1
|
Salazar-Gutiérrez D, Cruz-Mendívil A, Villicaña C, Heredia JB, Lightbourn-Rojas LA, León-Félix J. Transcriptomic Analysis Reveals the Response Mechanisms of Bell Pepper ( Capsicum annuum) to Phosphorus Deficiency. Metabolites 2023; 13:1078. [PMID: 37887403 PMCID: PMC10609356 DOI: 10.3390/metabo13101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Phosphorus (P) is an important nutritional element needed by plants. Roots obtain P as inorganic phosphate (Pi), mostly in H2PO-4 form. It is vital for plants to have a sufficient supply of Pi since it participates in important processes like photosynthesis, energy transfer, and protein activation, among others. The physicochemical properties and the organic material usually make Pi bioavailability in soil low, causing crops and undomesticated plants to experience variations in accessibility or even a persistent phosphate limitation. In this study, transcriptome data from pepper roots under low-Pi stress was analyzed in order to identify Pi starvation-responsive genes and their relationship with metabolic pathways and functions. Transcriptome data were obtained from pepper roots with Pi deficiency by RNASeq and analyzed with bioinformatic tools. A total of 97 differentially expressed genes (DEGs) were identified; Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that metabolic pathways, such as porphyrin and chlorophyll metabolism, were down-regulated, and galactose and fatty acid metabolism were up-regulated. The results indicate that bell pepper follows diverse processes related to low Pi tolerance regulation, such as the remobilization of internal Pi, alternative metabolic pathways to generate energy, and regulators of root development.
Collapse
Affiliation(s)
- Daizha Salazar-Gutiérrez
- Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán 80110, Sinaloa, Mexico;
| | - Abraham Cruz-Mendívil
- CONAHCYT-Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Guasave 81101, Sinaloa, Mexico;
| | - Claudia Villicaña
- CONAHCYT-Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán 80110, Sinaloa, Mexico;
| | - José Basilio Heredia
- Functional and Nutraceutical Foods, Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán 80110, Sinaloa, Mexico;
| | | | - Josefina León-Félix
- Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán 80110, Sinaloa, Mexico;
| |
Collapse
|
2
|
He JZ, Dorion S, Carmona-Rojas LM, Rivoal J. Carbon Fluxes in Potato ( Solanum tuberosum) Remain Stable in Cell Cultures Exposed to Nutritional Phosphate Deficiency. BIOLOGY 2023; 12:1190. [PMID: 37759596 PMCID: PMC10525292 DOI: 10.3390/biology12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Nutritional phosphate deficiency is a major limitation to plant growth. Here, we monitored fluxes in pathways supporting respiratory metabolism in potato (Solanum tuberosum) cell cultures growing in control or limiting phosphate conditions. Sugar uptake was quantified using [U-14C]sucrose as precursor. Carbohydrate degradation through glycolysis and respiratory pathways was estimated using the catabolism of [U-14C]sucrose to 14CO2. Anaplerotic carbon flux was assessed by labeling with NaH14CO3. The data showed that these metabolic fluxes displayed distinct patterns over culture time. However, phosphate depletion had relatively little impact on the various fluxes. Sucrose uptake was higher during the first six days of culture, followed by a decline, which was steeper in Pi-sufficient cells. Anaplerotic pathway flux was more important at day three and decreased thereafter. In contrast, the flux between sucrose and CO2 was at a maximum in the mid-log phase of the culture, with a peak at Day 6. Metabolization of [U-14C]sucrose into neutral, basic and acidic fractions was also unaffected by phosphate nutrition. Hence, the well-documented changes in central metabolism enzymes activities in response to Pi deficiency do not drastically modify metabolic fluxes, but rather result in the maintenance of the carbon fluxes that support respiration.
Collapse
Affiliation(s)
- Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Laura Michell Carmona-Rojas
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
- Grupo de Biotecnologiía, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medelliín 050010, Colombia
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| |
Collapse
|
3
|
Trejo‐Fregoso R, Rodríguez I, Ávila A, Juárez‐Díaz JA, Rodríguez‐Sotres R, Martínez‐Barajas E, Coello P. Phosphorylation of S11 in PHR1 negatively controls its transcriptional activity. PHYSIOLOGIA PLANTARUM 2022; 174:e13831. [PMID: 36444477 PMCID: PMC10107491 DOI: 10.1111/ppl.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Plant responses to phosphate starvation (-Pi) are very well characterized at the biochemical and molecular levels. The expression of thousands of genes is modified under this stress condition, depending on the action of Phosphate starvation response 1 (PHR1). Existing data indicate that neither the PHR1 transcript nor the quantity or localization of its protein increase during nutrient stress, raising the question of how its activity is regulated. Here, we present data showing that SnRK1 kinase is able to phosphorylate some phosphate starvation response proteins (PSRs), including PHR1. Based on a model of the three-dimensional structure of the catalytic subunit SnRK1α1, docking simulations predicted the binding modes of peptides from PHT1;8, PHO1 and PHR1 with SnRK1. PHR1 recombinant protein interacted in vitro with the catalytic subunits SnRK1α1 and SnRK1α2. A BiFC assay corroborated the in vivo interaction between PHR1 and SnRK1α1 in the cytoplasm and nucleus. Analysis of phosphorylated residues suggested the presence of one phosphorylated site containing the SnRK1 motif at S11, and mutation in this residue disrupted the incorporation of 32 P, suggesting that it is a major phosphorylation site. Electrophoretic mobility shift assay results indicated that the binding of PHR1 to P1BS motifs was not influenced by phosphorylation. Importantly, transient expression assays in Arabidopsis protoplasts showed a decrease in PHR1 activity in contrast with the S11A mutant, suggesting a role for Ser11 as a negative regulatory phosphorylation site. Taken together, these findings suggest that phosphorylation of PHR1 at Ser11 is a mechanism to control the PHR1-mediated adaptive response to -Pi.
Collapse
Affiliation(s)
| | - Iván Rodríguez
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | - Alejandra Ávila
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | | | | | | | - Patricia Coello
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| |
Collapse
|
4
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
5
|
Jiang W, He P, Zhou M, Lu X, Chen K, Liang C, Tian J. Soybean responds to phosphate starvation through reversible protein phosphorylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:222-234. [PMID: 34371392 DOI: 10.1016/j.plaphy.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency is considered as a major constraint on crop production. Although a set of adaptative strategies are extensively suggested in soybean (Glycine max) to phosphate (Pi) deprivation, molecular mechanisms underlying reversible protein phosphorylation in soybean responses to P deficiency remains largely unclear. In this study, isobaric tags for relative and absolute quantitation, combined with liquid chromatography and tandem mass spectrometry analysis was performed to identify differential phosphoproteins in soybean roots under Pi sufficient and deficient conditions. A total of 427 phosphoproteins were found to exhibit differential accumulations, with 213 up-regulated and 214 down-regulated. Among them, a nitrate reductase, GmNR4 exhibiting increased phosphorylation levels under low Pi conditions, was further selected to evaluate the effects of phosphorylation on its nitrate reductase activity and subcellular localization. Mutations of GmNR4 phosphorylation levels significantly influenced its activity in vitro, but not for its subcellular localization. Taken together, identification of differential phosphoproteins reveled the complex regulatory pathways for soybean adaptation to Pi starvation through reversible protein phosphorylation.
Collapse
Affiliation(s)
- Weizhen Jiang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Panmin He
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
7
|
Mehta D, Ghahremani M, Pérez-Fernández M, Tan M, Schläpfer P, Plaxton WC, Uhrig RG. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:924-941. [PMID: 33184936 DOI: 10.1111/tpj.15078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Phosphorus absorbed in the form of phosphate (H2 PO4- ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2 PO3- ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase - potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Mina Ghahremani
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - Maria Pérez-Fernández
- Departamento de Sistemas Físicos Químicos y Naturales, Universidad Pablo de Olavide, Ecology Area. Faculty os Experimental Sciences. Carretera de Utrera Km 1, Sevilla, 41013, Spain
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - William C Plaxton
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
8
|
Bheri M, Pandey GK. PP2A Phosphatases Take a Giant Leap in the Post-Genomics Era. Curr Genomics 2019; 20:154-171. [PMID: 31929724 PMCID: PMC6935955 DOI: 10.2174/1389202920666190517110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Protein phosphorylation is an important reversible post-translational modifica-tion, which regulates a number of critical cellular processes. Phosphatases and kinases work in a con-certed manner to act as a "molecular switch" that turns-on or - off the regulatory processes driving the growth and development under normal circumstances, as well as responses to multiple stresses in plant system. The era of functional genomics has ushered huge amounts of information to the framework of plant systems. The comprehension of who's who in the signaling pathways is becoming clearer and the investigations challenging the conventional functions of signaling components are on a rise. Protein phosphatases have emerged as key regulators in the signaling cascades. PP2A phosphatases due to their diverse holoenzyme compositions are difficult to comprehend. CONCLUSION In this review, we highlight the functional versatility of PP2A members, deciphered through the advances in the post-genomic era.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
9
|
Wu XN, Xi L, Pertl-Obermeyer H, Li Z, Chu LC, Schulze WX. Highly Efficient Single-Step Enrichment of Low Abundance Phosphopeptides from Plant Membrane Preparations. FRONTIERS IN PLANT SCIENCE 2017; 8:1673. [PMID: 29042862 PMCID: PMC5632542 DOI: 10.3389/fpls.2017.01673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS)-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed "ShortPhos," an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins. The optimized workflow allows fast and efficient identification and quantification of phosphopeptides, even from small amounts of starting plant materials. "ShortPhos" can produce label-free datasets with a high quantitative reproducibility. In addition, the "ShortPhos" protocol recovered more phosphorylation sites from membrane proteins, especially plasma membrane and vacuolar proteins, when compared to our previous workflow and other membrane-based data in the PhosPhAt 4.0 database. We applied "ShortPhos" to study kinase-substrate relationships within a nitrate-induction experiment on Arabidopsis roots. The "ShortPhos" identified significantly more known kinase-substrate relationships compared to previous phosphoproteomics workflows, producing new insights into nitrate-induced signaling pathways.
Collapse
|
10
|
Wang J, Pei L, Jin Z, Zhang K, Zhang J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One 2017; 12:e0176538. [PMID: 28448624 PMCID: PMC5407761 DOI: 10.1371/journal.pone.0176538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.
Collapse
Affiliation(s)
- Jiemin Wang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Laming Pei
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhe Jin
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Kewei Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Juren Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| |
Collapse
|
11
|
Pan T, Li Y, Ma C, Qiu D. Calcium affecting protein expression in longan under simulated acid rain stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12215-12223. [PMID: 25893616 DOI: 10.1007/s11356-015-4389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.
Collapse
Affiliation(s)
- Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | |
Collapse
|
12
|
Hou Y, Qiu J, Tong X, Wei X, Nallamilli BR, Wu W, Huang S, Zhang J. A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. BMC PLANT BIOLOGY 2015; 15:163. [PMID: 26112675 PMCID: PMC4482044 DOI: 10.1186/s12870-015-0541-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice is a major crop worldwide. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice. It has been clear that phosphorylation plays essential roles in plant disease resistance. However, the role of phosphorylation is poorly understood in rice-Xoo system. Here, we report the first study on large scale enrichment of phosphopeptides and identification of phosphosites in rice before and 24 h after Xoo infection. RESULTS We have successfully identified 2367 and 2223 phosphosites on 1334 and 1297 representative proteins in 0 h and 24 h after Xoo infection, respectively. A total of 762 differentially phosphorylated proteins, including transcription factors, kinases, epi-genetic controlling factors and many well-known disease resistant proteins, are identified after Xoo infection suggesting that they may be functionally relevant to Xoo resistance. In particular, we found that phosphorylation/dephosphorylation might be a key switch turning on/off many epi-genetic controlling factors, including HDT701, in response to Xoo infection, suggesting that phosphorylation switch overriding the epi-genetic regulation may be a very universal model in the plant disease resistance pathway. CONCLUSIONS The phosphosites identified in this study would be a big complementation to our current knowledge in the phosphorylation status and sites of rice proteins. This research represents a substantial advance in understanding the rice phosphoproteome as well as the mechanism of rice bacterial blight resistance.
Collapse
Affiliation(s)
- Yuxuan Hou
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jiehua Qiu
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiangjin Wei
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, U.S.A..
| | - Weihuai Wu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Shiwen Huang
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jian Zhang
- China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|