1
|
Peracchi LM, Brew-Appiah RAT, Garland-Campbell K, Roalson EH, Sanguinet KA. Genome-wide characterization and expression analysis of the CINNAMYL ALCOHOL DEHYDROGENASE gene family in Triticum aestivum. BMC Genomics 2024; 25:816. [PMID: 39210247 PMCID: PMC11363449 DOI: 10.1186/s12864-024-10648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND CINNAMYL ALCOHOL DEHYDROGENASE (CAD) catalyzes the NADPH-dependent reduction of cinnamaldehydes into cinnamyl alcohols and is a key enzyme found at the final step of the monolignol pathway. Cinnamyl alcohols and their conjugates are subsequently polymerized in the secondary cell wall to form lignin. CAD genes are typically encoded by multi-gene families and thus traditionally organized into general classifications of functional relevance. RESULTS In silico analysis of the hexaploid Triticum aestivum genome revealed 47 high confidence TaCAD copies, of which three were determined to be the most significant isoforms (class I) considered bone fide CADs. Class I CADs were expressed throughout development both in RNAseq data sets as well as via qRT-PCR analysis. Of the 37 class II TaCADs identified, two groups were observed to be significantly co-expressed with class I TaCADs in developing tissue and under chitin elicitation in RNAseq data sets. These co-expressed class II TaCADs were also found to be phylogenetically unrelated to a separate clade of class II TaCADs previously reported to be an influential resistance factor to pathogenic fungal infection. Lastly, two groups were phylogenetically identified as class III TaCADs, which possess distinct conserved gene structures. However, the lack of data supporting their catalytic activity for cinnamaldehydes and their bereft transcriptional presence in lignifying tissues challenges their designation and function as CADs. CONCLUSIONS Taken together, our comprehensive transcriptomic analyses suggest that TaCAD genes contribute to overlapping but nonredundant functions during T. aestivum growth and development across a wide variety of agroecosystems and provide tolerance to various stressors.
Collapse
Affiliation(s)
- Luigi M Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kimberly Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics and Quality Research, Pullman, WA, 99164, USA
| | - Eric H Roalson
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Gu Y, Zheng H, Li S, Wang W, Guan Z, Li J, Mei N, Hu W. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize‒soybean intercropping systems. Sci Rep 2024; 14:9361. [PMID: 38654091 DOI: 10.1038/s41598-024-59916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.
Collapse
Affiliation(s)
- Yan Gu
- Jilin Agricultural University, Changchun, 131008, China
| | - Haoyuan Zheng
- Jilin Agricultural University, Changchun, 131008, China
| | - Shuang Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Wantong Wang
- Jilin Agricultural University, Changchun, 131008, China
| | - Zheyun Guan
- Jilin Academy of Agricultural Sciences, Changchun, 130124, China
| | - Jizhu Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Nan Mei
- Jilin Agricultural University, Changchun, 131008, China.
| | - Wenhe Hu
- Jilin Agricultural University, Changchun, 131008, China.
| |
Collapse
|
4
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Zargar O, Yuan Z, Li Q, Finlayson S, Pharr M, Muliana A. The influence of microstructural characteristics and cell wall material properties on the mechanical behaviors of different tissues of sorghum stems. J Mech Behav Biomed Mater 2024; 150:106267. [PMID: 38070452 DOI: 10.1016/j.jmbbm.2023.106267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
Sorghum stems comprise different tissue components, i.e., rind, pith, and vascular bundles in the rind and pith regions, of different cell morphologies and cell wall characteristics. The overall responses of stems to mechanical loadings depend on the responses of these tissues themselves. Investigating how each tissue deforms to various loading conditions will inform us of the failure mechanisms in sorghum stems when exposed to wind loadings, which can guide the development of lodging-resistant variants. To this end, numerical analyses were implemented to investigate the effects of cell morphologies and cell wall properties on the overall mechanical responses of the above four tissues under tension and compression. Microstructures of different tissues were constructed from microscopic images of the tissues using computer-aided design (CAD), which were then used for finite element (FE) analyses. Shell finite elements were used to model the cell walls, and the classical lamination model was used to determine the overall mechanical responses of cell walls having different fiber composite arrangements. The results from the numerical analyses helped explain how the loading (boundary) conditions, the cell microstructures, the mechanical properties of cell walls of different tissues, the cell wall thickness, the microfibril angle (MFA) of fiber composites of the cell walls, and the turgor pressure affected the overall mechanical responses of the tissues. Tissue stiffening or softening behaviors were attributed to different microstructural deformations, i.e., local or global buckling of cell walls, cell collapse, densifications of cells, or reorientation and rearrangement of cells. The mechanical properties and thickness of cell walls only affected the stiffness and load-bearing ability of the tissues. The turgor pressure affected the compressive responses but its effect on tensile responses was negligible. The MFA had a significant influence on the stiffness and load-bearing ability when the tissues were loaded along their longitudinal axis, but it had an insignificant effect on loading in the transverse direction. Tissues with smaller cell sizes and denser cells were stronger and stiffer than those with larger cell sizes. The numerical simulations also revealed that rind and rind vascular bundles were stiffer and had higher load-bearing ability than pith and pith vascular bundles.
Collapse
Affiliation(s)
- Omid Zargar
- Department of Mechanical Engineering, Texas A&M University, United States
| | - Zhi Yuan
- Department of Mechanical Engineering, Texas A&M University, United States
| | - Qing Li
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, United States
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, United States
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, United States
| | - Anastasia Muliana
- Department of Mechanical Engineering, Texas A&M University, United States.
| |
Collapse
|
6
|
Liu Y, Wang Y, Wang B, Shi Q, Mao H. Preliminary study on the diagnosis of NK stress based on the puncture mechanical characteristics of cucumber stem. BMC PLANT BIOLOGY 2024; 24:26. [PMID: 38172661 PMCID: PMC10763222 DOI: 10.1186/s12870-023-04675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
To investigate the relationship between stem puncture mechanical characteristics and NK stress diagnosis, the microstructure, surface morphology, cellulose and lignin content, puncture mechanical characteristics, and epidermal cell morphology of cucumber stems were measured herein. The results indicated that the middle stem, which had a diameter of approximately 7000 μm, was more suitable for puncturing due to its lower amount of epidermal hair, and its gradual regularity in shape. Further, the cucumber stems were protected from puncture damage due to their ability to rapidly heal within 25 h.. The epidermal penetration of the cucumber stems increased with the increase in cellulose and lignin, though cellulose played a more decisive role. The epidermal break distance increased with an increase in N application and decreased with an increase in K+ application, but the change in intercellular space caused by K+ supply was the most critical factor affecting the epidermal break distance. In addition, a decrease in K+ concentration led to a decrease in epidermal brittleness, whereas the factors affecting epidermal toughness were more complex. Finally, we found that although the detection of epidermal brittleness and toughness on nutrient stress was poor under certain treatment, the puncture mechanical characteristics of the stem still had a significant indicative effect on N application rate. Therefore, elucidating of the relationship between the puncture mechanical characteristics of the stems and crop nutritional stress is not only beneficial for promoting stem stress physiology research but also for designing on-site nutritional testing equipment in the future.
Collapse
Affiliation(s)
- Yong Liu
- School of Intelligent Agriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu Province, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Bin Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiang Shi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.
- School of Science and Technology, Shanghai Open University, Shanghai, China.
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
7
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
8
|
Yu J, Song G, Guo W, Le L, Xu F, Wang T, Wang F, Wu Y, Gu X, Pu L. ZmBELL10 interacts with other ZmBELLs and recognizes specific motifs for transcriptional activation to modulate internode patterning in maize. THE NEW PHYTOLOGIST 2023; 240:577-596. [PMID: 37583092 DOI: 10.1111/nph.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shangrao Normal University, Shangrao, 334001, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
9
|
Sayad A, Oduntan Y, Bokros N, DeBolt S, Benzecry A, Robertson DJ, Stubbs CJ. The semi-automated development of plant cell wall finite element models. PLANT METHODS 2023; 19:3. [PMID: 36624506 PMCID: PMC9827646 DOI: 10.1186/s13007-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus.
Collapse
Affiliation(s)
- Andrew Sayad
- School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Yusuf Oduntan
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
| | - Norbert Bokros
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546, USA
| | - Alice Benzecry
- Department of Biological Sciences, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Daniel J Robertson
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, USA
| | - Christopher J Stubbs
- School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ, USA.
| |
Collapse
|
10
|
Geng W, Sun Z, Ren B, Ren H, Zhao B, Liu P, Zhang J. Spraying Ethephon Effectively Increased Canopy Light Transmittance of Densely Planted Summer Maize, Thus Achieving Synergistic Improvement in Stalk Lodging Resistance and Grain Yield. PLANTS 2022; 11:plants11172219. [PMID: 36079601 PMCID: PMC9460851 DOI: 10.3390/plants11172219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Increasing planting density is an effective way to improve maize yield, but high plant populations often cause a lodging problem. This experiment was conducted to investigate the effect of increasing planting density on stalk lodging resistance and grain yield, and to explore the effects on stalk and yield properties of spraying ethephon in densely planted summer maize. The summer maize hybrid, Xundan20 (XD20), was used as experimental material. It was grown by spraying water (CK) or ethephon (E) at BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17 under three different planting densities of 60,000 plants ha−1 (L), 75,000 plants ha−1 (M) and 90,000 plants ha−1 (H) in order to explore the possibility of synergistic improvement in stalk lodging resistance and grain yield. The results from this experiment suggested that the gravity center height of densely planted summer maize was significantly increased, the stem diameter, area and number of vascular bundles were significantly decreased and the dry weight per unit internode was significantly decreased, thereby weakening the stalk rind penetration strength and bending performance, resulting in a significant increase in lodging percentage. The ear height was significantly decreased and the SPAD (soil and plant analysis development) and canopy light transmittance were increased after spraying ethephon; then, the internode dry weight per unit length was increased and the stalk rind penetration strength and bending performance were enhanced so as to significantly reduce the lodging percentage and increase the grain yield. The correlation analysis further showed that lodging percentage was significantly negatively correlated with stem diameter, area and number of vascular bundles and stalk bending performance, but there were no strong relationships with grain yield. This suggested that the synergistic improvement in stalk lodging resistance and grain yield was not contradictory. Under the experiment conditions, the effect of spraying ethephon was most significant when the planting density was 90,000 plants ha−1. At the time, the lodging percentage and grain yield were 12.2% and 11,137.5 kg ha−1, which were decreased by 44.6% and increased by 8.0% compared with the control treatment. Scientific chemical regulation could significantly improve the stalk lodging resistance and grain yield of densely planted summer maize.
Collapse
|
11
|
Ana LM, Rogelio S, Xose Carlos S, Rosa Ana M. Cell Wall Composition Impacts Structural Characteristics of the Stems and Thereby the Biomass Yield. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3136-3141. [PMID: 35232018 PMCID: PMC8931758 DOI: 10.1021/acs.jafc.1c06986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Maize stalks support leaves and reproductive structures and functionally support water and nutrient transport; besides, their anatomical and biochemical characteristics have been described as a plant defense against stress, also impacting economically important applications. In this study, we evaluated agronomical and stem description traits in a subset of maize inbred lines that showed variability for cell wall composition in the internodes. Overall, a great proportion of lignin subunit G and a low concentration of p-coumaric acid and lignin subunit S are beneficial for greater rind puncture resistance and taller plants, with a greater biomass yield. Also, the greater the proportions of subunit H, the longer the internode. Finally, the lower the total hemicellulose content, the greater the rind puncture resistance. Our results confirmed the effect of the cell wall on agronomic and stalk traits, which would be useful in applied breeding programs focused on biomass yield improvement.
Collapse
Affiliation(s)
- López-Malvar Ana
- Facultad
de Biología, Departamento de Biología Vegetal y Ciencias
del Suelo, Universidade de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Santiago Rogelio
- Facultad
de Biología, Departamento de Biología Vegetal y Ciencias
del Suelo, Universidade de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología
Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), 36310 Vigo, Spain
- Misión
Biológica de Galicia (CSIC), Pazo
de Salcedo, Carballeira 8, 36143 Pontevedra, Spain
| | - Souto Xose Carlos
- Departamente
Ingeniería Recursos Naturales Y Medio Ambiente, E.E. Forestales, Universidade de Vigo, 36005 Pontevedra, Spain
| | - Malvar Rosa Ana
- Agrobiología
Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), 36310 Vigo, Spain
- Misión
Biológica de Galicia (CSIC), Pazo
de Salcedo, Carballeira 8, 36143 Pontevedra, Spain
| |
Collapse
|
12
|
Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13122270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lodging is one of the main problems in maize production. Assessing the self-recovery ability of maize plants after lodging at different growth stages is of great significance for yield loss assessment and agricultural insurance claims. The objective of this study was to quantitatively analyse the effects of different growth stages and lodging severity on the self-recovery ability of maize plants using UAV-LiDAR data. The multi-temporal point cloud data obtained by the RIEGL VUX-1 laser scanner were used to construct the canopy height model of the lodging maize. Then the estimated canopy heights of the maize at different growth stages and lodging severity were obtained. The measured values were used to verify the accuracy of the canopy height estimation and to invert the corresponding lodging angle. After verifying the accuracy of the canopy height, the accuracy parameter of the tasselling stage was R2 = 0.9824, root mean square error (RMSE) = 0.0613 m, and nRMSE = 3.745%. That of the filling stage was R2 = 0.9470, RMSE = 0.1294 m, and nRMSE = 9.889%, which showed that the UAV-LiDAR could accurately estimate the height of the maize canopy. By comparing the yield, canopy height, and lodging angle of maize, it was found that the self-recovery ability of maize at the tasselling stage was stronger than that at the filling stage, but the yield reduction rate was 14.16~26.37% higher than that at the filling stage. The more serious the damage of the lodging is to the roots and support structure of the maize plant, the weaker is the self-recovery ability. Therefore, the self-recovery ability of the stem tilt was the strongest, while that of root lodging and root stem folding was the weakest. The results showed that the UAV-LiDAR could effectively assess the self-recovery ability of maize after lodging.
Collapse
|