1
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
2
|
Yin K, Hu Z, Yuan M, Chen W, Bi X, Cui G, Liang Z, Deng YZ. Polyamine oxidation enzymes regulate sexual mating/filamentation and pathogenicity in Sporisorium scitamineum. MOLECULAR PLANT PATHOLOGY 2024; 25:e70003. [PMID: 39235122 PMCID: PMC11375735 DOI: 10.1111/mpp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.
Collapse
Affiliation(s)
- Kai Yin
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhijian Hu
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meiting Yuan
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Weidong Chen
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xinping Bi
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guobing Cui
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Ramazan S, Nazir I, Yousuf W, John R. Environmental stress tolerance in maize ( Zea mays): role of polyamine metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:85-96. [PMID: 35300784 DOI: 10.1071/fp21324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays L.), a major multipurpose crop for food, feed and energy is extremely susceptible to environmental perturbations and setting off the major factors for limiting maize yield. Generally, plant yields are reduced and significantly lost to adverse environments and biotic strains. To ensure the safety of living cells under unfavourable circumstances, polyamines (PAs) play an important role in regulating the response under both abiotic and biotic stresses. It is the relative abundance of higher PAs (spermidine, Spd; spermine, Spm) vis-à-vis the diamine putrescine (Put) and PA catabolism that determines the stress tolerance in plants. Climate changes and increasing demands for production of maize have made it pressing to improve the stress tolerance strategies in this plant and it is imperative to understand the role of PAs in response to various environmental perturbations. Here, we critically review and summarise the recent literature on role of PAs in conferring stress tolerance in the golden crop. The responses in terms of PA accumulation, their mechanism of action and all the recent genetic manipulation studies carried out in PA metabolism pathway, ameliorating range of abiotic and biotic stresses have been discussed. As PA metabolism under stress conditions does not operate singly within cells and is always linked to other metabolic pathways in maize, its complex connections and role as a signalling molecule have also been discussed in this review.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ifra Nazir
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Waseem Yousuf
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
4
|
Functions of polyamines in growth and development of Phycomyces blakesleeanus wild-type and mutant strains. Fungal Biol 2022; 126:429-437. [DOI: 10.1016/j.funbio.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
|
5
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
6
|
Li C, Wang J, Lu X, Ge H, Jin X, Guan Q, su Y, Pan R, Li P, Cai W, Zhu X. Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials 2020; 255:120071. [DOI: 10.1016/j.biomaterials.2020.120071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
|
7
|
Jasso-Robles FI, Gonzalez ME, Pieckenstain FL, Ramírez-García JM, Guerrero-González MDLL, Jiménez-Bremont JF, Rodríguez-Kessler M. Decrease of Arabidopsis PAO activity entails increased RBOH activity, ROS content and altered responses to Pseudomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110372. [PMID: 32005378 DOI: 10.1016/j.plantsci.2019.110372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Polyamines (PAs) are small aliphatic amines with important regulatory activities in plants. Biotic stress results in changes in PA levels due to de novo synthesis and PA oxidation. In Arabidopsis thaliana five FAD-dependent polyamine oxidase enzymes (AtPAO1-5) participate in PA back-conversion and degradation. PAO activity generates H2O2, an important molecule involved in cell signaling, elongation, programmed cell death, and defense responses. In this work we analyzed the role of AtPAO genes in the Arabidopsis thaliana-Pseudomonas syringae pathosystem. AtPAO1 and AtPAO2 genes were transcriptionally up-regulated in infected plants. Atpao1-1 and Atpao2-1 single mutant lines displayed altered responses to Pseudomonas, and an increased susceptibility was found in the double mutant Atpao1-1 x Atpao2-1. These polyamine oxidases mutant lines showed disturbed contents of ROS (H2O2 and O2-) and altered activities of RBOH, CAT and SOD enzymes both in infected and control plants. In addition, changes in the expression levels of AtRBOHD, AtRBOHF, AtPRX33, and AtPRX34 genes were also noticed. Our data indicate an important role for polyamine oxidases in plant defense and ROS homeostasis.
Collapse
Affiliation(s)
- Francisco Ignacio Jasso-Robles
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| | - María Elisa Gonzalez
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Intendente Marino Km 8.2, 7130, Chascomús, Provincia de Buenos Aires, Argentina.
| | - Fernando Luis Pieckenstain
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Intendente Marino Km 8.2, 7130, Chascomús, Provincia de Buenos Aires, Argentina.
| | - José Miguel Ramírez-García
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| | - María de la Luz Guerrero-González
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí (UASLP), Carretera San Luis-Matehuala Km 14.5, Ejido Palma de la Cruz, 78321, Soledad de Graciano Sánchez, San Luis Potosí, Mexico.
| | - Juan Francisco Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055, Lomas 4ª Sección, 78216, San Luis Potosí, Mexico.
| | - Margarita Rodríguez-Kessler
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| |
Collapse
|
8
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Majumdar R, Minocha R, Lebar MD, Rajasekaran K, Long S, Carter-Wientjes C, Minocha S, Cary JW. Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production. FRONTIERS IN PLANT SCIENCE 2019; 10:692. [PMID: 31178889 PMCID: PMC6543017 DOI: 10.3389/fpls.2019.00692] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
Polyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism. With respect to the pathogen, PAs are required to achieve successful pathogenesis of the host. Maize is an important food and feed crop, which is highly susceptible to Aspergillus flavus infection. Upon infection, the fungus produces carcinogenic aflatoxins and numerous other toxic secondary metabolites that adversely affect human health and crop value worldwide. To evaluate the role of PAs in aflatoxin resistance in maize, in vitro kernel infection assays were performed using maize lines that are susceptible (SC212) or resistant (TZAR102, MI82) to aflatoxin production. Results indicated significant induction of both PA biosynthetic and catabolic genes upon A. flavus infection. As compared to the susceptible line, the resistant maize lines showed higher basal expression of PA metabolism genes in mock-inoculated kernels that increased upon fungal infection. In general, increased biosynthesis and conversion of Put to Spd and Spm along with their increased catabolism was evident in the resistant lines vs. the susceptible line SC212. There were higher concentrations of amino acids such as glutamate (Glu), glutamine (Gln) and γ-aminobutyric acid (GABA) in SC212. The resistant lines were significantly lower in fungal load and aflatoxin production as compared to the susceptible line. The data presented here demonstrate an important role of PA metabolism in the resistance of maize to A. flavus colonization and aflatoxin contamination. These results provide future direction for the manipulation of PA metabolism in susceptible maize genotypes to improve aflatoxin resistance and overall stress tolerance.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Stephanie Long
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Subhash Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
- *Correspondence: Jeffrey W. Cary,
| |
Collapse
|
10
|
Romero FM, Maiale SJ, Rossi FR, Marina M, Ruíz OA, Gárriz A. Polyamine Metabolism Responses to Biotic and Abiotic Stress. Methods Mol Biol 2018; 1694:37-49. [PMID: 29080153 DOI: 10.1007/978-1-4939-7398-9_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants have developed different strategies to cope with the environmental stresses they face during their life cycle. The responses triggered under these conditions are usually characterized by significant modifications in the metabolism of polyamines such as putrescine, spermidine, and spermine. Several works have demonstrated that a fine-tuned regulation of the enzymes involved in the biosynthesis and catabolism of polyamines leads to the increment in the concentration of these compounds. Polyamines exert different effects that could help plants to deal with stressful conditions. For instance, they interact with negatively charged macromolecules and regulate their functions, they may act as compatible osmolytes, or present antimicrobial activity against plant pathogens. In addition, they have also been proven to act as regulators of gene expression during the elicitation of stress responses. In this chapter, we reviewed the information available till date in relation to the roles played by polyamines in the responses of plants during biotic and abiotic stress.
Collapse
Affiliation(s)
- Fernando M Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina.
| | - Santiago J Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Franco R Rossi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Maria Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Oscar A Ruíz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Av. Intendente Marino, Km 8, 200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
11
|
Majumdar R, Lebar M, Mack B, Minocha R, Minocha S, Carter-Wientjes C, Sickler C, Rajasekaran K, Cary JW. The Aspergillus flavus Spermidine Synthase ( spds) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels. FRONTIERS IN PLANT SCIENCE 2018; 9:317. [PMID: 29616053 PMCID: PMC5870473 DOI: 10.3389/fpls.2018.00317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/27/2018] [Indexed: 05/10/2023]
Abstract
Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs) known as aflatoxins. Polyamines (PAs) are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd) is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A), and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put) by the enzyme spermidine synthase (Spds). Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT) A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro) significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc) and S-adenosylmethionine decarboxylase (Samdc) genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the host plant, are insufficient to restore WT levels of pathogenesis and aflatoxin production during seed infection. The data presented here suggest that future studies targeting spermidine biosynthesis in A. flavus, using RNA interference-based host-induced gene silencing approaches, may be an effective strategy to reduce aflatoxin contamination in maize and possibly in other susceptible crops.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Matt Lebar
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Brian Mack
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Subhash Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Christine Sickler
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
- *Correspondence: Jeffrey W. Cary,
| |
Collapse
|
12
|
Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl Microbiol Biotechnol 2017; 101:7789-7809. [DOI: 10.1007/s00253-017-8516-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|
13
|
Patel S. Nutrition, safety, market status quo appraisal of emerging functional food corn smut (huitlacoche). Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|