1
|
Nakazato I, Arimura SI. Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome. Curr Protoc 2025; 5:e70075. [PMID: 39757974 DOI: 10.1002/cpz1.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Arabidopsis thaliana, particularly the ecotype Columbia-0 (Col-0), has been extensively employed in the study of genetics of the nuclear genome. However, the difficulty of modifying the plastid genome of Col-0, the most widely used ecotype, has hindered investigation of the functional interactions between nuclear-encoded and plastid-encoded genes in this ecotype. Recently, we achieved targeted base editing, substituting a specific C:G pair with a T:A pair in the plastid genome of Col-0 through the application of genome-editing technology. This article introduces the method employed to accomplish this targeted base editing. The process involves four steps: (i) designing and constructing a binary vector encoding the genome-editing enzyme, (ii) introducing the binary vector into the nuclear genome of Col-0 via floral dipping, (iii) identifying base-edited plants, and (iv) verifying inheritance of the edited base(s) by the next generation. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design and construction of a binary vector encoding ptpTALECD or ptpTALECD_v2 Basic Protocol 2: Agrobacterium-mediated introduction of a binary vector into the Arabidopsis nuclear genome Basic Protocol 3: Selection of plants harboring T-DNA in the nucleus and detection of base editing in the plastid genome.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Nakazato I, Arimura SI. Genome editing in angiosperm chloroplasts: targeted DNA double-strand break and base editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:872-880. [PMID: 39276374 DOI: 10.1111/tpj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Chloroplasts are organelles that are derived from a photosynthetic bacterium and have their own genome. Genome editing is a recently developing technology that allows for specific modifications of target sequences. The first successful application of genome editing in chloroplasts was reported in 2021, and since then, this research field has been expanding. Although the chloroplast genome of several dicot species can be stably modified by a conventional method, which involves inserting foreign DNAs into the chloroplast genome via homologous recombination, genome editing offers several advantages over this method. In this review, we introduce genome editing methods targeting the chloroplast genome and describe their advantages and limitations. So far, CRISPR/Cas systems are inapplicable for editing the chloroplast genome because guide RNAs, unlike proteins, cannot be efficiently delivered into chloroplasts. Therefore, protein-based enzymes are used to edit the chloroplast genome. These enzymes contain a chloroplast-transit peptide, the DNA-binding domain of transcription activator-like effector nuclease (TALEN), or a catalytic domain that induces DNA modifications. To date, genome editing methods can cause DNA double-strand break or introduce C:G-to-T:A and A:T-to-G:C base edits at or near the target sequence. These methods are expected to contribute to basic research on the chloroplast genome in many species and to be fundamental methods of plant breeding utilizing the chloroplast genome.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Arimura SI, Nakazato I. Genome Editing of Plant Mitochondrial and Chloroplast Genomes. PLANT & CELL PHYSIOLOGY 2024; 65:477-483. [PMID: 38113380 PMCID: PMC11094758 DOI: 10.1093/pcp/pcad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.
Collapse
Affiliation(s)
- Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
4
|
Lin JY, Liu YC, Tseng YH, Chan MT, Chang CC. TALE-based organellar genome editing and gene expression in plants. PLANT CELL REPORTS 2024; 43:61. [PMID: 38336900 DOI: 10.1007/s00299-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.
Collapse
Affiliation(s)
- Jer-Young Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chang Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan
| | - Yan-Hao Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Tainan, 71150, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Kim JS, Chen J. Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 2024; 25:34-45. [PMID: 37794167 DOI: 10.1038/s41580-023-00663-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria and chloroplasts are organelles that include their own genomes, which encode key genes for ATP production and carbon dioxide fixation, respectively. Mutations in mitochondrial DNA can cause diverse genetic disorders and are also linked to ageing and age-related diseases, including cancer. Targeted editing of organellar DNA should be useful for studying organellar genes and developing novel therapeutics, but it has been hindered by lack of efficient tools in living cells. Recently, CRISPR-free, protein-only base editors, such as double-stranded DNA deaminase toxin A-derived cytosine base editors (DdCBEs) and adenine base editors (ABEs), have been developed, which enable targeted organellar DNA editing in human cell lines, animals and plants. In this Review, we present programmable deaminases developed for base editing of organellar DNA in vitro and discuss mitochondrial DNA editing in animals, and plastid genome (plastome) editing in plants. We also discuss precision and efficiency limitations of these tools and propose improvements for therapeutic, agricultural and environmental applications.
Collapse
Affiliation(s)
- Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
- Edgene, Seoul, South Korea.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
6
|
Nakazato I, Okuno M, Itoh T, Tsutsumi N, Arimura SI. Characterization and development of a plastid genome base editor, ptpTALECD. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1151-1162. [PMID: 37265080 DOI: 10.1111/tpj.16311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Japan, 67, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
8
|
Liu YC, Huang CH, Chang CC. A Transcriptomic Analysis of Tobacco Leaf with the Functional Loss of the Plastid rpoB Operon Caused by TALEN-Mediated Double-Strand Breakage. PLANTS (BASEL, SWITZERLAND) 2022; 11:2860. [PMID: 36365313 PMCID: PMC9659210 DOI: 10.3390/plants11212860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
At least two sets of RNA polymerase (RNAP), nucleus (NEP)- and plastid (PEP)-encoded polymerases, recognizing distinct promoters exist in the plastids of land plants. Most plastid genes are regulated by multiple promoters with different strengths in their response to developmental stages and environmental cues. Recently, we applied chloroplast-targeted transcription activator-like effector nuclease (cpTALEN) technology to site-specifically cause double-strand DNA breaks in the rpoB gene of tobacco, which encodes the β-subunit of PEP. The repair of damaged chloroplast DNA (cpDNA) through microhomology-mediated recombination caused the functional loss of the rpoB operon and resulted in the heterotrophic growth of an albino plant. We conducted a genome-wide analysis of the steady state of gene expression in the leaf tissue of PEP-deficient tobacco by RNA-Seq and compared it with that of wild-type plants. The expression of NEP genes was up-regulated in PEP-deficient tobacco; in particular, the level of RpoT3 transcripts encoding the specifically plastid-targeted NEP was significantly increased. Alongside most housekeeping genes, NEP also plays an important role in the regulation of gene expression involved in photosynthesis. In contrast, alongside the photosynthesis-related genes, PEP also plays an important role in the regulation of gene expression involved in some housekeeping functions. Furthermore, the mitochondrial DNA copy number and the level of most mitochondrial protein-coding transcripts were slightly increased in PEP-deficient tobacco. The disruption of PEP function not only affected plastid gene expression, but also nuclear and mitochondrial gene expression. This study demonstrated the intercompartmental retrograde signaling in the regulation of gene expression.
Collapse
Affiliation(s)
- Yu-Chang Liu
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Hao Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chun Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
9
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|