1
|
Torra J, Alcántara-de la Cruz R, de Figueiredo MRA, Gaines TA, Jugulam M, Merotto A, Palma-Bautista C, Rojano-Delgado AM, Riechers DE. Metabolism of 2,4-D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. PEST MANAGEMENT SCIENCE 2024; 80:6041-6052. [PMID: 39132883 DOI: 10.1002/ps.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - Agrotecnio CERCA Center, Lleida, Spain
| | | | | | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Dean E Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Wójcikowska B, Friml J, Mazur E. BiAux, a newly discovered compound triggering auxin signaling. TRENDS IN PLANT SCIENCE 2024; 29:1279-1281. [PMID: 39079770 DOI: 10.1016/j.tplants.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 12/07/2024]
Abstract
Lateral root (LR) formation, that is vital for plant development, is one of many auxin-modulated processes, but the underlying regulatory mechanism is not yet fully known. Recently, González-García et al. discovered the BiAux compound and showed that it is involved in LR development via regulating specific auxin coreceptors.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology, and Environmental Protection, Katowice, Poland
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Ewa Mazur
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology, and Environmental Protection, Katowice, Poland.
| |
Collapse
|
3
|
Ahmed A, Rahman MS. Histological, biochemical and immunohistochemical assessments of Roundup®, atrazine, and 2,4-D mixtures on tissue architecture, body fluid conditions, nitrotyrosine protein and Na +/K +-ATPase expressions in the American oyster, Crassostera virginica. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109951. [PMID: 38844188 DOI: 10.1016/j.cbpc.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 μg/l atrazine, 0.5 μg/l Roundup®, and 0.5 μg/l 2,4-D; high concentration: 0.8 μg/l atrazine, 1 μg/l Roundup®, and 1 μg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
4
|
Tabeta H, Hirai MY. l-2-Aminopimelic acid acts as an auxin mimic to induce lateral root formation across diverse plant species. FEBS Lett 2024; 598:1855-1863. [PMID: 38782630 DOI: 10.1002/1873-3468.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The identification of chemicals that modulate plant development and adaptive responses to stresses has attracted increasing attention for agricultural applications. Recent basic studies have identified functional amino acids that are essential for plant organogenesis, indicating that amino acids can regulate plant growth. In this study, we newly identified 2-aminopimelic acid (2APA), a nonproteinogenic amino acid, as a novel bioactive compound involved in root morphogenesis. This biological effect was confirmed in several plant species. Our phenotypic analysis revealed that the bioactive 2APA is an l-form stereoisomer. Overall, our study identified a promising root growth regulator and provided insight into the intricate metabolism related to root morphology.
Collapse
Affiliation(s)
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Japan
| |
Collapse
|
5
|
Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol 2024; 7:161. [PMID: 38332111 PMCID: PMC10853179 DOI: 10.1038/s42003-024-05848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xianfu Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Hao Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Weichang Xu
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Cui Wan
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
6
|
Koreki A, Michel S, Lebeaux C, Trouilh L, Délye C. Prevalence, spatial structure and evolution of resistance to acetolactate-synthase (ALS) inhibitors and 2,4-D in the major weed Papaver rhoeas (L.) assessed using a massive, country-wide sampling. PEST MANAGEMENT SCIENCE 2024; 80:637-647. [PMID: 37752099 DOI: 10.1002/ps.7791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Corn poppy (Papaver rhoeas) is the most damaging broadleaf weed in France. Massively parallel amplicon sequencing was used to investigate the prevalence, mode of evolution and spread of resistance-endowing ALS alleles in 422 populations randomly sampled throughout poppy's range in France. Bioassays were used to detect resistance to the synthetic auxin 2,4-D in 43 of these populations. RESULTS A total of 21 100 plants were analysed and 24 mutant ALS alleles carrying an amino-acid substitution involved or potentially involved in resistance were identified. The vast majority (97.6%) of the substitutions occurred at codon Pro197, where all six possible single-nucleotide non-synonymous substitutions plus four double-nucleotide substitutions were identified. Changes observed in the enzymatic properties of the mutant ALS isoforms could not explain the differences in prevalence among the corresponding alleles. Sequence read analysis showed that mutant ALS alleles had multiple, independent evolutionary origins, and could have evolved several times independently within an area of a few kilometres. Finally, 2,4-D resistance was associated with mutant ALS alleles in individual plants in one third of the populations assayed. CONCLUSION The intricate geographical mosaic of mutant ALS alleles observed is the likely result of the combination of huge population sizes, multiple independent mutation events and human-mediated spread of resistance. Our work highlights the ability of poppy populations and individual plants to accumulate different ALS alleles and as yet unknown mechanisms conferring resistance to synthetic auxins. This does not bode well for the continued use of chemical herbicides to control poppy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Lidwine Trouilh
- Plateforme GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, Genotoul, Toulouse, France
| | | |
Collapse
|
7
|
Todd OE, Patterson EL, Westra EP, Nissen SJ, Araujo ALS, Kramer WB, Dayan FE, Gaines TA. Enhanced metabolic detoxification is associated with fluroxypyr resistance in Bassia scoparia. PLANT DIRECT 2024; 8:e560. [PMID: 38268857 PMCID: PMC10807189 DOI: 10.1002/pld3.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (Bassia scoparia). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD50 720 and 20 g ae ha-1, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [14C]-fluroxypyr ester, the herbicide formulation applied to plants, to [14C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.
Collapse
Affiliation(s)
- Olivia E. Todd
- United States Department of Agriculture – Agriculture Research Service (USDA‐ARS)Fort CollinsColoradoUSA
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Eric L. Patterson
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Eric P. Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Department of Plants, Soils & ClimateUtah State UniversityLoganUtahUSA
| | - Scott J. Nissen
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - William B. Kramer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Franck E. Dayan
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Todd A. Gaines
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
8
|
Zeng Y, Verstraeten I, Trinh HK, Lardon R, Schotte S, Olatunji D, Heugebaert T, Stevens C, Quareshy M, Napier R, Nastasi SP, Costa A, De Rybel B, Bellini C, Beeckman T, Vanneste S, Geelen D. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. THE NEW PHYTOLOGIST 2023; 240:1883-1899. [PMID: 37787103 DOI: 10.1111/nph.19292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Collapse
Affiliation(s)
- Yinwei Zeng
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Inge Verstraeten
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, 900000, Can Tho City, Vietnam
| | - Robin Lardon
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sebastien Schotte
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damilola Olatunji
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Paola Nastasi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133, Milan, Italy
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90736, Umeå, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Danny Geelen
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Nechalioti PM, Karampatzakis T, Mesnage R, Antoniou MN, Ibragim M, Tsatsakis A, Docea AO, Nepka C, Kouretas D. Evaluation of perinatal exposure of glyphosate and its mixture with 2,4-D and dicamba οn liver redox status in Wistar rats. ENVIRONMENTAL RESEARCH 2023; 228:115906. [PMID: 37062480 DOI: 10.1016/j.envres.2023.115906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.
Collapse
Affiliation(s)
- Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Thomas Karampatzakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Robin Mesnage
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Michael N Antoniou
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Mariam Ibragim
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
10
|
de Figueiredo MRA, Barnes H, Boot CM, de Figueiredo ABTB, Nissen SJ, Dayan FE, Gaines TA. Identification of a Novel 2,4-D Metabolic Detoxification Pathway in 2,4-D-Resistant Waterhemp ( Amaranthus tuberculatus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15380-15389. [PMID: 36453610 DOI: 10.1021/acs.jafc.2c05908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of Amaranthus tuberculatus (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their in planta toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5-O-d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'-O-malonyl)-5-O-d-glucopyranoside. Toxicological studies on waterhemp and Arabidopsis thaliana confirmed that the hydroxylated metabolite lost its auxinic action and toxicity. In contrast, the 2,4-D-Asp metabolite found in susceptible plants retained some auxinic action and toxicity. These results demonstrate that 2,4-D-resistant A. tuberculatus evolved novel detoxification reactions not present in susceptible plants to rapidly metabolize 2,4-D, potentially mediated by cytochrome P450 enzymes that perform the initial 5-hydroxylation reaction. This novel mechanism is more efficient to detoxify 2,4-D and produces metabolites with lower toxicity compared to the aspartic acid conjugation found in susceptible waterhemp.
Collapse
Affiliation(s)
- Marcelo R A de Figueiredo
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hamlin Barnes
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Claudia M Boot
- Department of Chemistry, Materials and Molecular Analysis Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Scott J Nissen
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Du W, Lu Y, Li Q, Luo S, Shen S, Li N, Chen X. TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:1083409. [PMID: 36523629 PMCID: PMC9745157 DOI: 10.3389/fpls.2022.1083409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.
Collapse
Affiliation(s)
- Wenchao Du
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Lu
- Hebei University Characteristic sericulture Application Technology Research and Development Center, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Qiang Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
13
|
Palma-Bautista C, Portugal J, Vázquez-García JG, Osuna MD, Torra J, Lozano-Juste J, Gherekhloo J, De Prado R. Tribenuron-methyl metabolism and the rare Pro197Phe double mutation together with 2,4-D metabolism and reduced absorption can evolve in Papaver rhoeas with multiple and cross herbicide resistance to ALS inhibitors and auxin mimics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105226. [PMID: 36464346 DOI: 10.1016/j.pestbp.2022.105226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Multiple resistance mechanisms to ALS inhibitors and auxin mimics in two Papaver rhoeas populations were investigated in wheat fields from Portugal. Dose-response trials, also with malathion (a cytochrome P450 inhibitor), cross-resistance patterns for ALS inhibitors and auxin mimics, alternative herbicides tests, 2,4-D and tribenuron-methyl absorption, translocation and metabolism experiments, together with ALS activity, gene sequencing and enzyme modelling and ligand docking were carried out. Results revealed two different resistant profiles: one population (R1) multiple resistant to tribenuron-methyl and 2,4-D, the second (R2) only resistant to 2,4-D. In R1, several target-site mutations in Pro197 and enhanced metabolism (cytochrome P450-mediated) were responsible of tribenuron-methyl resistance. For 2,4-D, reduced transport was observed in both populations, while cytochrome P450-mediated metabolism was also present in R1 population. Moreover, this is the first P. rhoeas population with enhanced tribenuron-methyl metabolism. This study reports the first case for P. rhoeas of the amino acid substitution Pro197Phe due to a double nucleotide change. This double mutation could cause reduced enzyme sensitivity to most ALS inhibitors according to protein modelling and ligand docking. In addition, this study reports a P. rhoeas population resistant to 2,4-D, apparently, with reduced transport as the sole resistance mechanism.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Joao Portugal
- Biosciences Department, Polytechnic Institute of Beja, 7800-295 Beja, Portugal; VALORIZA-Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - José G Vázquez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Maria D Osuna
- Plant Protection Department, Extremadura Scientific and Technological Research Center (CICYTEX), Ctra. de AV, km 372, Badajoz, 06187, Guadajira, Spain
| | - Joel Torra
- Department of Hortofructiculture, Botany and Gardening, Agrotecnio-CERCA Center, University of Lleida, 25198 Lleida, Spain.
| | - Jorge Lozano-Juste
- Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia (UPV), Spanish National Research Council (CSIC), ES-46022, Valencia, Spain
| | - Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Rafael De Prado
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
14
|
Theoretical studies on the mechanism, kinetics, and degradation pathways of auxin mimic herbicides by •OH radical in aqueous media. Struct Chem 2022. [DOI: 10.1007/s11224-022-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Da Silva AP, Morais ER, Oliveira EC, Ghisi NDC. Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119179. [PMID: 35314208 DOI: 10.1016/j.envpol.2022.119179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide widely used in agriculture that is effective in controlling weeds. It is directly applied to the soil, to ponds or sprayed onto crops; thus, it can progressively accumulate in environmental compartments and affect non-target organisms. The aim of the present meta-analytic review is to investigate the toxic effects of 2,4-D, based on a compilation of results from different studies, which were synthesized to form a statistically reliable conclusion about the lethal effect of potentially ecological concentrations of 2,4-D in several animal species. The search was carried out in the Web of Science and Scopus databases. After the selection process was over, 87 datasets were generated and analyzed. The overall effect has indicated significant increase in the mortality rate recorded for animals exposed to environmental concentrations of 2,4-D compared to the control in the experiment (unexposed animals). The segregation of animals into taxonomic categories has shown that fish and birds presented higher mortality rates after exposure to the investigated substance. The present meta-analysis indicated larval and adult animals were susceptible among the ontogenetic development stages. Juvenile individuals exposed to different 2,4-D concentrations did not show significant difference in comparison to the control. Organisms exposed to 2,4-D immersion were the most impacted compared to those exposed by oral, spray and contact. Animals subjected to commercial formulation presented higher mortality rate than the analytical standard. Thus, 2,4-D can, in fact, increase mortality rate in animals, but it depends on species sensitivity, life stage and exposure route. This is the first meta-analytical study evaluating the mortality rate after 2,4-D exposure in several animal species.
Collapse
Affiliation(s)
- Ana Paula Da Silva
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elizete Rodrigues Morais
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elton Celton Oliveira
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
16
|
An in-frame deletion mutation in the degron tail of auxin coreceptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale. Proc Natl Acad Sci U S A 2022; 119:2105819119. [PMID: 35217601 PMCID: PMC8892348 DOI: 10.1073/pnas.2105819119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Synthetic auxin herbicides intersect basic plant developmental biology and applied weed management. We investigated resistance to 2,4-D in the Australian weed Sisymbrium orientale (Indian hedge mustard). We identified a mechanism involving an in-frame 27-bp deletion in the degron tail of auxin coreceptor IAA2, one member of the gene family of Aux/IAA auxin co-receptors. We show that this deletion in IAA2 is a gain-of-function mutation that confers synthetic auxin resistance. This field-evolved mechanism of resistance to synthetic auxin herbicides confirms previous biochemical studies showing the role of the Aux/IAA degron tail in regulating Aux/IAA protein degradation upon auxin perception. The deletion mutation could be generated in crops using gene-editing approaches for cross-resistance to multiple synthetic auxin herbicides. The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.
Collapse
|
17
|
Ortiz MF, Figueiredo MR, Nissen SJ, Wersal RM, Ratajczyk WA, Dayan FE. 2,4-D and 2,4-D butoxyethyl ester behavior in Eurasian and hybrid watermilfoil (Myriophyllum spp.). PEST MANAGEMENT SCIENCE 2022; 78:626-632. [PMID: 34626161 DOI: 10.1002/ps.6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hybrid watermilfoil is becoming more prevalent in many lakes where the invasive Eurasian (Myriophyllum spicatum, EWM) and native northern watermilfoil (M. sibiricum) co-occur. These Eurasian and northern watermilfoil hybrids (HWM) grow 30% faster and in many cases are less sensitive to 2,4-dichlorophenoxy acetic acid (2,4-D) than either parent. The mechanism(s) impacting 2,4-D tolerance in these hybrids was investigated by comparing the absorption, translocation, metabolism, and desorption of two 2,4-D formulations in EWM and HWM. RESULTS 2,4-D absorption in EWM and HWM was 5.7 and 7.9 times the external herbicide concentration determined by the plant concentration factor, a metric used to determine herbicide bioaccumulation, and 2,4-D butoxyethyl ester absorption was 35.6 and 52.1 times the external concentration in EWM and HWM, respectively. Herbicide bioaccumulation was greater in HWM than in EWM. Herbicide translocation to HWM roots was limited at 192 HAT and herbicide desorption in HWM was slightly lower than EWM. No differences were found in herbicide metabolism between the two plant species. CONCLUSION 2,4-D resistance in HWM is not due to non-target-site resistance as no differences in herbicide absorption, translocation, desorption and/or metabolism were identified; therefore, target-site resistance is the most likely resistance mechanism. More research is needed to identify the molecular basis for the 2,4-D-resistant trait in HWM. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mirella F Ortiz
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Marcelo Ra Figueiredo
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Scott J Nissen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Ryan M Wersal
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA
| | | | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Szymaniak D, Ciarka K, Marcinkowska K, Praczyk T, Gwiazdowska D, Marchwińska K, Walkiewicz F, Pernak J. Bifunctional Double-Salt Ionic Liquids Containing both 4-Chloro-2-Methylphenoxyacetate and l-Tryptophanate Anions with Herbicidal and Antimicrobial Activity. ACS OMEGA 2021; 6:33779-33791. [PMID: 34926926 PMCID: PMC8679003 DOI: 10.1021/acsomega.1c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The goal of this research was to obtain and characterize ionic liquids based on a bisammonium cation and both 4-chloro-2-methylphenoxyacetate (MCPA) and l-tryptophanate anions. The concept of including two structurally different anions was utilized to achieve improved biological activity, while crucial functional traits could be designed by modifying the cation. The synthesis process was efficient and resulted in high yields. Subsequent analyses (nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, and high-performance liquid chromatography (HPLC)) confirmed the chemical structure, purity, and molar ratio of ions in the obtained compounds. The described compounds are novel and have not been previously described in the literature. Evaluations of physicochemical properties indicated that the obtained double-salt ionic liquids (DSILs) exhibited high thermal stability, high solubility in water, and surface activity. A biological activity assessment using greenhouse tests revealed that the herbicidal efficiency of the studied DSILs was notably increased compared to the reference commercial herbicide (even by ∼50% in the case of oilseed rape), which could be attributed to their high wettability toward hydrophobic surfaces. The compounds also efficiently inhibited the growth of several microbial species, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) values at the level of several μg·mL-1. The length of the spacer and alkyl substituent in the cation notably influenced the physicochemical and biological properties of the DSILs, which allowed us to design the structures of the obtained compounds in accordance with needs. The presented results confirm the high application potential of the described DSILs and provide a new and promising path for obtaining new and efficient plant-protection agents.
Collapse
Affiliation(s)
- Daria Szymaniak
- Faculty
of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznań 60-965, Poland
| | - Kamil Ciarka
- PPC
ADOB, ul. Kołodzieja
11, Poznań 61-070, Poland
| | - Katarzyna Marcinkowska
- Institute
of Plant Protection, National Research Institute, ul. Węgorka 20, Poznań 60-318, Poland
| | - Tadeusz Praczyk
- Institute
of Plant Protection, National Research Institute, ul. Węgorka 20, Poznań 60-318, Poland
| | - Daniela Gwiazdowska
- Department
of Natural Science and Quality Assurance, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległości
10, Poznań 61-875, Poland
| | - Katarzyna Marchwińska
- Department
of Natural Science and Quality Assurance, Institute of Quality Science, Poznan University of Economics and Business, al. Niepodległości
10, Poznań 61-875, Poland
| | - Filip Walkiewicz
- Faculty
of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznań 60-965, Poland
| | - Juliusz Pernak
- Faculty
of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznań 60-965, Poland
| |
Collapse
|
19
|
Synthetic auxin-based double salt ionic liquids as herbicides with improved physicochemical properties and biological activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Çongur G. Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes. Turk J Chem 2021; 45:600-615. [PMID: 34385855 PMCID: PMC8326490 DOI: 10.3906/kim-2011-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/30/2021] [Indexed: 11/03/2022] Open
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide used to control broadleaf weeds. It is also a threatening factor for not only aquatic life but also human health due to its genotoxicity and endocrine disruptive property. Herein, the interaction between 2,4-D and double stranded DNA was investigated by using single-use pencil graphite electrodes (PGE) in combination with electrochemical techniques. The detection mechanism was based on the monitoring of the changes at the guanine oxidation signal obtained before/after surface-confined interaction of 2,4-D and DNA at the surface of PGE. The electrochemical characterization of the interaction was studied by using microscopic and electrochemical techniques. The response obtained by interaction in the presence of another herbicide, glyphosate, which is widely used with 2,4-D for weed control, was compared to the one occurred in the presence of 2,4-D. Electrochemical monitoring of the interaction between the herbicide whose active molecule was 2,4-D and DNA was also investigated. The detection (LOD) and quantification limits (LOQ) for 2,4-D and the herbicide could be obtained in the linear concentration ranges of 30-70 µg/mL and 10-30 µg/mL, respectively and LOD and LOQ values were found to be 2.85 and 9.50 µg/mL for both 2,4-D and the herbicide. The sensitivity of the biosensor was calculated as 0.087 µA.mL / µg.cm2 .This is the first study in literature by means of not only voltammetric detection of 2,4-D and DNA interaction but also the herbicide-DNA interaction at the surface of PGE based on the changes at the guanine signal.
Collapse
Affiliation(s)
- Gülşah Çongur
- Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik Turkey.,Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik Turkey
| |
Collapse
|
21
|
Torra J, Rojano-Delgado AM, Menéndez J, Salas M, de Prado R. Cytochrome P450 metabolism-based herbicide resistance to imazamox and 2,4-D in Papaver rhoeas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:51-61. [PMID: 33454636 DOI: 10.1016/j.plaphy.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/05/2021] [Indexed: 05/23/2023]
Abstract
Papaver rhoeas biotypes displaying multiple herbicide resistance to ALS inhibitors and synthetic auxin herbicides (SAH) are spreading across Europe. In Spain, enhanced metabolism to imazamox was confirmed in one population, while cytochrome-P450 (P450) based metabolism to 2,4-D in another two. The objectives of this research were to further confirm the presence of P450 mediated enhanced metabolism and, if so, to confirm whether a putative common P450 is responsible of metabolizing both 2,4-D and imazamox. Metabolism studies were undertaken in five P. rhoeas populations with contrasted HR profiles (herbicide susceptible, only HR to ALS inhibitors, only HR to SAH, or multiple HR to both), and moreover, three different P450 inhibitors were used. The presence of enhanced metabolism to these SoA was confirmed in three more HR P. rhoeas populations. This study provides the first direct evidence that imazamox metabolism in these biotypes is P450-mediated, also in one population without an altered target site. Additionally, it was further confirmed that enhanced metabolism of 2,4-D in biotypes only HR to SAH or multiple HR to ALS inhibitors and SAH involves P450 as well. No metabolism was detected using the three inhibitors in all the herbicide-metabolizing P. rhoeas biotypes, suggesting that a common metabolic system involving P450s is responsible of degrading herbicides affecting both SoAs. Thus, selection pressure with either SAH or imidazolinone ALS inhibitors can select not only for resistance to each of them, but it can also confer cross-resistance between them in P. rhoeas.
Collapse
Affiliation(s)
- Joel Torra
- Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, 25198, Lleida, Spain.
| | - Antonia María Rojano-Delgado
- Department of Agricultural Chemistry and Soil Science, University of Córdoba, Campus Rabanales, 14014, Córdoba, Spain
| | - Julio Menéndez
- Departamento de Ciencias Agroforestales, Escuela Politécnica Superior, Campus Universitario de La Rábida, 21071, Palos de la Frontera, Huelva, Spain
| | - Marisa Salas
- Crop Protection, Corteva Agriscience, 782808, Guyancourt, France
| | - Rafael de Prado
- Department of Agricultural Chemistry and Soil Science, University of Córdoba, Campus Rabanales, 14014, Córdoba, Spain
| |
Collapse
|