1
|
Liu X, Cai K, Zhang Q, An W, Qu G, Jiang L, Wang F, Zhao X. Unlocking the Growth Potential of Poplar: A Novel Transcriptomic-Metabolomic Approach to Evaluating the Impact of Divergent Pruning Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:3391. [PMID: 39683183 DOI: 10.3390/plants13233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Pruning is a common forest-tending method; its purpose is to promote growth and improve the overall stand quality. Poplar is a fast-growing, broad-leaved tree species with high ecological and economic value. It is a common management method to promote its growth by pruning and adjusting the spatial structure of the stand, but its potential regulatory mechanism remains unclear. In this study, transcriptome and metabolome data of different parts at all pruning intensities were determined and analyzed. The results showed that 7316 differentially expressed genes were identified in this study. In the plant hormone signal transduction pathway, candidate genes were found in eight kinds of plant hormones, among which the main expression was gibberellin, auxin, and brassinosteroid. Some candidate gene structures (beta-glucosidase, endoglucanase, hexokinase, glucan endo-1, 3-beta-D-glucosidase, beta-fructofuranosidase, fructokinase, maltase-glucoamylase, phosphoglucomutase, and sucrose) were specifically associated with starch and sucrose biosynthesis. In the starch and sucrose biosynthesis pathway, D-fructose 6-phosphate, D-glucose 1,6-bisphosphate, and glucose-1-phosphate were the highest in stems and higher in the first round of pruning than in no pruning. The bHLH plays a key role in the starch and sucrose synthetic pathway, and AP2/ERF-ERF is important in the plant hormone signal transduction pathway. These results laid a foundation for understanding the molecular mechanism of starch and sucrose biosynthesis and provided a theoretical basis for promoting tree growth through pruning.
Collapse
Affiliation(s)
- Xiaoting Liu
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Qinhui Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Weizi An
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Guanzheng Qu
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Luping Jiang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fusen Wang
- Qiqihar Branch of Heilongjiang Academy of Forestry, Qiqihar 161000, China
| | - Xiyang Zhao
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Ren J, Nong NT, Lam Vo PN, Lee HM, Na D. Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression. ACS Synth Biol 2024; 13:3256-3267. [PMID: 39294875 DOI: 10.1021/acssynbio.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Synthetic sRNAs show promise as tools for targeted and programmable gene expression manipulation. However, the design of high-efficiency synthetic sRNAs is a challenging task that necessitates careful consideration of multiple factors. Therefore, this study aims to investigate rational design strategies that significantly and robustly enhance the efficiency of synthetic sRNAs. This is achieved by optimizing the following parameters: the sRNA scaffold, mRNA binding affinity, Hfq protein expression level, and mRNA secondary structure. By utilizing optimized synthetic sRNAs within a positive feedback circuit, we effectively addressed the issue of gene expression leakage─an enduring challenge in synthetic biology that undermines the reliability of genetic circuits in bacteria. Our designed synthetic sRNAs successfully prevented gene expression leakage, thus averting unintended circuit activation caused by initial expression noise, even in the absence of signal molecules. This result shows that high-efficiency synthetic sRNAs not only enable precise gene knockdown for metabolic engineering but also ensure the robust performance of synthetic circuits. The strategies developed here hold significant promise for broad applications across diverse biotechnological fields, establishing synthetic sRNAs as pivotal tools in advancing synthetic biology and gene regulation.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nuong Thi Nong
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Phuong N Lam Vo
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Zhang L, Wang X, Dong K, Tan B, Zheng X, Ye X, Wang W, Cheng J, Feng J. Tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of the PpPGF to regulate peach softening during fruit ripening. PLANT MOLECULAR BIOLOGY 2024; 114:46. [PMID: 38630415 DOI: 10.1007/s11103-024-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/19/2024]
Abstract
Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaofei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kang Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Zhou Y, Shen Q, Cai L, Zhao H, Zhang K, Ma Y, Bo Y, Lyu X, Yang J, Hu Z, Zhang M. Promoter variations of ClERF1 gene determines flesh firmness in watermelon. BMC PLANT BIOLOGY 2024; 24:290. [PMID: 38627629 PMCID: PMC11020897 DOI: 10.1186/s12870-024-05000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.
Collapse
Affiliation(s)
- Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinghui Shen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China.
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
5
|
Wu C, Cai D, Li J, Lin Z, Wei W, Shan W, Chen J, Lu W, Su X, Kuang J. Banana MabHLH28 positively regulates the expression of softening-related genes to mediate fruit ripening independently or via cooperating with MaWRKY49/111. HORTICULTURE RESEARCH 2024; 11:uhae053. [PMID: 38706579 PMCID: PMC11069428 DOI: 10.1093/hr/uhae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/17/2024] [Indexed: 05/07/2024]
Abstract
Texture softening is a physiological indicator of fruit ripening, which eventually contributes to fruit quality and the consumer's acceptance. Despite great progress having been made in identification of the genes related to fruit softening, the upstream transcriptional regulatory pathways of these softening-related genes are not fully elucidated. Here, a novel bHLH gene, designated as MabHLH28, was identified because of its significant upregulation in banana fruit ripening. DAP-Seq analysis revealed that MabHLH28 bound to the core sequence of 'CAYGTG' presented in promoter regions of fruit softening-associated genes, such as the genes related to cell wall modification (MaPG3, MaPE1, MaPL5, MaPL8, MaEXP1, MaEXP2, MaEXPA2, and MaEXPA15) and starch degradation (MaGWD1 and MaLSF2), and these bindings were validated by EMSA and DLR assays. Transient overexpression and knockdown of MabHLH28 in banana fruit resulted in up- and down-regulation of softening-related genes, thereby hastening and postponing fruit ripening. Furthermore, overexpression of MabHLH28 in tomato accelerated the ripening process by elevating the accumulation of softening-associated genes. In addition, MabHLH28 showed interaction withMaWRKY49/111 and itself to form protein complexes, which could combinatorically strengthen the transcription of softening-associated genes. Taken together, our findings suggest that MabHLH28 mediates fruit softening by upregulating the expression of softening-related genes either alone or in combination with MaWRKY49/111.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Agronomy Dean, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Jin W, Yan W, Ma M, Hasi A, Che G. Genome-wide identification and expression analysis of the JMJ-C gene family in melon (Cucumis melo L.) reveals their potential role in fruit development. BMC Genomics 2023; 24:771. [PMID: 38093236 PMCID: PMC10720240 DOI: 10.1186/s12864-023-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.
Collapse
Affiliation(s)
- Wuyun Jin
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wei Yan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
7
|
Cai X, Chen Y, Wang Y, Shen Y, Yang J, Jia B, Sun X, Sun M. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. PLANT CELL REPORTS 2023; 42:2011-2022. [PMID: 37812280 DOI: 10.1007/s00299-023-03079-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
KEY MESSAGE OsERF096 negatively regulates rice cold tolerance and mediates IAA biosynthesis and signaling under cold stress. The APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors play important roles in regulating plant tolerance to abiotic stress. OsERF096 was previously identified as a direct target of miR1320, and was suggested to negatively regulate rice cold tolerance. In this study, we performed RNA-sequencing and targeted metabolomics assays to reveal the regulatory roles of OsERF096 in cold stress response. GO and KEGG analysis of differentially expressed genes showed that the starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly enriched. Quantification analysis confirmed a significant difference in sugar contents among WT and OsERF096 transgenic lines under cold treatment. Targeted metabolomics analysis uncovered that IAA accumulation and signaling were modified by OsERF096 in response to cold stress. Expectedly, qRT-PCR assays confirmed significant OsIAAs and OsARFs expression changes in OsERF096 transgenic lines. Finally, we identified three targets of OsERF096 based on RNA-seq, qRT-PCR, and dual-LUC assays. In summary, these results revealed the multiple regulatory roles of OsERF096 in cold stress response.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
8
|
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, Xie K, Su Q, Huang R, Zhan S, Peng D, Zhao K, Liu ZJ. Bioinformatic Assessment and Expression Profiles of the AP2/ERF Superfamily in the Melastoma dodecandrum Genome. Int J Mol Sci 2023; 24:16362. [PMID: 38003550 PMCID: PMC10671166 DOI: 10.3390/ijms242216362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| |
Collapse
|
9
|
Zhang Y, Su Z, Luo L, Wang P, Zhu X, Liu J, Wang C. Exogenous auxin regulates the growth and development of peach fruit at the expansion stage by mediating multiple-hormone signaling. BMC PLANT BIOLOGY 2023; 23:499. [PMID: 37848815 PMCID: PMC10583367 DOI: 10.1186/s12870-023-04514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Fruit expansion stage is crucial to fruit yield and quality formation, and auxin plays a significant role by mediating multi-hormone signals during fruit expansion. However, till now, it is still unclear of the molecular regulatory network during auxin-mediated peach fruit expansion. RESULTS Here, exogenous NAA application markedly increased IAA content and drastically decreased ABA content at the fruit expansion stage. Correspondingly, NAA mainly induced the auxin biosynthesis gene (1 PpYUCCA) and early auxin-responsive genes (7PpIAA, 3 PpGH3, and 14 PpSAUR); while NAA down-regulated ABA biosynthesis genes (2 PpNCED, 1 PpABA3, and 1 PpAAO3). In addition, many DEGs involved in other plant hormone biosynthesis and signal transduction were significantly enriched after NAA treatment, including 7 JA, 7 CTK, 6 ETH, and 3 GA. Furthermore, we also found that NAA treatment down-regulated most of genes involved in the growth and development of peach fruit, including the cell wall metabolism-related genes (PpEG), sucrose metabolism-related genes (PpSPS), phenylalanine metabolism-related genes (PpPAL, Pp4CL, and PpHCT), and transcription factors (PpNAC, PpMADS-box, PpDof, PpSBP, and PpHB). CONCLUSION Overall, NAA treatment at the fruit expansion stage could inhibit some metabolism processes involved in the related genes in the growth and development of peach fruit by regulating multiple-hormone signaling networks. These results help reveal the short-term regulatory mechanism of auxin at the fruit expansion stage and provide new insights into the multi-hormone cascade regulatory network of fruit growth and development.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjia Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengkai Wang
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiecai Liu
- Inner MongoliaAgricultural University, Huhehaote, 010010, China.
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Faculty of Horticultural Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| |
Collapse
|
10
|
Chen X, Liu Y, Zhang X, Zheng B, Han Y, Zhang RX. PpARF6 acts as an integrator of auxin and ethylene signaling to promote fruit ripening in peach. HORTICULTURE RESEARCH 2023; 10:uhad158. [PMID: 37719277 PMCID: PMC10500152 DOI: 10.1093/hr/uhad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
Although auxin is known to induce ethylene biosynthesis in some Rosaceae fruit crops, the mechanisms underlying the auxin-ethylene interaction during fruit ripening remain largely unknown. Here, the regulatory role of an auxin response factor, PpARF6, in fruit ripening was investigated in peach. Peach fruits showed accelerated ripening after treatment with auxin and PpARF6 was found to be significantly induced. PpARF6 not only could induce ethylene synthesis by directly activating the transcription of ethylene biosynthetic genes, but also competed with EIN3-binding F-box proteins PpEBF1/2 for binding to ethylene-insensitive3-like proteins PpEIL2/3, thereby keeping PpEIL2/3 active. Moreover, PpARF6 showed an interaction with PpEIL2/3 to enhance the PpEIL2/3-activated transcription of ethylene biosynthetic genes. Additionally, ectopic overexpression of PpARF6 in tomato accelerated fruit ripening by promoting the expression of genes involved in ethylene synthesis and fruit texture. In summary, our results revealed a positive regulatory role of PpARF6 in peach fruit ripening via integrating auxin and ethylene signaling.
Collapse
Affiliation(s)
- Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
Chen H, Song Z, Wang L, Lai X, Chen W, Li X, Zhu X. Auxin-responsive protein MaIAA17-like modulates fruit ripening and ripening disorders induced by cold stress in 'Fenjiao' banana. Int J Biol Macromol 2023; 247:125750. [PMID: 37453644 DOI: 10.1016/j.ijbiomac.2023.125750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Cold stress severely affects the banana fruit softening and de-greening, significantly inhibiting the ripening processes. However, the mechanism of ripening disorder caused by chilling injury (CI) in banana fruit remains largely unknown. Herein, MaIAA17-like, an Auxin/Indole-3-Acetic Acid (Aux/IAA) family member, was found to be highly related to the softening and de-greening in 'Fenjiao' banana. Its expression was rapidly increased with fruit ripening and then gradually decreased under normal ripening conditions (22 °C). Notably, cold storage severely repressed MaIAA17-like expression but was rapidly increased following ethephon treatment for ripening in fruits without CI. However, the expression repression was not reverted in fruits with serious CI symptoms after 12 days of storage at 7 °C. AtMaIAA17-like bound and regulated the activities of promoters of chlorophyll (MaNOL and MaSGR1), starch (MaBAM6 and MaBAM8), and cell wall (MaSUR14 and MaPL8) degradation-related genes. MaIAA17-like also interacted with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14. Generally, the transient overexpression of MaIAA17-like promoted fruit ripening by inducing the expression of softening and de-greening related genes. However, silencing MaIAA17-like inhibited fruit ripening by reducing the expression of softening and de-greening related genes. These results imply that MaIAA17-like modulates fruit ripening by transcriptionally upregulating the key genes related to fruit softening and de-greening.
Collapse
Affiliation(s)
- Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Wang Y, Ma L, Ma Y, Tian T, Zhang J, Wang H, Liu Z, Chen Q, He W, Lin Y, Zhang Y, Li M, Yang S, Zhang Y, Luo Y, Tang H, Wang X. Comparative physiological and transcriptomic analyses provide insights into fruit softening in Chinese cherry [ Cerasus pseudocerasus (Lindl.) G.Don]. FRONTIERS IN PLANT SCIENCE 2023; 14:1190061. [PMID: 37528967 PMCID: PMC10388103 DOI: 10.3389/fpls.2023.1190061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Fruit softening is a complex, genetically programmed and environmentally regulated process, which undergoes biochemical and physiological changes during fruit development. The molecular mechanisms that determine these changes in Chinese cherry [Cerasus peseudocerasus (Lindl.) G.Don] fruits are still unknown. In the present study, fruits of hard-fleshed 'Hongfei' and soft-fleshed 'Pengzhoubai' varieties of Chinese cherry were selected to illustrate the fruit softening at different developmental stages. We analyzed physiological characteristics and transcriptome profiles to identify key cell wall components and candidate genes related to fruit softening and construct the co-expression networks. The dynamic changes of cell wall components (cellulose, hemicellulose, pectin, and lignin), the degrading enzyme activities, and the microstructure were closely related to the fruit firmness during fruit softening. A total of 6,757 and 3,998 differentially expressed genes (DEGs) were screened between stages and varieties, respectively. Comprehensive functional enrichment analysis supported that cell wall metabolism and plant hormone signal transduction pathways were involved in fruit softening. The majority of structural genes were significantly increased with fruit ripening in both varieties, but mainly down-regulated in Hongfei fruits compared with Pengzhoubai, especially DEGs related to cellulose and hemicellulose metabolism. The expression levels of genes involving lignin biosynthesis were decreased with fruit ripening, while mainly up-regulated in Hongfei fruits at red stage. These obvious differences might delay the cell all degrading and loosening, and enhance the cell wall stiffing in Hongfei fruits, which maintained a higher level of fruit firmness than Pengzhoubai. Co-expressed network analysis showed that the key structural genes were correlated with plant hormone signal genes (such as abscisic acid, auxin, and jasmonic acid) and transcription factors (MADS, bHLH, MYB, ERF, NAC, and WRKY). The RNA-seq results were supported using RT-qPCR by 25 selected DEGs that involved in cell wall metabolism, hormone signal pathways and TF genes. These results provide important basis for the molecular mechanism of fruit softening in Chinese cherry.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Lan Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tai Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Arabia A, Muñoz P, Pallarés N, Munné-Bosch S. Experimental approaches in studying active biomolecules modulating fruit ripening: Melatonin as a case study. PLANT PHYSIOLOGY 2023; 192:1747-1767. [PMID: 36805997 PMCID: PMC10315297 DOI: 10.1093/plphys/kiad106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are naturally occurring small organic molecules found at low concentrations in plants. They perform essential functions in growth and developmental processes, from organ initiation to senescence, including fruit ripening. These regulatory molecules are studied using different experimental approaches, such as performing exogenous applications, evaluating endogenous levels, and/or obtaining genetically modified lines. Here, we discuss the advantages and limitations of current experimental approaches used to study active biomolecules modulating fruit ripening, focusing on melatonin. Although melatonin has been implicated in fruit ripening in several model fruit crops, current knowledge is affected by the different experimental approaches used, which have given different and sometimes even contradictory results. The methods of application and the doses used have produced different results in studies based on exogenous applications, while different measurement methods and ways of expressing results explain most of the variability in studies using correlative analyses. Furthermore, studies on genetically modified crops have focused on tomato (Solanum lycopersicum L.) plants only. However, TILLING and CRISPR methodologies are becoming essential tools to complement the results from the experimental approaches described above. This will not only help the scientific community better understand the role of melatonin in modulating fruit ripening, but it will also help develop technological advances to improve fruit yield and quality in major crops. The combination of various experimental approaches will undoubtedly lead to a complete understanding of the function of melatonin in fruit ripening in the near future, so that this knowledge can be effectively transferred to the field.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Núria Pallarés
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
14
|
Chen C, Zhang M, Zhang M, Yang M, Dai S, Meng Q, Lv W, Zhuang K. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. PLANT PHYSIOLOGY 2023; 192:2067-2080. [PMID: 36891812 PMCID: PMC10315317 DOI: 10.1093/plphys/kiad151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in β-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-β-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling β-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
15
|
Guo S, Ma R, Xu J, Zhang B, Yu M, Gao Z. Transcriptomic Analysis Reveals Genes Associated with the Regulation of Peach Fruit Softening and Senescence during Storage. Foods 2023; 12:foods12081648. [PMID: 37107443 PMCID: PMC10137801 DOI: 10.3390/foods12081648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Peach (Prunus persica (L.) Batsch) is a highly desirable fruit that is consumed around the world. However, the peach fruit is highly perishable after harvest, a characteristic that limits the distribution and supply to the market and causes heavy economic losses. Thus, peach fruit softening and senescence after harvest urgently need to be addressed. In the current study, transcriptomic analysis was performed to identify candidate genes associated with peach fruit softening and senescence, comparing peach fruit from cultivars with different flesh textures, namely melting and stony hard (SH) flesh textures during storage at room temperature. The mitogen-activated protein kinase signaling pathway-plant and plant hormone signal transduction pathways were associated with peach fruit softening and senescence according to the Venn diagram analysis and weighted gene co-expression network analysis. The expression levels of seven genes, including Prupe.1G034300, Prupe.2G176900, Prupe.3G024700, Prupe.3G098100, Prupe.6G226100, Prupe.7G234800, and Prupe.7G247500, were higher in melting peach fruit than in SH peach fruit during storage. Furthermore, the SH peach fruit softened rapidly after 1-naphthylacetic acid treatment, during which the levels of expression of these seven genes, determined by a quantitative reverse transcription polymerase chain reaction, were strongly induced and upregulated. Thus, these seven genes may play essential roles in regulating peach fruit softening and senescence.
Collapse
Affiliation(s)
- Shaolei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Binbin Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Zhu X, Zhu Q, Zhu H. Editorial: Towards a better understanding of fruit ripening: Crosstalk of hormones in the regulation of fruit ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1173877. [PMID: 36968374 PMCID: PMC10035412 DOI: 10.3389/fpls.2023.1173877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiunan Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong Zhu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
18
|
Li F, Fu M, Zhou S, Xie Q, Chen G, Chen X, Hu Z. A tomato HD-zip I transcription factor, VAHOX1, acts as a negative regulator of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac236. [PMID: 36643762 PMCID: PMC9832867 DOI: 10.1093/hr/uhac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are only present in higher plants and are involved in plant development and stress responses. However, our understanding of their participation in the fruit ripening of economical plants, such as tomato (Solanum lycopersicum), remains largely unclear. Here, we report that VAHOX1, a member of the tomato HD-Zip I subfamily, was expressed in all tissues, was highly expressed in breaker+4 fruits, and could be induced by ethylene. RNAi repression of VAHOX1 (VAHOX1-RNAi) resulted in accelerated fruit ripening, enhanced sensitivity to ethylene, and increased total carotenoid content and ethylene production. Conversely, VAHOX1 overexpression (VAHOX1-OE) in tomato had the opposite effect. RNA-Seq results showed that altering VAHOX1 expression affected the transcript accumulation of a series of genes involved in ethylene biosynthesis and signal transduction and cell wall modification. Additionally, a dual-luciferase reporter assay, histochemical analysis of GUS activity and a yeast one-hybrid (Y1H) assay revealed that VAHOX1 could activate the expression of AP2a. Our findings may expand our knowledge about the physiological functions of HD-Zip transcription factors in tomato and highlight the diversities of transcriptional regulation during the fruit ripening process.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xuqing Chen
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| | - Zongli Hu
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| |
Collapse
|
19
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
20
|
Wang X, Wang Q, Yan L, Hao Y, Lian X, Zhang H, Zheng X, Cheng J, Wang W, Zhang L, Ye X, Li J, Tan B, Feng J. PpTCP18 is upregulated by lncRNA5 and controls branch number in peach ( Prunus persica) through positive feedback regulation of strigolactone biosynthesis. HORTICULTURE RESEARCH 2022; 10:uhac224. [PMID: 36643759 PMCID: PMC9832876 DOI: 10.1093/hr/uhac224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Branch number is an important agronomic trait in peach (Prunus persica) trees because plant architecture affects fruit yield and quality. Although breeders can select varieties with different tree architecture, the biological mechanisms underlying architecture remain largely unclear. In this study, a pillar peach ('Zhaoshouhong') and a standard peach ('Okubo') were compared. 'Zhaoshouhong' was found to have significantly fewer secondary branches than 'Okubo'. Treatment with the synthetic strigolactone (SL) GR24 decreased branch number. Transcriptome analysis indicated that PpTCP18 (a homologous gene of Arabidopsis thaliana BRC1) expression was negatively correlated with strigolactone synthesis gene expression, indicating that PpTCP18 may play an important role in peach branching. Yeast one-hybrid, electrophoretic mobility shift, dual-luciferase assays and PpTCP18-knockdown in peach leaf buds indicated that PpTCP18 could increase expression of PpLBO1, PpMAX1, and PpMAX4. Furthermore, transgenic Arabidopsis plants overexpressing PpTCP18 clearly exhibited reduced primary rosette-leaf branches. Moreover, lncRNA sequencing and transient expression analysis revealed that lncRNA5 targeted PpTCP18, significantly increasing PpTCP18 expression. These results provide insights into the mRNA and lncRNA network in the peach SL signaling pathway and indicate that PpTCP18, a transcription factor downstream of SL signaling, is involved in positive feedback regulation of SL biosynthesis. This role of PpTCP18 may represent a novel mechanism in peach branching regulation. Our study improves current understanding of the mechanisms underlying peach branching and provides theoretical support for genetic improvement of peach tree architecture.
Collapse
Affiliation(s)
| | | | - Lixia Yan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Yuhang Hao
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | | | | |
Collapse
|
21
|
Li R, Ma J, Gu H, Jia W, Shao Y, Li W. 1-Methylcyclopropene counteracts ethylene promotion of fruit softening and roles of MiERF2/8 and MiPG in postharvest mangoes. FRONTIERS IN PLANT SCIENCE 2022; 13:971050. [PMID: 36204066 PMCID: PMC9531572 DOI: 10.3389/fpls.2022.971050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Ethylene burst is an important sign of the initiation of postharvest mango ripening and softening is a typical characteristic of fruit ripening. However, the intrinsic link between ethylene release and fruit softening during ripening of postharvest mangoes is still not clear. The aim of this study was to investigate the effects of ethylene and its action inhibitor 1-methylcyclopropene (1-MCP) on fruit softening and ripening and the underlying regulatory mechanisms. Results showed that ethephon (ETH) promoted ethylene release and enhanced MDA content and activities of cell wall degrading enzymes, whereas 1-MCP treatment exhibited an opposite effect. Moreover, real-time quantitative polymerase chain reaction indicated that the transcription levels of genes involved in cell wall degradation (MiPG, Miβ-GAL and MiPE), ethylene biosynthesis (MiACO1 and MiACS6) and ethylene response factor (MiERF8) were remarkably induced by ETH. Correlation analysis further revealed that the production of ethylene was significantly negatively correlated with firmness, but positively correlated with MDA content, activities of cell wall degrading enzymes and expressions of MiPG and Miβ-GAL. Furthermore, yeast one hybrid (Y1H) assay showed that MiERF2 and MiERF8 could directly bind to the promotor of MiPG and then regulate its transcription. These findings suggest that ethylene production is closely associated with fruit softening, and MiERF2 and MiERF8 and MiPG may play crucial roles in regulation of ripening and softening of postharvest mangoes.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Jiheng Ma
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hui Gu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Wenjun Jia
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou, China
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
22
|
Wang X, Zhang C, Miao Y, Deng L, Zhang B, Meng J, Wang Y, Pan L, Niu L, Liu H, Cui G, Wang Z, Zeng W. Interaction between PpERF5 and PpERF7 enhances peach fruit aroma by upregulating PpLOX4 expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:378-389. [PMID: 35777129 DOI: 10.1016/j.plaphy.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/29/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Ethylene plays a critical role in peach (Prunus persica) fruit ripening; however, the molecular mechanism underlying ethylene-mediated aroma biosynthesis remains unclear. Here, we compared the difference in aroma-related volatiles and gene expression levels between melting-flesh (MF) and stony hard (SH) peach cultivars at S3, S4 I, S4 II, S4 III stages, and explored the relation between volatile biosynthesis related genes and ethylene response factor (ERF) genes. The concentration of fruity aromatic compounds such as lactones and terpenes increased significantly in MF peach during fruit ripening, while it was nearly undetectable in SH peach. LOX4 and FAD1 genes expressed concomitantly with ethylene emission and significantly downregulated by 1-MCP. Besides, 1-MCP treatment could sharply influence the fruity aromatic compounds, suggesting that these genes play key roles in volatile biosynthesis during fruit ripening. Furthermore, PpERF5 and PpERF7 could bind together to form a protein complex that enhanced the transcription of LOX4 more than each transcription factor individually. Overall, this work provides new insights into the transcriptional regulatory mechanisms associated with aroma formation during peach fruit ripening.
Collapse
Affiliation(s)
- Xiaobei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Chunling Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Yule Miao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology, Huajiachi Campus, Zhejiang University, Hangzhou, 310029, China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| |
Collapse
|
23
|
Transcriptome analysis of peach fruit under 1-MCP treatment provides insights into regulation network in melting peach softening. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Peach (Prunus persica L.) displays distinguish texture phenotype during postharvest, which could be classified into three types, including melting flesh (MF), non-melting flesh (NMF) and stony-hard (SH). Of that MF peach would soften rapidly with an outbreak of ethylene production, which cause a huge waste during fruit transportation and storage. 1-methylcyclopropene (1-MCP) was used to alleviate fruit softening. In this study, we performed RNA-sequencing on two MF peach cultivars (‘YuLu’ and ‘Yanhong’) after 1-MCP treatment to identify the candidate genes participating in peach fruit softening. 167 genes were identified by WGCNA and correlation analysis, which could respond to 1-MCP treatment and might be related to softening. Among them, 5 auxin related genes including 2 IAAs, 1 ARF and 2 SAURs, and 4 cell wall modifying genes (PpPG1, PpPG2, PpPG24 and PpPMEI) were characterized as key genes participating in MF peach softening. Furthermore, 2 transcription factors, which belong to HD-ZIP and MYB were predicted as candidates regulating softening process by constructing transcriptional network of these 4 cell wall modifying genes combined with expression pattern analysis, of that the HD-ZIP could trans-activate promoter of PpPG1.
Collapse
|
24
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
25
|
Zhai Y, Fan Z, Cui Y, Gu X, Chen S, Ma H. APETALA2/ethylene responsive factor in fruit ripening: Roles, interactions and expression regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:979348. [PMID: 36061806 PMCID: PMC9434019 DOI: 10.3389/fpls.2022.979348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 05/08/2023]
Abstract
Insects and animals are attracted to, and feed on ripe fruit, thereby promoting seed dispersal. As a vital vitamin and nutrient source, fruit make up an indispensable and enjoyable component of the human diet. Fruit ripening involves a series of physiological and biochemical changes in, among others, pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation, and flavor. Growing evidence indicates that the coordinated and ordered trait changes during fruit ripening depend on a complex regulatory network consisting of transcription factors, co-regulators, hormonal signals, and epigenetic modifications. As one of the predominant transcription factor families in plants and a downstream component of ethylene signaling, more and more studies are showing that APETALA2/ethylene responsive factor (AP2/ERF) family transcription factors act as critical regulators in fruit ripening. In this review, we focus on the regulatory mechanisms of AP2/ERFs in fruit ripening, and in particular the recent results on their target genes and co-regulators. We summarize and discuss the role of AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of their regulatory mechanisms by interaction with other proteins, their role in the orchestration of phytohormone-signaling networks, and the epigenetic modifications associated with their gene expression. Our aim is to provide a multidimensional perspective on the regulatory mechanisms of AP2/ERFs in fruit ripening, and a reference for understanding and furthering research on the roles of AP2/ERF in fruit ripening.
Collapse
Affiliation(s)
- Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yuanyuan Cui
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaojiao Gu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma,
| |
Collapse
|