1
|
Smith A, Fletcher J, Swinnen J, Jonckheere K, Bazzicalupo A, Liao HL, Ragland G, Colpaert J, Lipzen A, Tejomurthula S, Barry K, V Grigoriev I, Ruytinx J, Branco S. Comparative transcriptomics provides insights into molecular mechanisms of zinc tolerance in the ectomycorrhizal fungus Suillus luteus. G3 (BETHESDA, MD.) 2024; 14:jkae156. [PMID: 39001865 PMCID: PMC11373636 DOI: 10.1093/g3journal/jkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Zinc (Zn) is a major soil contaminant and high Zn levels can disrupt growth, survival, and reproduction of fungi. Some fungal species evolved Zn tolerance through cell processes mitigating Zn toxicity, although the genes and detailed mechanisms underlying mycorrhizal fungal Zn tolerance remain unexplored. To fill this gap in knowledge, we investigated the gene expression of Zn tolerance in the ectomycorrhizal fungus Suillus luteus. We found that Zn tolerance in this species is mainly a constitutive trait that can also be environmentally dependent. Zinc tolerance in S. luteus is associated with differences in the expression of genes involved in metal exclusion and immobilization, as well as recognition and mitigation of metal-induced oxidative stress. Differentially expressed genes were predicted to be involved in transmembrane transport, metal chelation, oxidoreductase activity, and signal transduction. Some of these genes were previously reported as candidates for S. luteus Zn tolerance, while others are reported here for the first time. Our results contribute to understanding the mechanisms of fungal metal tolerance and pave the way for further research on the role of fungal metal tolerance in mycorrhizal associations.
Collapse
Affiliation(s)
- Alexander Smith
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Janne Swinnen
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Karl Jonckheere
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Anna Bazzicalupo
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond 11415, UK
| | - Hui-Ling Liao
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32351, USA
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Greg Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Jan Colpaert
- Centre for Environmental Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sravanthi Tejomurthula
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley 94720, CA, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
2
|
Adil MF, Sehar S, Ma Z, Tahira K, Askri SMH, El-Sheikh MA, Ahmad A, Zhou F, Zhao P, Shamsi IH. Insights into the alleviation of cadmium toxicity in rice by nano-zinc and Serendipita indica: Modulation of stress-responsive gene expression and antioxidant defense system activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123952. [PMID: 38641035 DOI: 10.1016/j.envpol.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 μM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Khajista Tahira
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Ahsan SM, Injamum-Ul-Hoque M, Das AK, Rahman MM, Mollah MMI, Paul NC, Choi HW. Plant-Entomopathogenic Fungi Interaction: Recent Progress and Future Prospects on Endophytism-Mediated Growth Promotion and Biocontrol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1420. [PMID: 38794490 PMCID: PMC11124879 DOI: 10.3390/plants13101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents.
Collapse
Affiliation(s)
- S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Ashim Kumar Das
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh;
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
4
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
5
|
Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, Yue K, Wu F. Global patterns and driving factors of plant litter iron, manganese, zinc, and copper concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159686. [PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
Collapse
Affiliation(s)
- Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Dario A Fornara
- Davines Group - Rodale Institute European Regenerative Organic Center (EROC), Via Don Angelo Calzolari 55/a, 43126 Parma, Italy
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ji Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chaoxiang Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China.
| |
Collapse
|
6
|
Zhang P, Xie G, Wang L, Xing Y. Bacillus velezensis BY6 Promotes Growth of Poplar and Improves Resistance Contributing to the Biocontrol of Armillaria solidipes. Microorganisms 2022; 10:microorganisms10122472. [PMID: 36557725 PMCID: PMC9781154 DOI: 10.3390/microorganisms10122472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
To improve the application of endophyte Bacillus velezensis BY6 from the xylem of poplar, the effect of BY6 on the growth of diseased Populus davidiana × Populus. alba var. pyramidalis Louche (Pdpap poplar) seedlings and the biological control effect on the pathogen Armillaria solidipes were tested using a plant split-root experiment. After applying BY6 to the roots of diseased Pdpap poplar seedlings, the results show that plant growth indicators (dry mass, fresh mass, and plant height) were significantly increased (p < 0.05), and genes related to auxin hormone signal transcription were activated. BY6 indicated a surprising control effect after the inoculation of diseased Pdpap poplar seedlings. Compared to the infected control group, the treated disease index of the diseased Pdpap poplar seedlings in the treatment group were reduced by 49.53% on the 20th day. The relative staining areas of diaminobenzidine (DAB) and Trypan blue decreased by 3.37 and 7.31 times, respectively. The physiological indicators (soluble sugar and protein) and oxidase indicators were significantly increased (p < 0.05). The expression levels of defense genes related to salicylic acid (SA) and jasmonic acid (JA) signaling pathways were significantly increased (p < 0.05). Amazingly, the results indicate that BY6 simultaneously activates induced systemic resistance (ISR) and systemic acquired resistance (SAR) in diseased Pdpap poplar seedlings and promotes growth. The results indicate that BY6 is a promising candidate for developing forest tree biofertilizers and biopesticides.
Collapse
|
7
|
Wang Y, Zou Z, Su X, Wan F, Zhou Y, Lei Z, Yi L, Dai Z, Li J. Physiological of biochar and α-Fe 2O 3 nanoparticles as amendments of Cd accumulation and toxicity toward muskmelon grown in pots. J Nanobiotechnology 2021; 19:442. [PMID: 34930295 PMCID: PMC8690976 DOI: 10.1186/s12951-021-01187-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Due to the severe cadmium (Cd) pollution of farmland soil, effective measures need to be taken to reduce the Cd content in agricultural products. In this study, we added α-Fe2O3 nanoparticles (NPs) and biochar into Cd-contaminated soil to investigate physiological responses of muskmelon in the whole life cycle. RESULTS The results showed that Cd caused adverse impacts on muskmelon (Cucumis melo) plants. For instance, the chlorophyll of muskmelon leaves in the Cd alone treatment was reduced by 8.07-32.34% in the four periods, relative to the control. The treatments with single amendment, α-Fe2O3 NPs or 1% biochar or 5% biochar, significantly reduced the soil available Cd content, but the co-exposure treatments (α-Fe2O3 NPs and biochar) had no impact on the soil available Cd content. All treatments could reduce the Cd content by 47.64-74.60% and increase the Fe content by 15.15-95.27% in fruits as compared to the Cd alone treatment. The KEGG enrichment results of different genes in different treatments indicated that single treatments could regulate genes related to anthocyanin biosynthesis, glutathione metabolism and MAPK signal transduction pathways to reduce the Cd toxicity. CONCLUSIONS Overall the combination of biochar and α-Fe2O3 NPs can alleviate Cd toxicity in muskmelon. The present study could provide new insights into Cd remediation in soil using α-Fe2O3 NPs and biochar as amendments.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Xinliang Su
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fengting Wan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Sience, Wuhan, 430064, People's Republic of China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
9
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
10
|
Maleki M, Ghorbanpour M, Kariman K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Repka V, Fiala R, Čiamporová M, Pavlovkin J. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Girotto E, Ceretta CA, Rossato LV, Farias JG, Brunetto G, Miotto A, Tiecher TL, de Conti L, Lourenzi CR, Schmatz R, Giachini A, Nicoloso FT. Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:199-207. [PMID: 27002244 DOI: 10.1016/j.plaphy.2016.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Soils used for the cultivation of grapes generally have a long history of copper (Cu) based fungicide applications. As a result, these soils can accumulate Cu at levels that are capable of causing toxicity in plants that co-inhabit the vineyards. The aim of the present study was to evaluate growth parameters and oxidative stress in black oat plants grown in vineyard soils contaminated with high levels of Cu. Soil samples were collected from the Serra Gaúcha and Campanha Gaúcha regions, which are the main wine producing regions in the state of Rio Grande do Sul, in southern Brazil. Experiments were conducted in a greenhouse in 2009, with soils containing Cu concentrations from 2.2 to 328.7 mg kg(-1). Evaluated parameters included plant root and shoot dry matter, Cu concentration in the plant's tissues, and enzymatic and non-enzymatic biochemical parameters related to oxidative stress in the shoots of plants harvested 15 and 40 days after emergence. The Cu absorbed by plants predominantly accumulated in the roots, with little to no translocation to the shoots. Even so, oat plants showed symptoms of toxicity when grown in soils containing high Cu concentrations. The enzymatic and non-enzymatic antioxidant systems of oat plants were unable to reverse the imposed oxidative stress conditions.
Collapse
Affiliation(s)
- Eduardo Girotto
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio Grande Do Sul (IFRS), Campus Ibirubá, Rua Profª. Nelsi Ribas Fritsch, nº 1111, Bairro Esperança, CEP:98200-000-Ibirubá/RS, Brasil-Caixa postal 121, Brazil.
| | - Carlos A Ceretta
- Departamento de Ciência Do Solo, Universidade Federal de Santa Maria (UFSM), CEP:97105-900, Santa Maria (RS), Brazil
| | - Liana V Rossato
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), CEP:97105-900, Brazil
| | - Julia G Farias
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), CEP:97105-900, Brazil
| | - Gustavo Brunetto
- Departamento de Ciência Do Solo, Universidade Federal de Santa Maria (UFSM), CEP:97105-900, Santa Maria (RS), Brazil
| | - Alcione Miotto
- Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), CEP:89900-000, Campus São Miguel Do Oeste (SC), Brazil
| | - Tadeu L Tiecher
- Departamento de Ciência Do Solo, Universidade Federal de Santa Maria (UFSM), CEP:97105-900, Santa Maria (RS), Brazil
| | - Lessandro de Conti
- Departamento de Ciência Do Solo, Universidade Federal de Santa Maria (UFSM), CEP:97105-900, Santa Maria (RS), Brazil
| | - Cledimar R Lourenzi
- Centro de Ciências Agrárias, Departamento de Engenharia Rural, Universidade Federal de Santa Catarina (UFSC), CEP:88034-000, Florianópolis (SC), Brazil
| | - Roberta Schmatz
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio Grande Do Sul (IFRS), Campus Ibirubá, Rua Profª. Nelsi Ribas Fritsch, nº 1111, Bairro Esperança, CEP:98200-000-Ibirubá/RS, Brasil-Caixa postal 121, Brazil
| | - Admir Giachini
- Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de Santa Catarina (UFSC), CEP:88040-970, Florianópolis (SC), Brazil
| | - Fernando T Nicoloso
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Santa Maria (RS), CEP:97105-900, Brazil
| |
Collapse
|
13
|
Gupta N, Ram H, Kumar B. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2016. [PMID: 0 DOI: 10.1007/s11157-016-9390-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
14
|
Yang Y, Li X, Yang S, Zhou Y, Dong C, Ren J, Sun X, Yang Y. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis). PLoS One 2015; 10:e0137396. [PMID: 26349064 PMCID: PMC4562643 DOI: 10.1371/journal.pone.0137396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/17/2015] [Indexed: 11/26/2022] Open
Abstract
Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.
Collapse
Affiliation(s)
- Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihai Yang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Dong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ren
- Department of Grassland Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
15
|
DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics 2014; 6:1770-88. [DOI: 10.1039/c4mt00173g] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Panda BB, Achary VMM. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L. FRONTIERS IN PLANT SCIENCE 2014; 5:256. [PMID: 24926302 PMCID: PMC4046574 DOI: 10.3389/fpls.2014.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/19/2014] [Indexed: 05/24/2023]
Abstract
In the current study, we studied the role of signal transduction in aluminum (Al(3+))-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al(3+) (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al(3+) (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al(3+) (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al(3+) induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al(3+)-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa.
Collapse
Affiliation(s)
- Brahma B. Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur UniversityBerhampur, India
| | | |
Collapse
|
17
|
Tkalec M, Štefanić PP, Cvjetko P, Šikić S, Pavlica M, Balen B. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 2014; 9:e87582. [PMID: 24475312 PMCID: PMC3903775 DOI: 10.1371/journal.pone.0087582] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022] Open
Abstract
The objective of the present study was to investigate the effects of cadmium-zinc (Cd-Zn) interactions on their uptake, oxidative damage of cell macromolecules (lipids, proteins, DNA) and activities of antioxidative enzymes in tobacco seedlings as well as roots and leaves of adult plants. Seedlings and plants were exposed to Cd (10 µM and 15 µM) and Zn (25 µM and 50 µM) as well as their combinations (10 µM or 15 µM Cd with either 25 µM or 50 µM Zn). Measurement of metal accumulation exhibited that Zn had mostly positive effect on Cd uptake in roots and seedlings, while Cd had antagonistic effect on Zn uptake in leaves and roots. According to examined oxidative stress parameters, in seedlings and roots individual Cd treatments induced oxidative damage, which was less prominent in combined treatments, indicating that the presence of Zn alleviates oxidative stress. However, DNA damage found in seedlings, and lower glutathione reductase (GR) and superoxide dismutase (SOD) activity recorded in both seedlings and roots, after individual Zn treatments, indicate that Zn accumulation could impose toxic effects. In leaves, oxidative stress was found after exposure to Cd either alone or in combination with Zn, thus implying that in this tissue Zn did not have alleviating effects. In conclusion, results obtained in different tobacco tissues suggest tissue-dependent Cd-Zn interactions, which resulted in activation of different mechanisms involved in the protection against metal stress.
Collapse
Affiliation(s)
- Mirta Tkalec
- Department of Botany, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Petra Cvjetko
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Institute of Public Health “Dr. Andrija Štampar”, Zagreb, Croatia
| | - Mirjana Pavlica
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Biljana Balen
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. Zinc - an indispensable micronutrient. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:11-20. [PMID: 24381434 PMCID: PMC3550680 DOI: 10.1007/s12298-012-0139-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches.
Collapse
Affiliation(s)
- Ashish Sharma
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - Babita Patni
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - Deepti Shankhdhar
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - S. C. Shankhdhar
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| |
Collapse
|
19
|
Lin YF, Aarts MGM. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 2012; 69:3187-206. [PMID: 22903262 PMCID: PMC11114967 DOI: 10.1007/s00018-012-1089-z] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023]
Abstract
When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.
Collapse
Affiliation(s)
- Ya-Fen Lin
- Laboratory of Genetics, Wageningen University, The Netherlands.
| | | |
Collapse
|
20
|
Opdenakker K, Remans T, Vangronsveld J, Cuypers A. Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 2012; 13:7828-7853. [PMID: 22837729 PMCID: PMC3397561 DOI: 10.3390/ijms13067828] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses. In this review, our current understanding about MAPK signaling in plant metal stress is discussed. However, this knowledge is scarce compared to research into the role of MAPK signaling in the case of other abiotic and biotic stresses. ROS production is a common response induced by different stresses and undiscovered analogies may exist with metal stress. Therefore, further attention is given to MAPK signaling in other biotic and abiotic stresses and its interplay with other signaling pathways to create a framework in which the involvement of MAPK signaling in metal stress may be studied.
Collapse
Affiliation(s)
- Kelly Opdenakker
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| |
Collapse
|
21
|
Balen B, Tkalec M, Sikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Z. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:815-26. [PMID: 21416111 DOI: 10.1007/s10646-011-0633-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 05/15/2023]
Abstract
The effects of 5 μM cadmium (Cd), a non-essential toxic element and 25 and 50 μM zinc (Zn), an essential micronutrient, were investigated in aquatic plant Lemna minor L. after 4 and 7 days of exposure to each metal alone or to their combinations. Both metals showed tendency to accumulate with time, but when present in combination, they reduced uptake of each other. Cd treatment increased the lipid peroxidation and protein oxidation indicating appearance of oxidative stress. However, Zn supplementation in either concentration reduced values of both parameters, while exposure to Zn alone resulted in elevated level of lipid peroxidation and protein oxidation but only on the 7th day. Enhanced DNA damage, which was found on the 4th day in plants treated with Cd alone or in combination with Zn, was reduced on the 7th day in combined treatments. Higher catalase activity obtained in all treated plants on the 4th day of experiment was reduced in Zn-treated plants, but remained high in plants exposed to Cd alone or in combination with Zn after 7 days. Cd exposure resulted in higher peroxidase activity, while Zn addition prominently reduced peroxidase activity in the plants subjected to Cd stress. In conclusion, Cd induced more pronounced oxidative stress and DNA damage than Zn in applied concentrations. Combined treatments showed lower values of oxidative stress parameters--lipid peroxidation, protein oxidation and peroxidase activity as well as lower DNA damage, which indicates alleviating effect of Zn on oxidative stress in Cd-treated plants.
Collapse
Affiliation(s)
- Biljana Balen
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
22
|
Plant mitogen-activated protein kinases and their roles in mediation of signal transduction in abiotic stresses. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-011-1072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK. Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 2011; 506:73-82. [DOI: 10.1016/j.abb.2010.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
24
|
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. PLANT SIGNALING & BEHAVIOR 2010; 5:1370-8. [PMID: 20980831 PMCID: PMC3115236 DOI: 10.4161/psb.5.11.13020] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades play diverse roles in intra- and extra-cellular signaling in plants. MAP kinases are the component of kinase modules which transfer information from sensors to responses in eukaryotes including plants. They play a pivotal role in transduction of diverse extracellular stimuli such as biotic and abiotic stresses as well as a range of developmental responses including differentiation, proliferation and death. Several cascades are induced by different biotic and abiotic stress stimuli such as pathogen infections, heavy metal, wounding, high and low temperatures, high salinity, UV radiation, ozone, reactive oxygen species, drought and high or low osmolarity. MAPK signaling has been implicated in biotic stresses and has also been associated with hormonal responses. The cascade is regulated by various mechanisms, including not only transcriptional and translational regulation but through post-transcriptional regulation such as protein-protein interactions. Recent detailed analysis of certain specific MAP kinase pathways have revealed the specificity of the kinases in the cascade, signal transduction patterns, identity of pathway targets and the complexity of the cascade. The latest insights and finding are discussed in this paper in relation to the role of MAPK pathway modules in plant stress signaling.
Collapse
Affiliation(s)
- Gohar Taj
- Molecular Biology and Genetic Engineering, College of Basic Science and Humanities, G.B. Pant University of Agriculture & Technology, Uttrakhand, Uttrangal, India.
| | | | | | | |
Collapse
|
25
|
Kim YH, Lee HS, Kwak SS. Differential responses of sweetpotato peroxidases to heavy metals. CHEMOSPHERE 2010; 81:79-85. [PMID: 20638101 DOI: 10.1016/j.chemosphere.2010.06.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 05/29/2023]
Abstract
Oxidative stress is one of the major causes of damage in plants exposed to different types of environmental stress, including heavy metals. Accumulation of heavy metals in plants can disrupt many cellular functions and plant growth. To assess the contribution of oxidative stress to heavy metal toxicity in plants, young sweetpotato plants (Ipomoea batatas) were treated with increasing concentrations of Cd, Cu and Zn, and grown in half Murashige and Skoog nutrient solution culture. Plant growth was significantly inhibited and internal metal content was increased in a dose-dependent manner for each metal. The generation of H(2)O(2) in leaves and fibrous roots correlated positively with metal dose. The specific activity of peroxidases (PODs) in fibrous roots was markedly enhanced by metal treatment, whereas in leaves, activity was low and only slightly affected by metal treatment. Analysis of 13 POD genes revealed differential expression of PODs in response to heavy metals. Several genes for acidic PODs (swpa2, swpa3 and swpa4) and basic PODs (swpb1, swpb3 and swpab4) were strongly expressed under all metal treatment conditions in leaves or fibrous roots. The expression of swpa1 was increased in leaves and fibrous roots by Cd and Cu treatment, whereas swpb5 expression was reduced by all metals in fibrous roots. These results indicate that increased H(2)O(2) levels in response to heavy metal stress are closely linked to an improved antioxidant defense capability mediated by POD.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | |
Collapse
|
26
|
Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS. Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. PHYTOCHEMISTRY 2010; 71:614-8. [PMID: 20116811 DOI: 10.1016/j.phytochem.2010.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/30/2009] [Accepted: 01/04/2010] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a non-essential toxic heavy metal that influences normal growth and development of plants. However, the molecular mechanisms by which plants recognize and respond to Cd remain poorly understood. We show that, in Arabidopsis, Cd activates the mitogen-activated protein kinases, MPK3 and MPK6, in a dose-dependent manner. Following treatment with Cd, these two MAPKs exhibited much higher activity in the roots than in the leaves, and pre-treatment with the reactive oxygen species (ROS) scavenger, glutathione, effectively inhibited their activation. These results suggest that the Cd sensing signaling pathway uses a build-up of ROS to trigger activation of Arabidopsis MPK3 and MPK6.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Radić S, Babić M, Skobić D, Roje V, Pevalek-Kozlina B. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:336-42. [PMID: 19914715 DOI: 10.1016/j.ecoenv.2009.10.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/20/2009] [Accepted: 10/25/2009] [Indexed: 05/20/2023]
Abstract
The present study aimed at investigating effects of zinc and aluminum (0.15 and 0.3mM) in duckweed (Lemna minor L.) over a 15-day period. High bioaccumulation of both metals was accompanied by an increase in dry weight under higher metal treatments. Antioxidant response was observed under both metal stresses, with large increases in superoxide dismutase and peroxidases. Catalase activity declined only in duckweed exposed to Zn while lipid peroxidation as well as H(2)O(2), proline and ascorbate levels increased. The results suggest induction of oxidative stress under both aluminum and zinc toxicity, and also demonstrate duckweed's capacity to upregulate its antioxidative defense. Additionally, Zn was found to be more toxic than Al to duckweed for the concentrations applied. Due to its high bioaccumulation potential and tolerance via increased antioxidant capacity, duckweed has a potential for phytoremediation of water bodies polluted by low levels of zinc and aluminum.
Collapse
Affiliation(s)
- Sandra Radić
- Department of Botany, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
28
|
Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). CURRENT OPINION IN PLANT BIOLOGY 2009; 12:259-66. [PMID: 19524482 DOI: 10.1016/j.pbi.2009.05.006] [Citation(s) in RCA: 609] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 05/18/2023]
Abstract
Micronutrients are involved in all metabolic and cellular functions. Plants differ in their need for micronutrients, and we will focus here only on those elements that are generally accepted as essential for all higher plants: boron (B), chloride (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn). Several of these elements are redox-active that makes them essential as catalytically active cofactors in enzymes, others have enzyme-activating functions, and yet others fulfill a structural role in stabilizing proteins. In this review, we focus on the major functions of mineral micronutrients, mostly in cases where they were shown as constituents of proteins, making a selection and highlighting some functions in more detail.
Collapse
Affiliation(s)
- Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
29
|
Chen PY, Lee KT, Chi WC, Hirt H, Chang CC, Huang HJ. Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. PLANTA 2008; 228:499-509. [PMID: 18506480 DOI: 10.1007/s00425-008-0753-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
Cross tolerance is a phenomenon that occurs when a plant, in resisting one form of stress, develops a tolerance to another form. Pretreatment with nonlethal heat shock has been known to protect cells from metal stress. In this study, we found that the treatment of rice roots with more than 25 muM of Cu(2+) caused cell death. However, heat shock pretreatment attenuated Cu(2+)-induced cell death. The mechanisms of the cross tolerance phenomenon between heat shock and Cu(2+) stress were investigated by pretreated rice roots with the protein synthesis inhibitor cycloheximide (CHX). CHX effectively block heat shock protection, suggesting that protection of Cu(2+)-induced cell death by heat shock was dependent on de novo protein synthesis. In addition, heat pretreatment downregulated ROS production and mitogen-activated protein kinase (MAPK) activities, both of which can be greatly elicited by Cu(2+) stress in rice roots. Moreover, the addition of purified recombinant GST-OsHSP70 fusion proteins inhibited Cu(2+)-enhanced MAPK activities in an in vitro kinase assay. Furthermore, loss of heat shock protection was observed in Arabidopsis mkk2 and mpk6 but not in mpk3 mutants under Cu(2+) stress. Taken together, these results suggest that the interaction of OsHSP70 with MAPKs may contribute to the cellular protection in rice roots from excessive Cu(2+) toxicity.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Chen PY, Huang TL, Huang HJ. Early events in the signalling pathway for the activation of MAPKs in rice roots exposed to nickel. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:995-1001. [PMID: 32689427 DOI: 10.1071/fp07163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/19/2007] [Indexed: 06/11/2023]
Abstract
It is well known that small quantities of nickel (Ni) are essential for plant species, and higher concentrations of Ni retard plant growth. However, the molecular mechanisms responsible for the regulation of plant growth by Ni are not well understood. The aim of this study is to investigate the early signalling pathways activated by Ni on rice (Oryza sativa L.) root. We showed that Ni elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analyses, it is suggested that Ni-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPKs). Pretreatment of rice roots with the antioxidant, glutathione (GSH), the phospholipase D (PLD) inhibitor, n-butanol, and the calmodulin and CDPK antagonist and W7 inhibited Ni-induced MAPK activation. These results suggest that various signalling components are involved in transduction of the Ni signal in rice roots.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| |
Collapse
|
31
|
Zhang ZC, Qiu BS. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). J Environ Sci (China) 2007; 19:1311-7. [PMID: 18232224 DOI: 10.1016/s1001-0742(07)60214-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.
Collapse
Affiliation(s)
- Zhong-chun Zhang
- College of Life Sciences, Huazhong Normal University, Wuhan 430079, China.
| | | |
Collapse
|