1
|
Wang Y, Jiang L, Kong D, Meng J, Song M, Cui W, Song Y, Wang X, Liu J, Wang R, He Y, Chang C, Ju C. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024. [PMID: 38571393 DOI: 10.1111/nph.19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.
Collapse
Affiliation(s)
- Yidong Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lanlan Jiang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jie Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, 100050, China
| | - Wenxiu Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaqi Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaofan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
2
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
4
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
5
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Resemann HC, Herrfurth C, Feussner K, Hornung E, Ostendorf AK, Gömann J, Mittag J, van Gessel N, Vries JD, Ludwig-Müller J, Markham J, Reski R, Feussner I. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. NATURE PLANTS 2021; 7:219-232. [PMID: 33495556 DOI: 10.1038/s41477-020-00844-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/18/2020] [Indexed: 05/16/2023]
Abstract
For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C24 fatty acids, classifying the new protein as sphingolipid fatty acid denaturase (PpSFD). PpSFD mutants showed a cold-sensitive phenotype as well as higher susceptibility to the oomycete Pythium, assigning functions in stress tolerance for PpSFD. Ectopic expression of PpSFD in the Atads2.1 (acyl coenzyme A desaturase-like 2) Arabidopsis thaliana mutant functionally complemented its cold-sensitive phenotype. While these two enzymes catalyse a similar reaction, their evolutionary origin is clearly different since AtADS2 is a methyl-end desaturase whereas PpSFD is a cytochrome b5 fusion desaturase. Altogether, we suggest that adjustment of membrane fluidity evolved independently in mosses and seed plants, which diverged more than 500 million years ago.
Collapse
Affiliation(s)
- Hanno Christoph Resemann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kirstin Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ellen Hornung
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Anna K Ostendorf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Gömann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Jennifer Mittag
- Institute of Botany, Technical University Dresden, Dresden, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jan de Vries
- Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| | | | - Jennifer Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany.
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
- Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
7
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Neumann M, Prahl S, Caputi L, Hill L, Kular B, Walter A, Patallo EP, Milbredt D, Aires A, Schöpe M, O'Connor S, van Pée KH, Ludwig-Müller J. Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds. PHYTOCHEMISTRY 2020; 175:112371. [PMID: 32283438 DOI: 10.1016/j.phytochem.2020.112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.
Collapse
Affiliation(s)
- Madeleine Neumann
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Lorenzo Caputi
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Baldeep Kular
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Antje Walter
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eugenio P Patallo
- Biochemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Daniela Milbredt
- Biochemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alfredo Aires
- Centre for the Research and Technology for Agro-Environment and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | | | - Sarah O'Connor
- Department of Natural Product Synthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | | | - Jutta Ludwig-Müller
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
9
|
Wu C, Tang S, Li G, Wang S, Fahad S, Ding Y. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ 2019; 7:e7792. [PMID: 31763066 PMCID: PMC6873875 DOI: 10.7717/peerj.7792] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
During its reproductive phase, rice is susceptible to heat stress. Heat events will occur at all stages during the reproductive phase of rice as a result of global warming. Moreover, rice yield traits respond differently to heat stress during panicle initiation, flowering and grain filling. The reduction in the number of spikelets per panicle of heat-stressed plants is due to the attenuated differentiation of secondary branches and their attached florets as well as the promotion of their degradation during the panicle-initiation stage but is not affected by heat stress thereafter. Spikelet sterility as a result of heat stress is attributed not only to physiological abnormalities in the reproductive organs during the flowering stage but also to structural and morphological abnormalities in reproductive organs during the panicle-initiation stage. The reduced grain weight of heat-stressed plants is due to a reduction in nonstructural carbohydrates, undeveloped vascular bundles, and a reduction in glume size during the panicle-initiation stage, while a shortened grain-filling duration, reduced grain-filling rate, and decreased grain width contribute to reduced grain weight during the grain-filling stage. Thus, screening and breeding rice varieties that have comprehensive tolerance to heat stress at all time points during their reproductive stage may be possible to withstand unpredictable heat events in the future. The responses of yield traits to heat stress are regulated by phytohormone levels, which are determined by phytohormone homeostasis. Currently, the biosynthesis and transport of phytohormones are the key processes that determine phytohormone levels in and grain yield of rice under heat stress. Studies on phytohormone homeostatic responses are needed to further reveal the key processes that determine phytohormone levels under heat conditions.
Collapse
Affiliation(s)
- Chao Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| | - Shah Fahad
- Department of Agronomy, University of Swabi, Swabi Kyber Paktunkhwa, Pakistan
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
11
|
Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Peng R, Wang K, Liu F. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet 2019; 20:62. [PMID: 31337336 PMCID: PMC6651995 DOI: 10.1186/s12863-019-0756-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Auxins play an important role in plant growth and development; the auxins responsive gene; auxin/indole-3-acetic acid (Aux/IAA), small auxin-up RNAs (SAUR) and Gretchen Hagen3 (GH3) control their mechanisms. The GH3 genes function in homeostasis by the catalytic activities in auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. RESULTS In our study, we identified the GH3 genes in three cotton species; Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, analyzed their chromosomal distribution, phylogenetic relationships, cis-regulatory element function and performed virus induced gene silencing of the novel Gh_A08G1120 (GH3.5) gene. The phylogenetic tree showed four clusters of genes with clade 1, 3 and 4 having mainly members of the GH3 of the cotton species while clade 2 was mainly members belonging to Arabidopsis. There were no paralogous genes, and few orthologous genes were observed between Gossypium and other species. All the GO terms were detected, but only 14 genes were found to have described GO terms in upland cotton, more biological functions were detected, as compared to the other functions. The GH3.17 subfamily harbored the highest number of the cis-regulatory elements, most having promoters towards dehydration-responsiveness. The RNA expression analysis revealed that 10 and 8 genes in drought and salinity stress conditions respectively were upregulated in G. hirsutum. All the genes that were upregulated in plants under salt stress conditions were also upregulated in drought stress; moreover, Gh_A08G1120 (GH3.5) exhibited a significant upregulation across the two stress factors. Functional characterization of Gh_A08G1120 (GH3.5) through virus-induced gene silencing (VIGS) revealed that the VIGS plants ability to tolerate drought and salt stresses was significantly reduced compared to the wild types. The chlorophyll content, relative leaf water content (RLWC), and superoxide dismutase (SOD) concentration level were reduced significantly while malondialdehyde concentration and ion leakage as a measure of cell membrane stability (CMS) increased in VIGS plants under drought and salt stress conditions. CONCLUSION This study revealed the significance of the GH3 genes in enabling the plant's adaptation to drought and salt stress conditions as evidenced by the VIGS results and RT-qPCR analysis.
Collapse
Affiliation(s)
- Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.,School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, 210-40601, Bondo, Kenya
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base in Anyang Institute of Technology, State Key Laboratory of Cotton Biology/ Anyang Institute of technology, Anyang, 455000, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of 15 Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
| |
Collapse
|
12
|
Bulman S, Richter F, Marschollek S, Benade F, Jülke S, Ludwig-Müller J. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:120-130. [PMID: 29607585 DOI: 10.1111/plb.12728] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
The plant pathogenic protist Plasmodiophora brassicae causes clubroot disease of Brassicaceae. This biotrophic organism can down-regulate plant defence responses. The previously characterised P. brassicae PbBSMT methyltransferase has substrate specificity for salicylic, benzoic and anthranilic acids. We therefore propose a role for the methylation of SA in attenuating plant defence response in infected roots as a novel strategy for intracellular parasitism. We overexpressed PbBSMT under the control of an inducible promoter in Arabidopsis thaliana and performed physiological, molecular and phytopathological analyses with the transgenic plants under control and induced conditions in comparison to the wild type. Upon induction, transcription of PbBSMT was associated with: (1) strong leaf phenotypes from anthocyanin accumulation and chlorosis followed by browning; (2) increased plant susceptibility after infection with P. brassicae that was manifested as more yellow leaves and reduced growth of upper plant parts; and (3) induced transgenic plants were not able to support large galls and had a brownish appearance of some clubs. Microarray data indicated that chlorophyll loss was accompanied by reduced transcription of genes involved in photosynthesis, while genes encoding glucose metabolism, mitochondrial functions and cell wall synthesis were up-regulated. Our results indicate a role for PbBSMT in attenuation of host defence responses in the roots by metabolising a plant defence signal.
Collapse
Affiliation(s)
- S Bulman
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
| | - F Richter
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - S Marschollek
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - F Benade
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - S Jülke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - J Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Thelander M, Landberg K, Sundberg E. Auxin-mediated developmental control in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:277-290. [PMID: 28992074 DOI: 10.1093/jxb/erx255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.
Collapse
Affiliation(s)
- Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre for Plant Biology in Uppsala, Sweden
| |
Collapse
|
14
|
Rawat A, Brejšková L, Hála M, Cvrčková F, Žárský V. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. THE NEW PHYTOLOGIST 2017; 216:438-454. [PMID: 28397275 DOI: 10.1111/nph.14548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 05/28/2023]
Abstract
The exocyst, an evolutionarily conserved secretory vesicle-tethering complex, spatially controls exocytosis and membrane turnover in fungi, metazoans and plants. The exocyst subunit EXO70 exists in multiple paralogs in land plants, forming three conserved clades with assumed distinct roles. Here we report functional analysis of the first moss exocyst subunit to be studied, Physcomitrella patens PpEXO70.3d (Pp1s97_91V6), from the, as yet, poorly characterized EXO70.3 clade. Following phylogenetic analysis to confirm the presence of three ancestral land plant EXO70 clades outside angiosperms, we prepared and phenotypically characterized loss-of-function Ppexo70.3d mutants and localized PpEXO70.3d in vivo using green fluorescent protein-tagged protein expression. Disruption of PpEXO70.3d caused pleiotropic cell elongation and differentiation defects in protonemata, altered response towards exogenous auxin, increased endogenous IAA concentrations, along with defects in bud and gametophore development. During mid-archegonia development, an abnormal egg cell is formed and subsequently collapses, resulting in mutant sterility. Mutants exhibited altered cell wall and cuticle deposition, as well as compromised cytokinesis, consistent with the protein localization to the cell plate. Despite some functional redundancy allowing survival of moss lacking PpEXO70.3d, this subunit has an essential role in the moss life cycle, indicating sub-functionalization within the moss EXO70 family.
Collapse
Affiliation(s)
- Anamika Rawat
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Lucie Brejšková
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Michal Hála
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| | - Fatima Cvrčková
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
| |
Collapse
|
15
|
Ge J, Li B, Shen D, Xie J, Long J, Dong H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC PLANT BIOLOGY 2016; 16:126. [PMID: 27255279 PMCID: PMC4890496 DOI: 10.1186/s12870-016-0815-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant TRANSPARENT TESTA GLABRA (TTG) proteins regulate various developmental activities via the auxin signaling pathway. Recently, we elucidated the developmental role of tobacco (Nicotiana tabacum L.) NtTTG2 in association with 12 genes that putatively encode AUXIN RESPONSIVE FACTOR (ARF) proteins, including NtARF8, NtARF17, and NtARF19. Here we show that NtTTG2 regulates tobacco growth and development by involving the NtARF8, NtARF17, and NtARF19 genes, with the NtARF8 gene playing a predominant contribution. RESULTS Independent silencing of the NtARF8 gene more strongly repressed tobacco growth than silencing the NtARF17 or NtARF19 gene and more effectively eradicated the growth enhancement effect of NtTTG2 overexpression. In contrast, plant growth was not affected by silencing additional nine NtTTG2-regulated NtARF genes. In double and triple gene silencing combinations, silencing the NtARF8 gene was more effective than silencing the NtARF17 or NtARF19 gene to repress growth as well as nullify growth enhancement. Therefore, the NtARF8 predominantly cooperated with the NtARF17 and NtAFR19 of the NtTTG2 functional pathway. NtARF8 also contributed to NtTTG2-regulated seed production as concurrent NtTTG2 and NtARF8 overexpression played a synergistic role in seed production quantity, whereas concurrent silencing of both genes caused more severe seed abortion than single gene silencing. In plant cells, the NtTTG2 protein facilitated the nuclear import of NtARF8 as well as increased its function as a transcription activator. CONCLUSIONS NtARF8 is an integral component of the NtTTG2 functional pathway, which regulates tobacco growth and development.
Collapse
Affiliation(s)
- Jun Ge
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoyan Li
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Dan Shen
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Xie
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juying Long
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hansong Dong
- Plant Growth and Defense Signaling Laboratory, State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J. Local auxin metabolism regulates environment-induced hypocotyl elongation. NATURE PLANTS 2016; 2:16025. [PMID: 27249562 PMCID: PMC4849989 DOI: 10.1038/nplants.2016.25] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/12/2016] [Indexed: 05/18/2023]
Abstract
A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature.
Collapse
Affiliation(s)
- Zuyu Zheng
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yongxia Guo
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtielů 11, 783 71 Olomouc, Czech Republic
| | - William Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Joseph P. Noel
- Howard Hughes Medical Institute and The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA, Czech Republic
- Correspondence and requests for materials should be addressed to J.P.N. and J.C. ;
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Correspondence and requests for materials should be addressed to J.P.N. and J.C. ;
| |
Collapse
|