1
|
Fang X, Chai W, Li S, Zhang L, Yu H, Shen J, Xiao W, Liu A, Zhou B, Zhang X. HSP17.4 mediates salicylic acid and jasmonic acid pathways in the regulation of resistance to Colletotrichum gloeosporioides in strawberry. MOLECULAR PLANT PATHOLOGY 2021; 22:817-828. [PMID: 33951267 PMCID: PMC8232031 DOI: 10.1111/mpp.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 05/04/2023]
Abstract
In this study, we used virus-mediated gene silencing technology and found that the HSP17.4 gene-silenced cultivar Sweet Charlie plants were more susceptible to Colletotrichum gloeosporioides than the wild-type Sweet Charlie, and the level of infection was even higher than that of the susceptible cultivar Benihopp. The results of differential quantitative proteomics showed that after infection with the pathogen, the expression of the downstream response genes NPR1, TGA, and PR-1 of the salicylic acid (SA) signalling pathway was fully up-regulated in the wild-type Sweet Charlie, and the expression of the core transcription factor MYC2 of the jasmonic acid (JA) pathway was significantly down-regulated. The expression of the proteins encoded by these genes did not change significantly in the HSP17.4-silenced Sweet Charlie, indicating that the expression of HSP17.4 activated the up-regulation of downstream signals of SA and inhibited the JA signal pathway. The experiments that used SA, methyl jasmonate, and their inhibitors to treat plants provide additional evidence that the antagonism between SA and JA regulates the resistance of strawberry plants to C. gloeosporioides.
Collapse
Affiliation(s)
- Xianping Fang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Weiguo Chai
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Shuigen Li
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Liqing Zhang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Hong Yu
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | | | - Wenfei Xiao
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Aichun Liu
- Institute of BiotechnologyHangzhou Academy of Agricultural SciencesHangzhouChina
| | - Boqiang Zhou
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| | - Xueying Zhang
- Institute of Forestry and PomologyShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
2
|
Formela-Luboińska M, Chadzinikolau T, Drzewiecka K, Jeleń H, Bocianowski J, Kęsy J, Labudda M, Jeandet P, Morkunas I. The Role of Sugars in the Regulation of the Level of Endogenous Signaling Molecules during Defense Response of Yellow Lupine to Fusarium oxysporum. Int J Mol Sci 2020; 21:E4133. [PMID: 32531938 PMCID: PMC7312090 DOI: 10.3390/ijms21114133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
Soluble sugars such as sucrose, glucose and fructose in plant host cells not only play the role as donors of carbon skeletons, but they may also induce metabolic signals influencing the expression of defense genes. These metabolites function in a complex network with many bioactive molecules, which independently or in dialogue, induce successive defense mechanisms. The aim of this study was to determine the involvement of sucrose and monosaccharides as signaling molecules in the regulation of the levels of phytohormones and hydrogen peroxide participating in the defense responses of Lupinus luteus L. to a hemibiotrophic fungus Fusarium oxysporum Schlecht f. sp. lupini. A positive correlation between the level of sugars and postinfection accumulation of salicylic acid and its glucoside, as well as abscisic acid, was noted. The stimulatory effect of sugars on the production of ethylene was also reported. The protective role of soluble sugars in embryo axes of yellow lupine was seen in the limited development of infection and fusariosis. These results provide evidence for the enhanced generation of signaling molecules both by sugar alone as well as during the crosstalk between sugars and infection caused by F. oxysporum. However, a considerable postinfection increase in the level of these signaling molecules under the influence of sugars was recorded. The duration of the postinfection generation of these molecules in yellow lupine was also variable.
Collapse
Affiliation(s)
- Magda Formela-Luboińska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| | - Tamara Chadzinikolau
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Henryk Jeleń
- Institute of Plant Products Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań;
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, UPRES EA 4707, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (M.F.-L.); (T.C.)
| |
Collapse
|
3
|
He C, Duan K, Zhang L, Zhang L, Song L, Yang J, Zou X, Wang Y, Gao Q. Fast Quenching the Burst of Host Salicylic Acid Is Common in Early Strawberry/Colletotrichum fructicola Interaction. PHYTOPATHOLOGY 2019; 109:531-541. [PMID: 30130146 DOI: 10.1094/phyto-02-18-0043-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fungus Colletotrichum fructicola (a species of C. gloeosporioides complex) causes devastating anthracnose in strawberry. Like other species of the genus Colletotrichum, it uses a composite strategy including both the biotrophic and necrotrophic processes for pathogenesis. Host-derived hormones are central regulators of immunity, among which salicylic acid (SA) is the core defense one against biotrophic and hemibiotrophic pathogens. However, the manner and timing of pathogen manipulation of SA are largely elusive in strawberry. To achieve better understanding of the early challenges that SA-mediated defense experiences during strawberry/C. fructicola interaction, dynamic changes of SA levels were followed through the high-performance liquid chromatography method. A very early burst of free SA at 1 h postinoculation (hpi) followed by a fast quenching during the next 12 h was noticed, although rhythm variations were present in two hosts. Transcriptional characterization of genes related to SA pathway in two varieties on C. fructicola inoculation revealed that these genes were differentially expressed, although they were all induced at different time points. At the same time, three types of genes encoding homologous effectors interfering with SA accumulation were found to be first inhibited but sequentially activated during the first 24 hpi. Furthermore, subcellular localization analysis suggests that CfShy1 is a weapon of C. fructicola for strawberry invasion. Based on these results, we propose that the infection strategy that C. fructicola utilizes on strawberry is specialized, which is implemented through the optimized expression of a specific set of effector genes. Transcriptional characterization of host genes supports that de novo SA biosynthesis and the free SA release from methyl salicylate might contribute equally to the intricate control of SA homeostasis in strawberry. C. fructicola manipulation of SA-dependent resistance in strawberry might be closely related to multihormonal interplay among SA, jasmonic acid, abscisic acid, and cytokinin.
Collapse
Affiliation(s)
- Chengyong He
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- 2 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; and
| | - Ke Duan
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- 2 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; and
| | - Liqing Zhang
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Ling Zhang
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- 3 College of Horticultural Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Song
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- 2 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; and
| | - Jing Yang
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Xiaohua Zou
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Yanxiu Wang
- 3 College of Horticultural Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Qinghua Gao
- 1 Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| |
Collapse
|
4
|
Seiml-Buchinger VV, Zinovieva SV, Udalova ZV, Matveeva EM. Jasmonic acid modulates Meloidogyne incognita – tomato plant interactions. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Molecular aspects of the responses of tomato (Solanum lycopersicum) plants to invasion by Meloidogyne incognita, as well as the nematode reproduction capacity, were investigated and the role of jasmonic acid (JA) in these interactions was evaluated. Real-time quantitative PCR analysis showed that resistant and susceptible plants had similar levels of Mi1.2, PR1 and PR6 gene expression in stress-free conditions. During nematode invasion resistant plants showed up-regulation of Mi1.2, PR1 and PR6 genes and no reproduction of M. incognita. By contrast, susceptible plants showed no response in gene expression and the nematode had a high level of reproduction. Treatment of tomato plants with JA modulated Mi1.2 and PR6 gene expression that was accompanied by a suppression of the M. incognita reproduction on the roots of JA-treated susceptible plants.
Collapse
Affiliation(s)
- Victoria V. Seiml-Buchinger
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| | - Svetlana V. Zinovieva
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Zhanna V. Udalova
- 2Center of Parasitology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii Pr., 119071 Moscow, Russian Federation
| | - Elizaveta M. Matveeva
- 1Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Russian Federation
| |
Collapse
|
5
|
Shu LJ, Liao JY, Lin NC, Chung CL. Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLoS One 2018; 13:e0205790. [PMID: 30312354 PMCID: PMC6185849 DOI: 10.1371/journal.pone.0205790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Hormonal modulation plays a central role in triggering various resistant responses to biotic and abiotic stresses in plants. In cultivated strawberry (Fragaria x ananassa), the salicylic acid (SA)-dependent defense pathway has been associated with resistance to Colletotrichum spp. and the other pathogens. To better understand the SA-mediated defense mechanisms in strawberry, we analyzed two strawberry cultivars treated with SA for their resistance to anthracnose and gene expression profiles at 6, 12, 24, and 48 hr post-treatment. Strawberry genes related to SA biosynthesis, perception, and signaling were identified from SA-responsive transcriptomes of the two cultivars, and the induction of 17 candidate genes upon SA treatment was confirmed by qRT-PCR. Given the pivotal role of the non-expressor of pathogenesis-related (NPR) family in controlling the SA-mediated defense signaling pathway, we then analyzed NPR orthologous genes in strawberry. From the expression profile, FaNPRL-1 [ortholog of FvNPRL-1 (gene20070 in F. vesca)] was identified as an NPR-like gene significantly induced after SA treatment in both cultivars. With a conserved BTB/POZ domain, ankyrin repeat domain, and nuclear localization signal, FvNPRL-1 was found phylogenetically closer to NPR3/NPR4 than NPR1 in Arabidopsis. Ectopic expression of FvNPRL-1 in the Arabidopsis thaliana wild type suppressed the SA-mediated PR1 expression and the resistance to Pseudomonas syringae pv. tomato DC3000. Transient expression of FvNPRL-1 fused with green fluorescent protein in Arabidopsis protoplasts showed that SA affected nuclear translocation of FvNPRL-1. FvNPRL-1 likely functions similar to Arabidopsis NPR3/NPR4 as a negative regulator of the SA-mediated defense.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Jui-Yu Liao
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, Churngchow N. Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora. Int J Mol Sci 2018; 19:E1883. [PMID: 29949940 PMCID: PMC6073688 DOI: 10.3390/ijms19071883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Induced resistance by elicitors is considered to be an eco-friendly strategy to stimulate plant defense against pathogen attack. In this study, we elucidated the effect of salicylic acid (SA) on induced resistance in rubber tree against Phytophthora palmivora and evaluated the possible defense mechanisms that were involved. For SA pretreatment, rubber tree exhibited a significant reduction in disease severity by 41%. Consistent with the occurrence of induced resistance, the pronounced increase in H₂O₂ level, catalase (CAT) and peroxidase (POD) activities were observed. For defense reactions, exogenous SA promoted the increases of H₂O₂, CAT, POD and phenylalanine ammonia lyase (PAL) activities, including lignin, endogenous SA and scopoletin (Scp) contents. However, SA had different effects on the activity of each CAT isoform in the particular rubber tree organs. Besides, three partial cDNAs encoding CAT (HbCAT1, HbCAT2 and HbCAT3) and a partial cDNA encoding PAL (HbPAL) were isolated from rubber tree. Moreover, the expressions of HbCAT1, HbPAL and HbPR1 were induced by SA. Our findings suggested that, upon SA priming, the elevated H₂O₂, CAT, POD and PAL activities, lignin, endogenous SA and Scp contents, including the up-regulated HbCAT1, HbPAL and HbPR1 expressions could potentiate the resistance in rubber tree against P. palmivora.
Collapse
Affiliation(s)
- Nuramalee Deenamo
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Arnannit Kuyyogsuy
- Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand.
| | - Khemmikar Khompatara
- Office of Agricultural Research and Development Region 8, Department of Agriculture, Ministry of Agriculture and Cooperatives, Hat-Yai, Songkhla 90110, Thailand.
| | - Thitikorn Chanwun
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya Nakhon Si Thammarat Saiyai Campus, Thungsong, Nakhon Si Thammarat 80110, Thailand.
| | - Kitiya Ekchaweng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
7
|
Tomas-Grau RH, Requena-Serra FJ, Hael-Conrad V, Martínez-Zamora MG, Guerrero-Molina MF, Díaz-Ricci JC. Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry. PLANT CELL REPORTS 2018; 37:239-250. [PMID: 29032427 DOI: 10.1007/s00299-017-2226-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Genes associated with plant mechanical stimulation were found in strawberry genome. A soft mechanical stimulation (SMS) induces molecular and biochemical changes in strawberry plants, conferring protection against Botrytis cinerea. Plants have the capacity to induce a defense response after exposure to abiotic stresses acquiring resistance towards pathogens. It was reported that when leaves of Arabidopsis thaliana were wounded or treated with a soft mechanical stimulation (SMS), they could resist much better the attack of the fungal pathogen Botrytis cinerea, and this effect was accompanied by an oxidative burst and the expression of touch-inducible genes (TCH). However, no further work was carried out to better characterize the induced defense response. In this paper, we report that TCH genes were identified for first time in the genomes of the strawberry species Fragaria ananassa (e.g. FaTCH2, FaTCH3, FaTCH4 and FaCML39) and Fragaria vesca (e.g. FvTCH2, FvTCH3, FvTCH4 and FvCML39). Phylogenetic studies revealed that F. ananassa TCH genes exhibited high similarity with the orthologous of F. vesca and lower with A. thaliana ones. We also present evidence that after SMS treatment on strawberry leaves, plants activate a rapid oxidative burst, callose deposition, and the up-regulation of TCH genes as well as plant defense genes such as FaPR1, FaCHI2-2, FaCAT, FaACS1 and FaOGBG-5. The latter represents the first report showing that TCH- and defense-induced genes participate in SMS-induced resistance in plants, bringing a rational explanation why plants exposed to a SMS treatment acquired an enhance resistance toward B. cinerea.
Collapse
Affiliation(s)
- Rodrigo Hernán Tomas-Grau
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Fernando José Requena-Serra
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Verónica Hael-Conrad
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Martín Gustavo Martínez-Zamora
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - María Fernanda Guerrero-Molina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
8
|
Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto PDLÁ, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:46-60. [PMID: 28635519 DOI: 10.1094/mpmi-05-17-0121-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Collapse
Affiliation(s)
- Verónica Hael-Conrad
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Silvia Marisa Perato
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Marta Eugenia Arias
- 2 Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina, and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca. Av. Belgrano 300, 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina; and
| | - Martín Gustavo Martínez-Zamora
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Pía de Los Ángeles Di Peto
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gustavo Gabriel Martos
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Nadia Regina Chalfoun
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| |
Collapse
|
9
|
Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. Evolution of Hormone Signaling Networks in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:401-425. [PMID: 28645231 DOI: 10.1146/annurev-phyto-080516-035544] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.
Collapse
Affiliation(s)
- Matthias L Berens
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Akira Mine
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
10
|
Diniz I, Figueiredo A, Loureiro A, Batista D, Azinheira H, Várzea V, Pereira AP, Gichuru E, Moncada P, Guerra-Guimarães L, Oliveira H, Silva MDC. A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS One 2017; 12:e0178159. [PMID: 28542545 PMCID: PMC5438148 DOI: 10.1371/journal.pone.0178159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex mechanisms of plant signaling and defense.
Collapse
Affiliation(s)
- Inês Diniz
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Andreia Figueiredo
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Loureiro
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- Computational Biology and Population Genomics Group—Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Vítor Várzea
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Ana Paula Pereira
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
| | - Elijah Gichuru
- Coffee Research Institute, Kenya Agricultural and Livestock Research Organization (KALRO), Ruiru, Kenya
| | - Pilar Moncada
- Centro Nacional de Investigaciones de Café (Cenicafé), Manizales, Colombia
| | - Leonor Guerra-Guimarães
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Helena Oliveira
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro (CIFC), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agricultural and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Henry PM, Gebben SJ, Tech JJ, Yip JL, Leveau JHJ. Inhibition of Xanthomonas fragariae, Causative Agent of Angular Leaf Spot of Strawberry, through Iron Deprivation. Front Microbiol 2016; 7:1589. [PMID: 27790193 PMCID: PMC5062028 DOI: 10.3389/fmicb.2016.01589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae's ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of 'nutritional immunity,' the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Johan H. J. Leveau
- Department of Plant Pathology, University of California at Davis, DavisCA, USA
| |
Collapse
|
12
|
Huang Z, Li J, Zhang J, Gao Y, Hui G. Physicochemical properties enhancement of Chinese kiwi fruit (Actinidia chinensis Planch) via chitosan coating enriched with salicylic acid treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9385-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Amil-Ruiz F, Garrido-Gala J, Gadea J, Blanco-Portales R, Muñoz-Mérida A, Trelles O, de los Santos B, Arroyo FT, Aguado-Puig A, Romero F, Mercado JÁ, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:1036. [PMID: 27471515 PMCID: PMC4945649 DOI: 10.3389/fpls.2016.01036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/01/2016] [Indexed: 05/04/2023]
Abstract
Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.
Collapse
Affiliation(s)
- Francisco Amil-Ruiz
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Garrido-Gala
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - Antonio Muñoz-Mérida
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Oswaldo Trelles
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Berta de los Santos
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Francisco T. Arroyo
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Ana Aguado-Puig
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Fernando Romero
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - José-Ángel Mercado
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| |
Collapse
|
14
|
Zhang QY, Zhang LQ, Song LL, Duan K, Li N, Wang YX, Gao QH. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. HORTICULTURE RESEARCH 2016; 3:16007. [PMID: 27004126 PMCID: PMC4793257 DOI: 10.1038/hortres.2016.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 05/14/2023]
Abstract
The disease symptoms recognized as 'Anthracnose' are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry-Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Li-Qing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Li-Li Song
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- College of Agricultural Sciences, Gansu Agricultural University, Lanzhou 730000, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Na Li
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Yan-Xiu Wang
- College of Agricultural Sciences, Gansu Agricultural University, Lanzhou 730000, China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- ()
| |
Collapse
|
15
|
Martos GG, Terán MDM, Díaz Ricci JC. The defence elicitor AsES causes a rapid and transient membrane depolarization, a triphasic oxidative burst and the accumulation of nitric oxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:443-450. [PMID: 26562675 DOI: 10.1016/j.plaphy.2015.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The newly characterized elicitor AsES obtained from Acremonium strictum induces a strong defence response in strawberry plants and confers plants resistance against the fungal pathogen Colletotricum acutatum the casual agent of anthracnose disease. Previous studies showed that AsES causes the accumulation of reactive oxygen species (ROS) that peaked 4 h post treatment (hpt), but due to the experimental approach used it was not clear whether the accumulation of ROS observed was intracellular or extracellular or took place as a single peak. By using a different experimental setup, a more complex early events associated to the activation of the innate immunity were observed. In this paper we report that strawberry plant cells treated with AsES exhibits a triphasic production of H2O2 and a rapid intracellular accumulation of NO. The first phase consists in a progressive extracellular accumulation of H2O2 that starts immediately after the treatment with AsES and is preceded by a rapid and transient cell membrane depolarization. During this phase takes place also a rapid intracellular accumulation of NO. Microscopic observations of mesophyll cells treated with AsES reveals that NO accumulates at the chloroplast. After the first extracellular H2O2 production phase, two intracellular H2O2 accumulation events occur, the first 2 hpt, and the second 7 hpt. Cells treated with AsES also show a transient increase of ion leakage, and a progressive alkalinization of the extracellular medium.
Collapse
Affiliation(s)
- Gustavo Gabriel Martos
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Conicet-Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - María Del Milagro Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Conicet-Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Juan Carlos Díaz Ricci
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Conicet-Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI Tucumán, Argentina.
| |
Collapse
|
16
|
Effect of calcium chloride in combination with salicylic acid on post-harvest freshness of apples. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0145-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Tayeh C, Randoux B, Bourdon N, Reignault P. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1620-1629. [PMID: 23880093 DOI: 10.1016/j.jplph.2013.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.
Collapse
Affiliation(s)
- Christine Tayeh
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, C.S. 80699, F-62228 Calais cedex, France
| | | | | | | |
Collapse
|
18
|
Amil-Ruiz F, Garrido-Gala J, Blanco-Portales R, Folta KM, Muñoz-Blanco J, Caballero JL. Identification and validation of reference genes for transcript normalization in strawberry (Fragaria × ananassa) defense responses. PLoS One 2013; 8:e70603. [PMID: 23940602 PMCID: PMC3734262 DOI: 10.1371/journal.pone.0070603] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
Strawberry (Fragaria spp) is an emerging model for the development of basic genomics and recombinant DNA studies among rosaceous crops. Functional genomic and molecular studies involve relative quantification of gene expression under experimental conditions of interest. Accuracy and reliability are dependent upon the choice of an optimal reference control transcript. There is no information available on validated endogenous reference genes for use in studies testing strawberry-pathogen interactions. Thirteen potential pre-selected strawberry reference genes were tested against different tissues, strawberry cultivars, biotic stresses, ripening and senescent conditions, and SA/JA treatments. Evaluation of reference candidate's suitability was analyzed by five different methodologies, and information was merged to identify best reference transcripts. A combination of all five methods was used for selective classification of reference genes. The resulting superior reference genes, FaRIB413, FaACTIN, FaEF1α and FaGAPDH2 are strongly recommended as control genes for relative quantification of gene expression in strawberry. This report constitutes the first systematic study to identify and validate optimal reference genes for accurate normalization of gene expression in strawberry plant defense response studies.
Collapse
Affiliation(s)
- Francisco Amil-Ruiz
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario-CEIA3, Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - José Garrido-Gala
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario-CEIA3, Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario-CEIA3, Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Kevin M. Folta
- Horticultural Sciences Department and The Graduate Program for Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario-CEIA3, Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario-CEIA3, Universidad de Córdoba, Córdoba, Andalucía, Spain
| |
Collapse
|
19
|
Li J, Zhang QY, Gao ZH, Wang F, Duan K, Ye ZW, Gao QH. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Gene 2013; 527:215-27. [PMID: 23806759 DOI: 10.1016/j.gene.2013.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
Abstract
Anthracnose caused by Colletotrichum spp. is one of the most destructive diseases of cultivated strawberry (Fragaria×ananassa Duchesne) worldwide. The correlation between NBS-LRR genes, the largest class of known resistance genes, and strawberry anthracnose resistance has been elusive. BLAST search in NCBI identified 94 FvNBSs in the diploid genome of strawberry Fragaria vesca, with 67 of the TIR-NBS-LRR type. At least 36 FvNBSs were expressed, with 25% being non-coding genes. Two F. vesca ecotypes, HLJ and YW, showed great variations in both morphological and physiological responses upon C. gloeosporioides infection. qRT-PCR revealed that 5 of the 12 leaf-expressed FvNBSs displaying opposite transcription responses to C. gloeosporioides infection in two ecotypes. These results showed that the transcriptional responses of several FvNBSs were involved in the ecotype-specific responses to C. gloeosporioides in F. vesca. These FvNBSs hold potential in characterizing molecular components and developing novel markers associated with anthracnose resistance in strawberry.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Chalfoun NR, Grellet-Bournonville CF, Martínez-Zamora MG, Díaz-Perales A, Castagnaro AP, Díaz-Ricci JC. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. J Biol Chem 2013; 288:14098-14113. [PMID: 23530047 DOI: 10.1074/jbc.m112.429423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.
Collapse
Affiliation(s)
- Nadia R Chalfoun
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Carlos F Grellet-Bournonville
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Martín G Martínez-Zamora
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Araceli Díaz-Perales
- Unidad de Química y Bioquímica, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Atilio P Castagnaro
- Sección Biotecnología, Estación Experimental Agroindustrial Obispo Colombres, T4101XAC Las Talitas, Tucumán, Argentina
| | - Juan C Díaz-Ricci
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina.
| |
Collapse
|
21
|
Mamaní A, Filippone MP, Grellet C, Welin B, Castagnaro AP, Ricci JCD. Pathogen-induced accumulation of an ellagitannin elicits plant defense response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1430-1439. [PMID: 22934564 DOI: 10.1094/mpmi-12-11-0306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In an incompatible interaction between Colletotrichum fragariae and strawberry plants, the accumulation of phenolic compounds in plant leaves was observed. A particularly abundant penta-esterified ellagitannin that accumulated in response to pathogen attack was identified as 1-0-galloyl-2,3;4,6-bis-hexahydroxydiphenoyl-β-d-glucopyranose (HeT) by mass spectroscopy and nuclear magnetic resonance. Foliar application of purified HeT prior to inoculation with a virulent pathogen was shown to increase resistance toward C. acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants. The induced resistance in strawberry was associated with a rapid oxidative burst, callose deposition, a transient increase of salicylic acid in phloem, and induction of gene expression responsive to salicylic acid. Results obtained suggested that HeT could be a common plant defense response molecule capable of inducing pathogen resistance in different plant species.
Collapse
Affiliation(s)
- Alicia Mamaní
- Universidad Nacional de Tucuman, San Miguel de Tucuman, Argentina
| | | | | | | | | | | |
Collapse
|