1
|
Zhang M, Zhang J, Xiao Q, Li Y, Jiang S. Reduction of flavonoid content in honeysuckle via Erysiphe lonicerae-mediated inhibition of three essential genes in flavonoid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1381368. [PMID: 38689843 PMCID: PMC11059088 DOI: 10.3389/fpls.2024.1381368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Honeysuckle, valued for its wide-ranging uses in medicine, cuisine, and aesthetics, faces a significant challenge in cultivation due to powdery mildew, primarily caused by the Erysiphe lonicerae pathogen. The interaction between honeysuckle and E. lonicerae, especially concerning disease progression, remains insufficiently understood. Our study, conducted in three different locations, found that honeysuckle naturally infected with E. lonicerae showed notable decreases in total flavonoid content, with reductions of 34.7%, 53.5%, and 53.8% observed in each respective site. Controlled experiments supported these findings, indicating that artificial inoculation with E. lonicerae led to a 20.9% reduction in flavonoid levels over 21 days, worsening to a 54.8% decrease by day 42. Additionally, there was a significant drop in the plant's total antioxidant capacity, reaching an 81.7% reduction 56 days after inoculation. Metabolomic analysis also revealed substantial reductions in essential medicinal components such as chlorogenic acid, luteolin, quercetin, isoquercetin, and rutin. Investigating gene expression revealed a marked decrease in the relative expression of the LjPAL1 gene, starting as early as day 7 post-inoculation and falling to a minimal level (fold change = 0.29) by day 35. This trend was mirrored by a consistent reduction in phenylalanine ammonia-lyase activity in honeysuckle through the entire process, which decreased by 72.3% by day 56. Further analysis showed significant and sustained repression of downstream genes LjFNHO1 and LjFNGT1, closely linked to LjPAL1. We identified the mechanism by which E. lonicerae inhibits this pathway and suggest that E. lonicerae may strategically weaken the honeysuckle's disease resistance by targeting key biosynthetic pathways, thereby facilitating further pathogen invasion. Based on our findings, we recommend two primary strategies: first, monitoring medicinal constituent levels in honeysuckle from E. lonicerae-affected areas to ensure its therapeutic effectiveness; and second, emphasizing early prevention and control measures against honeysuckle powdery mildew due to the persistent decline in crucial active compounds.
Collapse
Affiliation(s)
- Mian Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yulong Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shanshan Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Birchfield AS, McIntosh CA. Expression and Purification of Cp3GT: Structural Analysis and Modeling of a Key Plant Flavonol-3-O Glucosyltransferase from Citrus paradisi. BIOTECH 2024; 13:4. [PMID: 38390907 PMCID: PMC10885057 DOI: 10.3390/biotech13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Glycosyltransferases (GTs) are pivotal enzymes in the biosynthesis of various biological molecules. This study focuses on the scale-up, expression, and purification of a plant flavonol-specific 3-O glucosyltransferase (Cp3GT), a key enzyme from Citrus paradisi, for structural analysis and modeling. The challenges associated with recombinant protein production in Pichia pastoris, such as proteolytic degradation, were addressed through the optimization of culture conditions and purification processes. The purification strategy employed affinity, anion exchange, and size exclusion chromatography, leading to greater than 95% homogeneity for Cp3GT. In silico modeling, using D-I-TASSER and COFACTOR integrated with the AlphaFold2 pipeline, provided insights into the structural dynamics of Cp3GT and its ligand binding sites, offering predictions for enzyme-substrate interactions. These models were compared to experimentally derived structures, enhancing understanding of the enzyme's functional mechanisms. The findings present a comprehensive approach to produce a highly purified Cp3GT which is suitable for crystallographic studies and to shed light on the structural basis of flavonol specificity in plant GTs. The significant implications of these results for synthetic biology and enzyme engineering in pharmaceutical applications are also considered.
Collapse
Affiliation(s)
- Aaron S Birchfield
- Department of Biological Sciences, East Tennessee State University, P.O. Box 70703, Johnson City, TN 37614, USA
| | - Cecilia A McIntosh
- Department of Biological Sciences, East Tennessee State University, P.O. Box 70703, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Ortiz A, Sansinenea E. Phenylpropanoid Derivatives and Their Role in Plants' Health and as antimicrobials. Curr Microbiol 2023; 80:380. [PMID: 37864088 DOI: 10.1007/s00284-023-03502-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Phenylpropanoids belong to a wide group of compounds commonly secreted by plants and involved in different roles related with plant growth and development and the defense against plant pathogens. Some key intermediates from shikimate pathway are used to synthesize these compounds. In this way, by the phenylpropanoid pathway several building blocks are achieved to obtain flavonoids, isoflavonoids, coumarins, monolignols, phenylpropenes, phenolic acids, stilbenes and stilbenoids, and lignin, suberin and sporopollenin for plant-microbe interactions, structural support and mechanical strength, organ pigmentation, UV protection and acting against pathogens. Some reviews have revised phenylpropanoid biosynthesis and regulation of the biosynthetic pathways. In this review, the most important chemical structures about phenylpropanoid derivatives are summarized grouping them in different sections according to their structure. We have put special attention on their different roles in plants especially in plant health, growth and development and plant-environment interactions. Their interaction with microorganisms is discussed including their role as antimicrobials. We summarize all new findings about new developed structures and their involvement in plants health.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, Mexico.
| |
Collapse
|
4
|
Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238371. [PMID: 36500459 PMCID: PMC9735708 DOI: 10.3390/molecules27238371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Phenylpropanoids and flavonoids are specialized metabolites frequently reported as involved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitutive and/or induced in response to external stimuli. They may participate in plant signaling driving plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic weapon against microbial or insect targets. Their protective action is described as the combinatory effect of their localization during the host's interaction with aggressors, their sustained availability, and the predominance of specific compounds or synergy with others. Their biosynthesis and regulation are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of action on microorganisms and insects probably arises from an interference with important cellular machineries and structures, yet this is not fully understood for all type of pests and pathogens. We present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids with the objective of paving the way for plant breeders looking for natural sources of resistance to improve plant varieties. Examples are provided for all types of microorganisms and insects that are targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human health were explored.
Collapse
|
5
|
Liu X, Yuan X, Zhang Z, Wang Y, Ma F, Li C. Dopamine Enhances the Resistance of Apple to Valsa mali Infection. PHYTOPATHOLOGY 2022; 112:1141-1151. [PMID: 34713719 DOI: 10.1094/phyto-08-21-0328-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apple Valsa canker is considered one of the most serious apple diseases. Dopamine is a catecholamine with key physiological functions in plants. Tyrosine decarboxylase (TYDC) is not only involved in the synthesis of dopamine in plants but may also play an important role in the resistance of plants to pathogen infection. In this study, we show that 100-μM exogenous dopamine application and Malus domestica TYDC (MdTYDC) overexpression (or overexpressing, OE) enhances the resistance of apple to Valsa mali infection, likely because the increased dopamine content reduces the accumulation of H2O2 and increases the accumulation of phenolic compounds and salicylic acid (SA) in dopamine-treated and OE apple plants. The activity of chitinase and β-1, 3-glucanase and the expression of SA-related genes were induced more strongly by V. mali in dopamine-treated and OE apples. The dopamine content was significantly higher in dopamine-treated and OE apples than in their respective controls under both normal and inoculated conditions (P < 0.05). Overall, these findings indicate that the application of exogenous dopamine and the OE of MdTYDC may enhance the resistance of apples to V. mali infection by altering the dopamine content, which improves antioxidant capacity, promotes the accumulation of phenolic compounds and SA, and enhances the activity of disease resistance-related proteins.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Raletsena MV, Mdlalose S, Bodede OS, Assress HA, Woldesemayat AA, Modise DM. 1H-NMR and LC-MS Based Metabolomics Analysis of Potato ( Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules 2022; 27:1187. [PMID: 35208975 PMCID: PMC8877823 DOI: 10.3390/molecules27041187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
1H NMR and LC-MS, commonly used metabolomics analytical platforms, were used to annotate the metabolites found in potato (Solanum tuberosum L.) irrigated with four different treatments based on FA to AMD ratios, namely: control (0% AMD; tap water), 1:1 (50% AMD), 3:1 (75% AMD is 75% FA: AMD), and 100% AMD (untreated). The effects of stress on plants were illustrated by the primary metabolite shifts in the region from δH 0.0 to δH 4.0 and secondary metabolites peaks were prominent in the region ranging from δH 4.5 to δH 8.0. The 1:3 irrigation treatment enabled, in two potato cultivars, the production of significantly high concentrations of secondary metabolites due to the 75% FA: AMD content in the irrigation mixture, which induced stress. The findings suggested that 1:1 irrigation treatment induced production of lower amounts of secondary metabolites in all crops compared to crops irrigated with untreated acid mine drainage treatment and with other FA-treated AMD solutions.
Collapse
Affiliation(s)
- Maropeng V. Raletsena
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Samukelisiwe Mdlalose
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Olusola S. Bodede
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Hailemariam A. Assress
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Adugna A. Woldesemayat
- Genomics and Bioinformatics Research Unit, Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - David M. Modise
- Food Security and Safety (FSS), Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mahikeng 2735, South Africa;
| |
Collapse
|
7
|
Dufková H, Berka M, Greplová M, Shejbalová Š, Hampejsová R, Luklová M, Domkářová J, Novák J, Kopačka V, Brzobohatý B, Černý M. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010061. [PMID: 35009065 PMCID: PMC8747139 DOI: 10.3390/plants11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 05/08/2023]
Abstract
Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.
Collapse
Affiliation(s)
- Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Marie Greplová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Šarlota Shejbalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Romana Hampejsová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Jaroslava Domkářová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | | | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
- Correspondence: ; Tel.: +42-0-545-133-37
| |
Collapse
|
8
|
Zhang H, Huang Q, Yi L, Song X, Li L, Deng G, Liang J, Chen F, Yu M, Long H. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:698-712. [PMID: 33974322 DOI: 10.1111/tpj.15316] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.
Collapse
Affiliation(s)
- Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiulan Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Sichuan Tea, Yibin University, Yibin, Sichuan, 644000, China
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling Yi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaona Song
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Lin Li
- Zunyi Medical University, Zunyi, 563000, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Fang Chen
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
9
|
Gorzolka K, Perino EHB, Lederer S, Smolka U, Rosahl S. Lysophosphatidylcholine 17:1 from the Leaf Surface of the Wild Potato Species Solanum bulbocastanum Inhibits Phytophthora infestans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5607-5617. [PMID: 33988025 DOI: 10.1021/acs.jafc.0c07199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Late blight, caused by the oomycete Phytophthora infestans, is economically the most important foliar disease of potato. To assess the importance of the leaf surface, as the site of the first encounter of pathogen and host, we performed untargeted profiling by liquid chromatography-mass spectrometry of leaf surface metabolites of the susceptible cultivated potato Solanum tuberosum and the resistant wild potato species Solanum bulbocastanum. Hydroxycinnamic acid amides, typical phytoalexins of potato, were abundant on the surface of S. tuberosum, but not on S. bulbocastanum. One of the metabolites accumulating on the surface of the wild potato was identified as lysophosphatidylcholine carrying heptadecenoic acid, LPC17:1. In vitro assays revealed that both spore germination and mycelial growth of P. infestans were efficiently inhibited by LPC17:1, suggesting that leaf surface metabolites from wild potato species could contribute to early defense responses against P. infestans.
Collapse
Affiliation(s)
- Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Bernburger Str. 55, Köthen D-06366, Germany
| | - Sarah Lederer
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
- Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, Bernburger Str. 55, Köthen D-06366, Germany
| |
Collapse
|
10
|
Massana-Codina J, Schnee S, Allard PM, Rutz A, Boccard J, Michellod E, Cléroux M, Schürch S, Gindro K, Wolfender JL. Insights on the Structural and Metabolic Resistance of Potato ( Solanum tuberosum) Cultivars to Tuber Black Dot ( Colletotrichum coccodes). FRONTIERS IN PLANT SCIENCE 2020; 11:1287. [PMID: 32973846 PMCID: PMC7468465 DOI: 10.3389/fpls.2020.01287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/03/2023]
Abstract
Black dot is a blemish disease of potato tubers caused by the phytopathogenic fungus Colletotrichum coccodes. Qualitative resistance (monogenic) that leads to the hypersensitive response has not been reported against black dot, but commercial potato cultivars show different susceptibility levels to the disease, indicating that quantitative resistance (polygenic) mechanisms against this pathogen exist. Cytological studies are essential to decipher pathogen colonization of the plant tissue, and untargeted metabolomics has been shown effective in highlighting resistance-related metabolites in quantitative resistance. In this study, we used five commercial potato cultivars with different susceptibility levels to black dot, and studied the structural and biochemical aspects that correlate with resistance to black dot using cytological and untargeted metabolomics methods. The cytological approach using semithin sections of potato tuber periderm revealed that C. coccodes colonizes the tuber periderm, but does not penetrate in cortical cells. Furthermore, skin thickness did not correlate with disease susceptibility, indicating that other factors influence quantitative resistance to black dot. Furthermore, suberin amounts did not correlate with black dot severity, and suberin composition was similar between the five potato cultivars studied. On the other hand, the untargeted metabolomics approach allowed highlighting biomarkers of infection, as well as constitutive and induced resistance-related metabolites. Hydroxycinnamic acids, hydroxycinnamic acid amides and steroidal saponins were found to be biomarkers of resistance under control conditions, while hydroxycoumarins were found to be specifically induced in the resistant cultivars. Notably, some of these biomarkers showed antifungal activity in vitro against C. coccodes. Altogether, our results show that quantitative resistance of potatoes to black dot involves structural and biochemical mechanisms, including the production of specialized metabolites with antifungal properties.
Collapse
Affiliation(s)
- Josep Massana-Codina
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emilie Michellod
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Marilyn Cléroux
- Changins College for Viticulture and Enology, University Western Switzerland, Nyon, Switzerland
| | | | - Katia Gindro
- Plant Protection Research Division, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Martin RL, Le Boulch P, Clin P, Schwarzenberg A, Yvin JC, Andrivon D, Nguema-Ona E, Val F. A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. PLoS One 2020; 15:e0236633. [PMID: 32785249 PMCID: PMC7423108 DOI: 10.1371/journal.pone.0236633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
The induction of general plant defense responses following the perception of external elicitors is now regarded as the first level of the plant immune response. Depending on the involvement or not of these molecules in pathogenicity, this induction of defense is called either Pathogen-Associated Molecular Pattern (PAMP) Triggered Immunity or Pattern Triggered Immunity-both abbreviated to PTI. Because PTI is assumed to be a widespread and stable form of resistance to infection, understanding the mechanisms driving it becomes a major goal for the sustainable management of plant-pathogen interactions. However, the induction of PTI is complex. Our hypotheses are that (i) the recognition by the plant of PAMPs vs non-PAMP elicitors leads to specific defense profiles and (ii) the responses specifically induced by PAMPs target critical life history traits of the pathogen that produced them. We thus analyzed, using a metabolomic approach coupled with transcriptomic and hormonal analyses, the defense profiles induced in potato foliage treated with either a Concentrated Culture Filtrate (CCF) from Phytophthora infestans or two non-PAMP preparations, β-aminobutyric acid (BABA) and an Ulva spp. Extract, used separately. Each elicitor induced specific defense profiles. CCF up-regulated sesquiterpenes but down-regulated sterols and phenols, notably α-chaconine, caffeoyl quinic acid and rutin, which decreased spore production of P. infestans in vitro. CCF thus induces both defense and counter-defense responses. By contrast, the Ulva extract triggered the synthesis of a large-spectrum of antimicrobial compounds through the phenylpropanoid/flavonoid pathways, while BABA targeted the primary metabolism. Hence, PTI can be regarded as a heterogeneous set of general and pathogen-specific responses triggered by the molecular signatures of each elicitor, rather than as a uniform, non-specific and broad-spectrum set of general defense reactions.
Collapse
Affiliation(s)
- Rafaela Lopes Martin
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Pauline Le Boulch
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
| | - Pauline Clin
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
| | - Adrián Schwarzenberg
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Didier Andrivon
- INRAE, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| | - Florence Val
- AGROCAMPUS-OUEST, UMR IGEPP 1349-Institut de Génétique, Environnement et Protection des Plantes, Rennes, France
- Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale, Pôle Stress Biotiques, Saint Malo, France
| |
Collapse
|
12
|
Alvarado L, Saa S, Cuneo IF, Pedreschi R, Morales J, Larach A, Barros W, Guajardo J, Besoain X. A Comparison of Immediate and Short-Term Defensive Responses to Phytophthora Species Infection in Both Susceptible and Resistant Walnut Rootstocks. PLANT DISEASE 2020; 104:921-929. [PMID: 31910117 DOI: 10.1094/pdis-03-19-0455-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clonal rootstocks are one alternative used by the walnut industry to control damage caused by Phytophthora species, traditionally using plants grafted on susceptible Juglans regia rootstock. Vlach, VX211, and RX1 are clonal rootstocks with a degree of resistance to Phytophthora species. The resistance to pathogens in these rootstocks depends on the resistance mechanisms activated by the presence of the pathogen and subsequent development of responses in the host. In this work, we analyzed how plants of J. regia, Vlach, VX211, and RX1 responded to inoculation with Phytophthora cinnamomi or Phytophthora citrophthora isolates obtained from diseased English walnut plants from Chilean orchards. After inoculation, plants of Vlach, VX211, and RX1 showed canopy and root damage indexes that did not differ from noninoculated control plants. In contrast, plants of J. regia, which is susceptible to P. cinnamomi and P. citrophthora, died after inoculation. Vlach, VX211, and RX1 plants inoculated with P. cinnamomi or P. citrophthora showed greater root weight and volume and greater root growth rates than their respective controls. These results suggest that short-term carbohydrate dynamics may be related to the defense mechanisms of plants; they are immediately activated after inoculation through the production of phenolic compounds, which support the further growth and development of roots in walnut clonal rootstocks. To our knowledge, this is the first study that comprehensively characterizes vegetative and radicular growth and the dynamics of sugars and phenols in response to infection with P. cinnamomi or P. citrophthora in walnut rootstocks.
Collapse
Affiliation(s)
- Laureano Alvarado
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Sebastián Saa
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Italo F Cuneo
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Javiera Morales
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Alejandra Larach
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Wilson Barros
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Jeannette Guajardo
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| |
Collapse
|
13
|
Cirak C, Radusiene J. Factors affecting the variation of bioactive compounds in Hypericum species. Biol Futur 2019; 70:198-209. [DOI: 10.1556/019.70.2019.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/19/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Cuneyt Cirak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun, Turkey
| | | |
Collapse
|
14
|
Thomas C, Mabon R, Andrivon D, Val F. The Effectiveness of Induced Defense Responses in a Susceptible Potato Genotype Depends on the Growth Rate of Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:76-85. [PMID: 30048603 DOI: 10.1094/mpmi-03-18-0064-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytophthora infestans causes the devastating potato late blight disease, which is widely controlled with fungicides. However, the debate about chemical control is fueling a promotion toward alternative methods. In this context, the enhancement of natural plant immunity could be a strategy for more sustainable protection. We previously demonstrated that a concentrated culture filtrate (CCF) of P. infestans primes defense reactions in potato. They are genotype-dependent and metabolites produced decrease pathogen growth in vitro but not in vivo on tubers. Induced potato defenses are assumed to affect P. infestans life history traits depending on strains. This assumption was studied in vivo through induced leaflets on a susceptible genotype inoculated with four P. infestans strains differing for lesion growth rate. This study combines both defenses mechanistic analysis and ecological observations. Defense-gene expressions were thus assessed by quantitative reverse transcription-polymerase chain reaction; pathogen development was simultaneously evaluated by measuring necrosis, quantifying mycelial DNA, and counting sporangia. The results showed that CCF pretreatment reduced the pathogenicity differences between slow- and fast-growing strains. Moreover, after elicitation, PR-1, PR-4, PAL, POX, and THT induction was strain-dependent. These results suggest that P. infestans could develop different strategies to overcome plant defenses and should be considered in biocontrol and epidemic management of late blight.
Collapse
Affiliation(s)
- Cécile Thomas
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Romain Mabon
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Didier Andrivon
- 1 INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653 Le Rheu Cedex, France; and
| | - Florence Val
- 2 Agrocampus Ouest, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| |
Collapse
|
15
|
Svobodova B, Barros L, Sopik T, Calhelha RC, Heleno S, Alves MJ, Walcott S, Kuban V, Ferreira ICFR. Non-edible parts of Solanum stramoniifolium Jacq. - a new potent source of bioactive extracts rich in phenolic compounds for functional foods. Food Funct 2017; 8:2013-2021. [PMID: 28488719 DOI: 10.1039/c7fo00297a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracts prepared from leaves, roots, and stems of Solanum stramoniifolium Jacq. (Solanaceae) in 80% ethanol have been tested for their in vitro antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities with an aim to find new sources of substances for functional foods and food additives. The root extract revealed the highest antioxidant activity in all assays exceeding the trolox capacity, and was the only extract that inhibited nitric oxide production in mouse macrophage cells, showing also the capacity to suppress the growth of all tested human tumor cell lines (MCF-7, NCI-H460, HeLa and HepG2). The leaf extract showed the strongest antimicrobial activity inhibiting all tested clinical isolates. To the author's best knowledge it was the first time that all individual parts of this plant were tested for biological activity together with the phenolic compound characterization.
Collapse
Affiliation(s)
- Blanka Svobodova
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 1172, 5300-253 Bragança, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tomita S, Ikeda S, Tsuda S, Someya N, Asano K, Kikuchi J, Chikayama E, Ono H, Sekiyama Y. A survey of metabolic changes in potato leaves by NMR-based metabolic profiling in relation to resistance to late blight disease under field conditions. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:120-127. [PMID: 27549366 DOI: 10.1002/mrc.4506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/26/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Non-targeted nuclear magnetic resonance (NMR)-based metabolic profiling was applied to potato leaves to survey metabolic changes associated with late blight resistance under field conditions. Potato plants were grown in an experimental field, and the compound leaves with no visible symptoms were collected from 20 cultivars/lines at two sampling time points: (i) the time of initial presentation of symptoms in susceptible cultivars and (ii) 12 days before this initiation. 1 H NMR spectra of the foliar metabolites soluble in deuterium oxide- or methanol-d4 -based buffers were measured and used for multivariate analysis. Principal component analysis for six cultivars at symptom initiation showed a class separation corresponding to their levels of late blight resistance. This separation was primarily explained by higher levels of malic acid, methanol, and rutin and a lower level of sucrose in the resistant cultivars than in the susceptible ones. Partial least squares regression revealed that the levels of these metabolites were strongly associated with the disease severity measured in this study under field conditions. These associations were observed only for the leaves harvested at the symptom initiation stage, but not for those collected 12 days beforehand. Subsequently, a simple, alternative enzymatic assay for l-malic acid was used to estimate late blight resistance, as a model for applying the potential metabolic marker obtained. This study demonstrated the potential of metabolomics for field-grown plants in combination with targeted methods for quantifying marker levels, moving towards marker-assisted screening of new cultivars with durable late blight resistance. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Satoru Tomita
- Food Research Institute, NARO, Tsukuba, Ibaraki, Japan
| | - Seishi Ikeda
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido, Japan
| | - Shogo Tsuda
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido, Japan
| | - Nobutaka Someya
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki, Japan
| | - Kenji Asano
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Medical and Life Sciences, Yokohama City University, Yokohama, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Eisuke Chikayama
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Department of Information Systems, Niigata University of International and Information Studies, Nishi-ku, Niigata, Japan
| | - Hiroshi Ono
- Food Research Institute, NARO, Tsukuba, Ibaraki, Japan
| | - Yasuyo Sekiyama
- Food Research Institute, NARO, Tsukuba, Ibaraki, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
17
|
Mateus MC, Neves D, Dacunha B, Laczko E, Maia C, Teixeira R, Cravador A. Structure, anti-Phytophthora and anti-tumor activities of a nortriterpenoid from the rhizome of Phlomis purpurea (Lamiaceae). PHYTOCHEMISTRY 2016; 131:158-164. [PMID: 27641672 DOI: 10.1016/j.phytochem.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/04/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
To investigate bioactive compounds potentially involved in the biotic interactions exhibited by Phlomis purpurea (Lamiaceae) in rhizospheres infested with Phytophthora cinnamomi, the plant rhizome was chemically analysed. The nortriterpenoid (17S)-2α,3α,11α,23,24-pentahydroxy-19(18 → 17)-abeo-28-norolean-12-en-18-one, was isolated and its structure was elucidated by comprehensive spectroscopic analysis, chiefly using 2D NMR experiments, and X-ray analysis. It was shown to be exuded by roots and to exhibit anti-Phytophthora and antitumor activities.
Collapse
Affiliation(s)
- Maria C Mateus
- Chemistry Research Centre of Algarve (CIQA), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Dina Neves
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bruno Dacunha
- Unidade de Difraccion de RaiosX, RIAIDT, Edificio CACTUS, Campus Sur, 15782, Santiago de Compostela, A Coruña, Spain
| | - Endre Laczko
- Functional Genomics Center, UZH / ETHZ, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | - Cristiana Maia
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rúben Teixeira
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alfredo Cravador
- Centre for Mediterranean Bioresourses and Food, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
18
|
Baker CJ, Mock NM, Smith JM, Aver'yanov AA. The dynamics of apoplast phenolics in tobacco leaves following inoculation with bacteria. FRONTIERS IN PLANT SCIENCE 2015; 6:649. [PMID: 26347765 PMCID: PMC4542506 DOI: 10.3389/fpls.2015.00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/04/2015] [Indexed: 05/25/2023]
Abstract
This study demonstrates that the accumulation of apoplastic phenolics is stimulated in planta in response to bacterial inoculation. Past studies have shown that levels of extracellular phenolics are elicited in plant cell suspensions in response to bacteria, and that tomato plants infected with viroids showed changes in apoplastic phenolics. The method described here monitored changes in apoplastic phenolics in tobacco leaves following bacterial inoculation of the same tissue. Inoculation with a saprophyte, Pseudomonas fluorescens, which does not cause visible symptoms or physical damage, was used to elicit phenolics and examine the effects of variable parameters on phenolic composition. Location of the inoculation on the leaf, position, or developmental age of the leaf on the plant, and inoculum concentration were standardized for further experiments. The patterns of phenolic change in the apoplast were compared for tobacco inoculated with P. syringae pathovars, pv. syringae, which causes a resistant HR reaction within 15 h, and pv. tabaci, which causes a susceptible reaction with delayed visible symptoms. Both pathogens elicited lower increased levels of acetosyringone compared to the saprophyte, P. fluorescens but had greatly increased levels of the chlorogenic acid derivatives. The latter metabolites appear to have come from the intracellular stores, which could indicate a weakening of the apoplast/symplast barrier. This unexpected aspect will require further study of intracellular phenolics.
Collapse
Affiliation(s)
- Con J. Baker
- Molecular Plant Pathology Lab., U.S. Department of AgricultureBeltsville, MD, USA
| | - Norton M. Mock
- Molecular Plant Pathology Lab., U.S. Department of AgricultureBeltsville, MD, USA
| | - Jodi M. Smith
- Molecular Plant Pathology Lab., U.S. Department of AgricultureBeltsville, MD, USA
| | - Andrey A. Aver'yanov
- All-Russian Research Institute of Phytopathology, Russian Agricultural AcademyMoscow, Russia
| |
Collapse
|
19
|
Buyel JF, Buyel JJ, Haase C, Fischer R. The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:484-92. [PMID: 25243954 DOI: 10.1111/plb.12264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/04/2014] [Indexed: 05/23/2023]
Abstract
The production of recombinant proteins in plants is often achieved by transient expression, e.g. following the injection or vacuum infiltration of Agrobacterium tumefaciens into tobacco leaves. We investigated the associated plant defence responses, revealing that callose deposition is triggered by T-DNA transfer and that subsets of secondary metabolites accumulate in response to mechanical wounding or the presence of bacteria. We also tested the ability of five co-expressed type III effector proteins from Pseudomonas syringae to modulate these defence responses and increase the yield of two model proteins, the fluorescent marker DsRed and monoclonal antibody 2G12. HopF2 and AvrRpt2 induced necrotic lesions 5 days post-injection (dpi) even at low doses (OD600 nm = 0.0078), and increased the concentration of certain secondary metabolites. HopAO1 significantly reduced the number of callose deposits at 2 dpi compared to cells expressing DsRed and 2G12 alone, whereas HopI1 reduced the concentration of several secondary metabolites at 5 dpi compared to cells expressing DsRed and 2G12 alone. Co-expression with HopAO1, AvrPtoB or HopI1 increased the concentrations of DsRed and 2G12 increased by ~6% but this was not a significant change. In contrast, HopF2 and AvrRpt2 significantly reduced the concentrations of DsRed and 2G12 by 34% and 22%, respectively. Our results show that type III effector proteins can modulate plant defence responses and secondary metabolite profiles but that transient co-expression is not sufficient to increase the yields of target recombinant proteins in tobacco.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
20
|
Saubeau G, Gaillard F, Legentil L, Nugier-Chauvin C, Ferrières V, Andrivon D, Val F. Identification of three elicitins and a galactan-based complex polysaccharide from a concentrated culture filtrate of Phytophthora infestans efficient against Pectobacterium atrosepticum. Molecules 2014; 19:15374-90. [PMID: 25264828 PMCID: PMC6270706 DOI: 10.3390/molecules191015374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
The induction of plant immunity by Pathogen Associated Molecular Patterns (PAMPs) constitutes a powerful strategy for crop protection. PAMPs indeed induce general defense responses in plants and thus increase plant resistance to pathogens. Phytophthora infestans culture filtrates (CCFs) are known to induce defense responses and decrease the severity of soft rot due to Pectobacterium atrosepticum in potato tubers. The aim of this study was to identify and characterize the active compounds from P. infestans filtrate. The filtrate was fractionated by gel filtration, and the protection effects against P. atrosepticum and the ability to induce PAL activity were tested for each fraction. The fraction active in protection (F1) also induced PAL activity, as did the whole filtrate. Three elicitins (INF1, INF4 and INF5) were identified in F1b, subfraction of F1, by MALDI-TOF-MS and MS/MS analyses. However, deproteinized F1b still showed biological activity against the bacterium, revealing the presence of an additional active compound. GC-MS analyses of the deproteinized fraction highlighted the presence of a galactan-based complex polysaccharide. These experiments demonstrate that the biological activity of the CCF against P. atrosepticum results from a combined action of three elicitins and a complex polysaccharide, probably through the activation of general defense responses.
Collapse
Affiliation(s)
| | - Fanny Gaillard
- CNRS-Université Pierre et Marie Curie, FR2424, Station Biologique de Roscoff, Roscoff-Cedex 29682, France.
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | | | - Florence Val
- Agrocampus Ouest, UMR1349 IGEPP, Rennes F-35000, France.
| |
Collapse
|
21
|
Hosseinzadeh H, Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 2014; 37:783-8. [PMID: 24879037 DOI: 10.1007/s40618-014-0096-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND In recent years, flavonoids have been revealed to be helpful in the treatment of many diseases. Rutin (3,3',4',5,7-pentahydroxyflavone-3-rhamnoglucoside) is an important flavonoid that is consumed in the daily diet. It is also known as vitamin P and quercetin-3-O-rutinoside. In addition, it is found in many food items, vegetables, and beverages. The cytoprotective effects of rutin, including gastroprotective, hepatoprotective, and anti-diabetic effects, have been shown in several studies. Furthermore, rutin has several pharmacological effects such as anti-inflammatory and anti-glycation activities. AIM This work reviewed characteristic, pharmacokinetic, and metabolic effects of rutin in all experimental and human studies. CONCLUSIONS Based on the above summarized effects of rutin, this flavonoid appears to be a potent component that could be considered in the treatment of several gastrointestinal diseases and diabetes.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | | |
Collapse
|
22
|
Larbat R, Paris C, Le Bot J, Adamowicz S. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:62-73. [PMID: 24908507 DOI: 10.1016/j.plantsci.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/09/2023]
Abstract
Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant.
Collapse
Affiliation(s)
- Romain Larbat
- INRA UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Cédric Paris
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Jacques Le Bot
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| | - Stéphane Adamowicz
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| |
Collapse
|
23
|
No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-013-0273-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Fu Z, Ling Y, Li Z, Chen M, Sun Z, Huang C. HPLC-Q-TOF-MS/MS for analysis of major chemical constituents of Yinchen-Zhizi herb pair extract. Biomed Chromatogr 2013; 28:475-85. [DOI: 10.1002/bmc.3057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/22/2013] [Accepted: 09/04/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiwen Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
- Department of Clinical Pharmacology; Shuguang hospital affiliated to Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun Ling
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 501 Haike Rd, Zhangjiang Pudong Shanghai 201203 People's Republic of China
| |
Collapse
|