Collapse
Affiliation(s)
- Wiam Alsharif
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Eida AA, Bougouffa S, Alam I, Saad MM, Hirt H. Complete genome sequence of the endophytic bacterium Cellulosimicrobium sp. JZ28 isolated from the root endosphere of the perennial desert tussock grass Panicum turgidum. Arch Microbiol 2020; 202:1563-1569. [PMID: 32172289 DOI: 10.1007/s00203-020-01859-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023]
Abstract
Cellulosimicrobium sp. JZ28, a root endophytic bacterium from the desert plant Panicum turgidum, was previously identified as a plant growth-promoting bacterium. The genome of JZ28 consists of a 4378,193 bp circular chromosome and contains 3930 CDSs with an average GC content of 74.5%. Whole-genome sequencing analysis revealed that JZ28 was closely related to C. aquatile 3 bp. The genome harbors genes responsible for protection against oxidative, osmotic and salinity stresses, such as the production of osmoprotectants. It also contains genes with a role in the production of volatiles, such as hydrogen sulfide, which promote biotic and abiotic stress tolerance in plants. The presence of three copies of chitinase genes indicates a possible role of JZ28 as biocontrol agent against fungal pathogens, while a number of genes for the degradation of plant biopolymers indicates potential application in industrial processes. Genome sequencing and mining of culture-dependent collections of bacterial endophytes from desert plants provide new opportunities for biotechnological applications.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030, Vienna, Austria
| |
Collapse
|
21
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, Razali R, Alzubaidy H, Shah KH, Siddique S, Bajic VB, Hirt H, Saad MM. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 2019; 9:18154. [PMID: 31796881 PMCID: PMC6890672 DOI: 10.1038/s41598-019-54685-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are known to increase plant tolerance to several abiotic stresses, specifically those from dry and salty environments. In this study, we examined the endophyte bacterial community of five plant species growing in the Thar desert of Pakistan. Among a total of 368 culturable isolates, 58 Bacillus strains were identified from which the 16 most divergent strains were characterized for salt and heat stress resilience as well as antimicrobial and plant growth-promoting (PGP) activities. When the 16 Bacillus strains were tested on the non-host plant Arabidopsis thaliana, B. cereus PK6-15, B. subtilis PK5-26 and B. circulans PK3-109 significantly enhanced plant growth under salt stress conditions, doubling fresh weight levels when compared to uninoculated plants. B. circulans PK3-15 and PK3-109 did not promote plant growth under normal conditions, but increased plant fresh weight by more than 50% when compared to uninoculated plants under salt stress conditions, suggesting that these salt tolerant Bacillus strains exhibit PGP traits only in the presence of salt. Our data indicate that the collection of 58 plant endophytic Bacillus strains represents an important genomic resource to decipher plant growth promotion at the molecular level.
Collapse
Affiliation(s)
- Ameerah Bokhari
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Exploration and Petroleum Engineering Center - Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Zayed University, College of Natural and Health Sciences, Abu-Dhabi, 144534, United Arab Emirates
| | - Cristina Andres-Barrao
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rewaa Jalal
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia.,University of Jeddah, P-O-BOX No.80327, Jeddah, 21589, Saudi Arabia
| | - Soha Alamoudi
- King Abdulaziz University, Science and Arts College, Department of Biology, Rabigh, 21589, Kingdom of Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hanin Alzubaidy
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kausar H Shah
- Bahauddin Zakariya University, Institute of Pure and Applied Biology, Multan, 60800, Pakistan
| | - Shahid Siddique
- UC Davis, Department of Entomology and Nematology, One Shields Avenue, Davis, USA
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030, Vienna, Austria.
| | - Maged M Saad
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Appraising Endophyte–Plant Symbiosis for Improved Growth, Nodulation, Nitrogen Fixation and Abiotic Stress Tolerance: An Experimental Investigation with Chickpea (Cicer arietinum L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chickpea is an important leguminous crop that improves soil fertility through atmospheric nitrogen fixation with the help of rhizobia present in nodules. Non-rhizobia endophytes are also capable of inducing nodulation and nitrogen fixation in leguminous crops. The aim of the current study was to isolate, characterize and identify the non-rhizobia endophytic bacterial strains from root nodules of chickpea. For this purpose, more than one hundred isolates were isolated from chickpea root nodules under aseptic conditions and were confirmed as endophytes through re-isolating them from root nodules of chickpea after their inoculation. Nineteen confirmed endophytic bacterial strains revealed significant production of indole acetic acid (IAA) both in presence and absence of L-tryptophan and showed their ability to grow under salt, pH and heavy metal stresses. These strains were evaluated for in vitro plant growth promoting (PGP) traits and results revealed that seven strains showed solubilization of P and colloidal chitin along with possessing catalase, oxidase, urease and chitinase activities. Seven P-solubilizing strains were further evaluated in a jar trial to explore their potential for promoting plant growth and induction of nodulation in chickpea roots. Two endophytic strains identified as Paenibacillus polymyxa ANM59 and Paenibacillus sp. ANM76 through partial sequencing of the 16S rRNA gene showed the maximum potential during in vitro PGP activities and improved plant growth and nodulation in chickpea under the jar trial. Use of these endophytic strains as a potential biofertilizer can help to reduce the dependence on chemical fertilizers while improving crop growth and soil health simultaneously.
Collapse
|
24
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|