1
|
Barratt LJ, He Z, Fellgett A, Wang L, Mason SM, Bancroft I, Harper AL. Co-expression network analysis of diverse wheat landraces reveals markers of early thermotolerance and a candidate master regulator of thermotolerance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:614-626. [PMID: 37077043 PMCID: PMC10953029 DOI: 10.1111/tpj.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.
Collapse
Affiliation(s)
- Liam J. Barratt
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Zhesi He
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Alison Fellgett
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Lihong Wang
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Simon McQueen Mason
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Ian Bancroft
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Andrea L. Harper
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| |
Collapse
|
2
|
Yang Y, Chen L, Su G, Liu F, Zeng Q, Li R, Cha G, Liu C, Xing L, Ren X, Ding Y. Identification and expression analysis of the lipid phosphate phosphatases gene family reveal their involvement in abiotic stress response in kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:942937. [PMID: 36092394 PMCID: PMC9449726 DOI: 10.3389/fpls.2022.942937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Lipid phosphate phosphatases (LPPs) are a key enzyme in the production and degradation of phosphatidic acid (PA), which plays an important role in plant growth, development, stress resistance and plant hormone response. Thus far, little is known about the LPP family genes in kiwifruit (Actinidia spp.). According to this study, 7 members in the AcLPP family were identified from the whole genome of kiwifruit, the subcellular localization predictions were mainly on the plasma membrane. Chromosomal localization analysis showed that the AcLPP genes were unevenly distributed on 5 chromosomes, it was determined to have undergone strong purifying selection pressure. There were 5 duplicate gene pairs and all underwent segmental duplication events. The LPP genes of kiwifruit were conserved when compared with other plants, especially in terms of evolutionary relationships, conserved motifs, protein sequences, and gene structures. Cis-regulatory elements mainly included hormone response elements and abiotic response elements. Functional annotation of GO revealed that AcLPP genes were closely related to phosphatase/hydrolase activity, phosphorus metabolism and dephosphorylation. AcLPP genes family were predicted to be targets of miRNA. Transcript level analysis revealed that the AcLPP family played diverse functions in different tissues and during growth, development, and postharvest storage stages. qPCR analysis showed that the members of AcLPP gene family might be regulated by ETH, ABA, GA3, and IAA hormone signals. The family members were regulated by the stress of salt stress, osmotic stress, cold stress, and heat stress. These results would provide a basis and reference for studying the agricultural characteristics of kiwifruit and improving its stress resistance.
Collapse
Affiliation(s)
- Yaming Yang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Lijuan Chen
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Gen Su
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Fangfang Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Qiang Zeng
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Rui Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Guili Cha
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Cuihua Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Yuduan Ding
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|
3
|
Su W, Raza A, Gao A, Zeng L, Lv Y, Ding X, Cheng Y, Zou X. Plant lipid phosphate phosphatases: current advances and future outlooks. Crit Rev Biotechnol 2022; 43:384-392. [PMID: 35430946 DOI: 10.1080/07388551.2022.2032588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipids are widely distributed in various tissues of an organism, mainly in plant storage organs (e.g., fruits, seeds, etc.). Lipids are vital biological substances that are involved in: signal transduction, membrane biogenesis, energy storage, and the formation of transmembrane fat-soluble substances. Some lipids and related lipid derivatives could be changed in their: content, location, or physiological activity by the external environment, such as biotic or abiotic stresses. Lipid phosphate phosphatases (LPPs) play important roles in regulating intermediary lipid metabolism and cellular signal response. LPPs can dephosphorylate lipid phosphates containing phosphate monolipid bonds such as: phosphatidic acid, lysophosphatidic acid (LPA), and diacylglycerol pyrophosphate, etc. These processes can change the contents of some important lipid signal mediation such as diacylglycerol and LPA, affecting lipid signal transmission. Here, we summarize the research progress of LPPs in plants, emphasizing the structural and biochemical characteristics of LPPs and their role in spatio-temporal regulation. In the future, more in-depth studies are required to boost our understanding of the key role of plant LPPs and lipid metabolism in: signal regulation, stress tolerance pathway, and plant growth and development.
Collapse
Affiliation(s)
- Wei Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ang Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
4
|
Perlikowski D, Lechowicz K, Skirycz A, Michaelis Ä, Pawłowicz I, Kosmala A. The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in Lolium multiflorum/Festucaarundinacea Introgression Forms. PLANT & CELL PHYSIOLOGY 2022; 63:353-368. [PMID: 34994787 DOI: 10.1093/pcp/pcac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Katarzyna Lechowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| |
Collapse
|
5
|
Jia X, Si X, Jia Y, Zhang H, Tian S, Li W, Zhang K, Pan Y. Genomic profiling and expression analysis of the diacylglycerol kinase gene family in heterologous hexaploid wheat. PeerJ 2021; 9:e12480. [PMID: 34993014 PMCID: PMC8679913 DOI: 10.7717/peerj.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The inositol phospholipid signaling system mediates plant growth, development, and responses to adverse conditions. Diacylglycerol kinase (DGK) is one of the key enzymes in the phosphoinositide-cycle (PI-cycle), which catalyzes the phosphorylation of diacylglycerol (DAG) to form phosphatidic acid (PA). To date, comprehensive genomic and functional analyses of DGKs have not been reported in wheat. In this study, 24 DGK gene family members from the wheat genome (TaDGKs) were identified and analyzed. Each putative protein was found to consist of a DGK catalytic domain and an accessory domain. The analyses of phylogenetic and gene structure analyses revealed that each TaDGK gene could be grouped into clusters I, II, or III. In each phylogenetic subgroup, the TaDGKs demonstrated high conservation of functional domains, for example, of gene structure and amino acid sequences. Four coding sequences were then cloned from Chinese Spring wheat. Expression analysis of these four genes revealed that each had a unique spatial and developmental expression pattern, indicating their functional diversification across wheat growth and development processes. Additionally, TaDGKs were also prominently up-regulated under salt and drought stresses, suggesting their possible roles in dealing with adverse environmental conditions. Further cis-regulatory elements analysis elucidated transcriptional regulation and potential biological functions. These results provide valuable information for understanding the putative functions of DGKs in wheat and support deeper functional analysis of this pivotal gene family. The 24 TaDGKs identified and analyzed in this study provide a strong foundation for further exploration of the biological function and regulatory mechanisms of TaDGKs in response to environmental stimuli.
Collapse
Affiliation(s)
- Xiaowei Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Xuyang Si
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Yangyang Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Hongyan Zhang
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Shijun Tian
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Wenjing Li
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei, China
| | - Yanyun Pan
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| |
Collapse
|
6
|
Wang J, Shan Q, Ran Y, Sun D, Zhang H, Zhang J, Gong S, Zhou A, Qiao K. Molecular Characterization of a Tolerant Saline-Alkali Chlorella Phosphatidate Phosphatase That Confers NaCl and Sorbitol Tolerance. Front Microbiol 2021; 12:738282. [PMID: 34650539 PMCID: PMC8506161 DOI: 10.3389/fmicb.2021.738282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Su W, Raza A, Zeng L, Gao A, Lv Y, Ding X, Cheng Y, Zou X. Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L. BMC Genomics 2021; 22:548. [PMID: 34273948 PMCID: PMC8286584 DOI: 10.1186/s12864-021-07862-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.
Collapse
Affiliation(s)
- Wei Su
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ali Raza
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Liu Zeng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ang Gao
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yan Lv
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiaoyu Ding
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yong Cheng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiling Zou
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Peppino Margutti M, Wilke N, Villasuso AL. Influence of Ca 2+ on the surface behavior of phosphatidic acid and its mixture with diacylglycerol pyrophosphate at different pHs. Chem Phys Lipids 2020; 228:104887. [PMID: 32027867 DOI: 10.1016/j.chemphyslip.2020.104887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
The signaling lipids phosphatidic acid (PA) and diacylglycerol pyrophosphate (DGPP) are involved in regulating the stress response in plants. PA and DGPP are anionic lipids consisting of a negatively charged phosphomonoester or pyrophosphate group attached to diacylglycerol, respectively. Changes in the pH modulate the protonation of their head groups modifying the interaction with other effectors. Here, we examine in a controlled system how the presence of Ca2+ modulates the surface organization of dioleyl diacylglycerol pyrophosphate (DGPP) and its interaction with dioleoyl phosphatidic acid (DOPA) at different pHs. Both lipids formed expanded monolayers at pH 5 and 8. At acid and basic pHs, monolayers formed by DOPA or DGPP became denser when Ca2+ was added to the subphase. At pH 5, Ca2+ also induced an increase of surface potential of both lipids. Conversely, at pH 8 the effects induced by the presence of Ca2+ on the surface potential were reversed. Mixed monolayers of DOPA and DGPP showed a non-ideal behavior. The addition of even tiny amounts of DGPP to DOPA films caused a reduction of the mean molecular area. This effect was more evident at pH 8 compared to pH 5. Our finding suggests that low amounts of DGPP in an film enriched in DOPA could lead to a local increase in film packing with a concomitant change in the local polarization, further regulated by local pH. This fact may have implications for the assigned role of PA as a pH-sensing phospholipid or during its interaction with proteins.
Collapse
Affiliation(s)
- Micaela Peppino Margutti
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnologia Ambiental y Salud, (INBIAS), Río Cuarto, Argentina.
| |
Collapse
|
9
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
10
|
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress. FRONTIERS IN PLANT SCIENCE 2018; 8:2212. [PMID: 29375595 PMCID: PMC5767312 DOI: 10.3389/fpls.2017.02212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Marta Sowa
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
11
|
Wang P, Chen Z, Kasimu R, Chen Y, Zhang X, Gai J. Genome-wide analysis suggests divergent evolution of lipid phosphotases/phosphotransferase genes in plants. Genome 2017; 59:589-601. [PMID: 27501416 DOI: 10.1139/gen-2016-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genes of the LPPT (lipid phosphatase/phosphotransferase) family play important roles in lipid phosphorous transfer and triacylglycerol accumulation in plants. To provide overviews of the plant LPPT family and their overall relationships, here we carried out genome-wide identifications and analyses of plant LPPT family members. A total of 643 putative LPPT genes were identified from 48 sequenced plant genomes, among which 205 genes from 14 plants were chosen for further analyses. Plant LPPT genes belonged to three distinctive groups, namely the LPT (lipid phosphotransfease), LPP (lipid phosphatase), and pLPP (plastidic lipid phosphotransfease) groups. Genes of the LPT group could be further partitioned into three groups, two of which were only identified in terrestrial plants. Genes in the LPP and pLPP groups experienced duplications in early stages of plant evolution. Among 17 Zea mays LPPT genes, divergence of temporal-spatial expression patterns was revealed based on microarray data analysis. Peptide sequences of plant LPPT genes harbored different conserved motifs. A test of Branch Model versus One-ratio Model did not support significant selective pressures acting on different groups of LPPT genes, although quite different nonsynonymous evolutionary rates and selective pressures were observed. The complete picture of the plant LPPT family provided here should facilitate further investigations of plant LPPT genes and offer a better understanding of lipid biosynthesis in plants.
Collapse
Affiliation(s)
- Peng Wang
- a Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, Hainan 571737, China
| | - Zhenxi Chen
- a Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, Hainan 571737, China
| | - Rena Kasimu
- b School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yinhua Chen
- c College of Agriculture, Hainan University, Haikou Hainan 570000, China
| | - Xiaoxiao Zhang
- d State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiangtao Gai
- a Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, Hainan 571737, China
| |
Collapse
|
12
|
Lam SM, Tian H, Shui G. Lipidomics, en route to accurate quantitation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:752-761. [PMID: 28216054 DOI: 10.1016/j.bbalip.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023]
Abstract
Accurate quantitation is prerequisite for the sustainable development of lipidomics via enabling its applications in various biological and biomedical settings. In this review, the technical considerations and limitations of existent lipidomics technologies, particularly in terms of accurate quantitation; as well as the potential sources of errors along a typical lipidomic workflow that could ultimately give rise to quantitative inaccuracies will be addressed. Furthermore, the pressing need to exercise stricter definitions of terms and protocol standardization pertaining to quantitative lipidomics will be critically discussed, as quantitative accuracy may substantially impact upon the persevering development of lipidomics in the long run. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - He Tian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; Lipidall Technologies Company Limited, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Astorquiza PL, Usorach J, Racagni G, Villasuso AL. Diacylglycerol pyrophosphate binds and inhibits the glyceraldehyde-3-phosphate dehydrogenase in barley aleurone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:88-95. [PMID: 26866974 DOI: 10.1016/j.plaphy.2016.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
The aleurona cell is a model that allows the study of the antagonistic effect of gibberellic acid (GA) and abscisic acid (ABA). Previous results of our laboratory demonstrated the involvement of phospholipids during the response to ABA and GA. ABA modulates the levels of diacylglycerol, phosphatidic acid and diacylglycerol pyrophosphate (DAG, PA, DGPP) through the activities of phosphatidate phosphatases, phospholipase D, diacylglycerol kinase and phosphatidate kinase (PAP, PLD, DGK and PAK). PA and DGPP are key phospholipids in the response to ABA, since both are capable of modifying the hydrolitic activity of the aleurona. Nevertheless, little is known about the mechanism of action of these phospholipids during the ABA signal. DGPP is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol. The ionization of the pyrophosphate group may be important to allow electrostatic interactions between DGPP and proteins. To understand how DGPP mediates cell functions in barley aleurone, we used a DGPP affinity membrane assay to isolate DGPP-binding proteins from Hordeum vulgare, followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was identified for being bound to DGPP. To validate our method, the relatively abundant GAPDH was characterized with respect to its lipid-binding properties, by fat western blot. GAPDH antibody interacts with proteins that only bind to DGPP and PA. We also observed that ABA treatment increased GAPDH abundance and enzyme activity. The presence of phospholipids during GAPDH reaction modulated the GAPDH activity in ABA treated aleurone. These data suggest that DGPP binds to GAPDH and this DGPP and GAPDH interaction provides new evidences in the study of DGPP-mediated ABA responses in barley aleurone.
Collapse
Affiliation(s)
- Paula Luján Astorquiza
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Javier Usorach
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Graciela Racagni
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Ana Laura Villasuso
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
14
|
Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. Role of phospholipid signalling in plant environmental responses. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 114:129-143. [PMID: 0 DOI: 10.1016/j.envexpbot.2014.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
15
|
Villasuso AL, Wilke N, Maggio B, Machado E. Zn(2+)-dependent surface behavior of diacylglycerol pyrophosphate and its mixtures with phosphatidic acid at different pHs. FRONTIERS IN PLANT SCIENCE 2014; 5:371. [PMID: 25120554 PMCID: PMC4114284 DOI: 10.3389/fpls.2014.00371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Diacylglycerol pyrophosphate (DGPP) is a minor lipid that attenuates the phosphatidic acid (PA) signal, and also DGPP itself would be a signaling lipid. Diacylglycerol pyrophosphate is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol that was shown to respond to changes of pH, thus affecting the surface organization of DGPP and their interaction with PA. In this work, we have investigated how the presence of Zn(2+) modulates the surface organization of DGPP and its interaction with PA at acidic and basic pHs. Both lipids formed expanded monolayers at pHs 5 and 8. At pH 5, monolayers formed by DGPP became stiffer when Zn(2+)was added to the subphase, while the surface potential decreased. At this pH, Zn(2+) induced a phase transition from an expanded to a condensed-phase state in monolayers formed by PA. Conversely, at pH 8 the effects induced by the presence of Zn(2+) on the surface behaviors of the pure lipids were smaller. Thus, the interaction of the bivalent cation with both lipids was modulated by pH and by the ionization state of the polar head groups. Mixed monolayers of PA and DGPP showed a non-ideal behavior and were not affected by the presence of Zn(2+) at pH 8. This could be explained considering that when mixed, the lipids formed a closely packed monolayer that could not be further modified by the cation. Our results indicate that DGPP and PA exhibit expanded- and condensed-phase states depending on pH, on the proportion of each lipid in the film and on the presence of Zn(2+). This may have implications for a possible role of DGPP as a signaling lipid molecule.
Collapse
Affiliation(s)
- Ana L. Villasuso
- Departamento de Biología Molecular, FCEFQN, Universidad Nacional de Río CuartoRío Cuarto, Argentina
| | - Natalia Wilke
- Facultad de Ciencias Químicas, Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Ciudad UniversitariaCórdoba, Argentina
| | - Bruno Maggio
- Facultad de Ciencias Químicas, Departamento de Química Biológica-Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Ciudad UniversitariaCórdoba, Argentina
| | - Estela Machado
- Departamento de Biología Molecular, FCEFQN, Universidad Nacional de Río CuartoRío Cuarto, Argentina
| |
Collapse
|
16
|
Sadat MA, Jeon J, Mir AA, Choi J, Choi J, Lee YH. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLoS One 2014; 9:e100726. [PMID: 24959955 PMCID: PMC4069076 DOI: 10.1371/journal.pone.0100726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis.
Collapse
Affiliation(s)
- Md. Abu Sadat
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Junhyun Jeon
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Albely Afifa Mir
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaehyuk Choi
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Abstract
Phosphatidic acid phosphatase (PAP; EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidic acid (PA) to produce diacylglycerol (DAG) and inorganic phosphate. In seed plants, PA plays pivotal roles both as a precursor to membrane lipids and as a signaling molecule. As more information on the roles of PAP in plants becomes available and the importance of PAP is revealed, protocols for assaying plant PAP activity are of interest to an increasing audience. This chapter describes procedures to assay plant PAP activity that are based on recent publications.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2012; 52:62-79. [PMID: 23089468 DOI: 10.1016/j.plipres.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
Abstract
Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
20
|
Strawn L, Babb A, Testerink C, Kooijman EE. The physical chemistry of the enigmatic phospholipid diacylglycerol pyrophosphate. FRONTIERS IN PLANT SCIENCE 2012; 3:40. [PMID: 22645584 PMCID: PMC3355802 DOI: 10.3389/fpls.2012.00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/18/2012] [Indexed: 05/29/2023]
Abstract
Phosphatidic acid (PA) is a lipid second messenger that is formed transiently in plants in response to different stress conditions, and plays a role in recruiting protein targets, ultimately enabling an adequate response. Intriguingly, this increase in PA concentration in plants is generally followed by an increase in the phospholipid diacylglycerolpyrophosphate (DGPP), via turnover of PA. Although DGPP has been shown to induce stress-related responses in plants, it is unclear to date what its molecular function is and how it exerts its effect. Here, we describe the physicochemical properties, i.e., effective molecular shape and charge, of DGPP. We find that unlike PA, which imparts a negative curvature stress to a (phospho)lipid bilayer, DGPP stabilizes the bilayer phase of phosphatidylethanolamine (PE), similar to the effect of phosphatidylcholine (PC). DGPP thus has zero curvature. The pKa(2) of the phosphomonoester of DGPP is 7.44 ± 0.02 in a PC bilayer, compared to a pKa(2) of 7.9 for PA. Replacement of half of the PC with PE decreases the pKa(2) of DGPP to 6.71 ± 0.02, similar to the behavior previously described for PA and summarized in the electrostatic-hydrogen bond switch model. Implications for the potential function of DGPP in biomembranes are discussed.
Collapse
Affiliation(s)
- Liza Strawn
- Biotechnology Program, Kent State UniversityKent, OH, USA
| | - Amy Babb
- Department of Chemistry, Kent State UniversityKent, OH, USA
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | | |
Collapse
|
21
|
Arisz SA, Munnik T. The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid. J Lipid Res 2011; 52:2012-20. [PMID: 21900174 DOI: 10.1194/jlr.m016873] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A₂ (PLA₂) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo ³²P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential ³²P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA₂-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA₂-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.
Collapse
Affiliation(s)
- Steven A Arisz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|