1
|
Antibacterial and Antibiofilm Effects of Allelopathic Compounds Identified in Medicago sativa L. Seedling Exudate against Escherichia coli. Molecules 2023; 28:molecules28062645. [PMID: 36985619 PMCID: PMC10056293 DOI: 10.3390/molecules28062645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, the allelopathic properties of Medicago sativa L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry. Crude exudates inhibited the germination of seeds of all various plant species tested. Overall, nine compounds in alfalfa were identified and quantified. The most predominant compounds were a hyperoside representing a flavonoid glucoside, the non-proteinogenic amino acid canavanine, and two dipeptides, identified as H-Glu-Tyr-OH and H-Phe-Glu-OH. The latter corresponds to the first finding that dipeptides are exuded from alfalfa seedlings. In addition, the antibacterial and antibiofilm activities of alfalfa exudate and its identified compounds were elucidated. Both hyperoside and canavanine revealed the best antibacterial activity with minimum inhibitory concentration (MIC) values that ranged from 8 to 32 and 32 to 256 µg/mL, respectively. Regarding the antibiofilm action, hyperoside and canavanine caused a decline in the percentage of E. coli isolates that possessed a strong and moderate biofilm-forming potential from 68.42% to 21.05% and 31.58%, respectively. Studies on their inhibiting effects exhibit that these major substances are predominantly responsible for the allelopathic and antimicrobial effects of the crude exudates.
Collapse
|
2
|
Staszek P, Piekarniak M, Wal A, Krasuska U, Gniazdowska A. Is the Phytotoxic Effect of Digestive Fluid of Nepenthes x ventrata on Tomato Related to Reactive Oxygen Species? PLANTS (BASEL, SWITZERLAND) 2023; 12:755. [PMID: 36840103 PMCID: PMC9965080 DOI: 10.3390/plants12040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The digestive fluid of pitcher plants is a rich source of enzymes and secondary metabolites, but its impact on higher plant growth and development remains unknown. The aim of the study was to determine the phytotoxicity of the digestive fluid of the pitcher plant (Nepenthes x ventrata) on the germination of tomato (Solanum lycopersicum L.) seeds, elongation growth and cell viability of roots of tomato seedlings. The digestive fluid was collected from pitchers before feeding and four days after feeding; the pH and electrical conductivity of the fluid were determined. Undiluted and 50% fluids were used in the study. An inhibition of germination of tomato seeds, by around 30% and 55%, was respectively observed in 50% and 100% digestive fluids collected before and after feeding. Digestive fluid did not affect the root growth of tomato seedlings; a slight (6%) inhibition was only observed after the application of 100% digestive fluid from an unfed trap. The roots of the tomato seedlings treated with undiluted fluid were characterized by reduced cell viability. Reactive oxygen species (H2O2 and O2•-) were mainly localized in the root apex regardless of the used phytotoxic cocktail, and did not differ in comparison to control plants.
Collapse
|
3
|
Wal A, Staszek P, Pakula B, Paradowska M, Krasuska U. ROS and RNS Alterations in the Digestive Fluid of Nepenthes × ventrata Trap at Different Developmental Stages. PLANTS (BASEL, SWITZERLAND) 2022; 11:3304. [PMID: 36501343 PMCID: PMC9740137 DOI: 10.3390/plants11233304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The carnivorous pitcher plant, Nepenthes × ventrata (Hort. ex Fleming = N. ventricosa Blanco × N. alata Blanco), produces passive traps containing digestive fluid. Although reactive oxygen species (ROS) in the fluid were detected in some pitcher plants, the participation of reactive nitrogen species (RNS) in the digestion process has not yet been examined. The aim of this work was to investigate the production of superoxide anion (O2•-), nitric oxide (NO) and peroxynitrite (ONOO-) levels in the digestive fluid of traps throughout organ development. We revealed the ROS and RNS occurrence in the digestive fluid, linked to the ROS-scavenging capacity and total phenolics content. In digestive fluid from the fed traps, NO emission was higher than in the fluid from the developed unfed pitcher. The concentration of nitrite (NO2-) decreased in the fluid from the fed traps in comparison to the unfed ones, pointing at NO2- as the key source of NO. The enhanced emission of NO was associated with lowered content of ONOO- in the fluid, probably due to lower production of O2•-. At the same time, despite a decline in total phenolics, the maximum ROS scavenging capacity was detected. In addition, ROS and RNS were noted even in closed traps, suggesting their involvement not only in digestion per se but also their action as signaling agents in trap ontogeny.
Collapse
Affiliation(s)
- Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | | | | |
Collapse
|
4
|
Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes. Curr Opin Microbiol 2022; 68:102172. [PMID: 35717707 DOI: 10.1016/j.mib.2022.102172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Plants benefit from symbiotic relationships with their microbiomes. Modifying these microbiomes to further promote plant growth and improve stress tolerance in crops is a promising strategy. However, such efforts have had limited success, perhaps because the original microbiomes quickly re-establish. Since the complex biological networks involved are little understood, progress through conventional means is time-consuming. Synthetic biology, with its practical successes in multiple industries, could speed up this research considerably. Some fascinating candidates for production by synthetic microbiomes are organic nitrogen metabolites and related pyridoxal-5'-phosphate-dependent enzymes, which have pivotal roles in microbe-microbe and plant-microbe interactions. This review summarizes recent studies of these metabolites and enzymes and discusses prospective synthetic biology platforms for sustainable agriculture.
Collapse
|
5
|
Staszek P, Krasuska U, Ciacka K, Gniazdowska A. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants (Basel) 2021; 10:antiox10111648. [PMID: 34829519 PMCID: PMC8614981 DOI: 10.3390/antiox10111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The allelopathic interaction between plants is one of the elements that influences plant communities. It has been commonly studied by applying tissue extracts onto the acceptors or by treating them with isolated allelotoxins. Despite descriptive observations useful for agricultural practice, data describing the molecular mode of action of allelotoxins cannot be found. Due to the development of -omic techniques, we have an opportunity to investigate specific reactive oxygen species (ROS)-dependent changes in proteome or transcriptome that are induced by allelochemicals. The aim of our review is to summarize data on the ROS-induced modification in acceptor plants in response to allelopathic plants or isolated allelochemicals. We present the idea of how ROS are involved in the hormesis and plant autotoxicity phenomena. As an example of an -omic approach in studies of the mode of action of allelopatic compounds, we describe the influence of meta-tyrosine, an allelochemical exudated from roots of fescues, on nitration-one of nitro-oxidative posttranslational protein modification in the roots of tomato plants. We conclude that ROS overproduction and an induction of oxidative stress are general plants' responses to various allelochemicals, thus modification in ROS metabolisms is regarded as an indirect mode of action of allelochemicals.
Collapse
|
6
|
Schmidt M, Kubyshkin V. How To Quantify a Genetic Firewall? A Polarity-Based Metric for Genetic Code Engineering. Chembiochem 2021; 22:1268-1284. [PMID: 33231343 PMCID: PMC8049029 DOI: 10.1002/cbic.202000758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Genetic code engineering aims to produce organisms that translate genetic information in a different way from that prescribed by the standard genetic code. This endeavor could eventually lead to genetic isolation, where an organism that operates under a different genetic code will not be able to transfer functional genes with other living species, thereby standing behind a genetic firewall. It is not clear however, how distinct the code should be, or how to measure the distance. We have developed a metric (Δcode ) where we assigned polarity indices (clog D7 ) to amino acids to calculate the distances between pairs of genetic codes. We then calculated the distance between a set of 204 genetic codes, including the 24 known distinct natural codes, 11 extreme-distance codes created computationally, nine theoretical special purpose codes from literature and 160 codes in which canonical amino acids were replaced by noncanonical chemical analogues. The metric can be used for building strategies towards creating semantically alienated organisms, and testing the strength of genetic firewalls. This metric provides the basis for a map of the genetic codes that could guide future efforts towards novel biochemical worlds, biosafety and deep barcoding applications.
Collapse
Affiliation(s)
| | - Vladimir Kubyshkin
- Department of ChemistryUniversity of ManitobaDysart Road 144WinnipegR3T 2N2Canada
| |
Collapse
|
7
|
Staszek P, Krasuska U, Bederska-Błaszczyk M, Gniazdowska A. Canavanine Increases the Content of Phenolic Compounds in Tomato ( Solanum lycopersicum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1595. [PMID: 33213049 PMCID: PMC7698470 DOI: 10.3390/plants9111595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Canavanine (CAN) is a nonproteinogenic amino acid, and its toxicity comes from its utilization instead of arginine in many cellular processes. As presented in previous experiments, supplementation of tomato (Solanum lycopersicum L.) with CAN led to decreased nitric oxide (NO) level and induced secondary oxidative stress. CAN improved total antioxidant capacity in roots, with parallel inhibition of enzymatic antioxidants. The aim of this work was to determine how CAN-dependent limitation of NO emission and reactive oxygen species overproduction impact content, localization, and metabolism of phenolic compounds (PCs) in tomato roots. Tomato seedlings were fed with CAN (10 and 50 µM) for 24 or 72 h. Inhibition of root growth due to CAN supplementation correlated with increased concentration of total PCs; CAN (50 µM) led to the homogeneous accumulation of PCs all over the roots. CAN increased also flavonoids content in root tips. The activity of polyphenol oxidases and phenylalanine ammonia-lyase increased only after prolonged treatment with 50 µM CAN, while expressions of genes encoding these enzymes were modified variously, irrespectively of CAN dosage and duration of the culture. PCs act as the important elements of the cellular antioxidant system under oxidative stress induced by CAN.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Bederska-Błaszczyk
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
8
|
Staszek P, Gniazdowska A. Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. PLANTA 2020; 252:5. [PMID: 32535658 PMCID: PMC7293691 DOI: 10.1007/s00425-020-03411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/06/2020] [Indexed: 05/02/2023]
Abstract
Nitro/oxidative modifications of proteins and RNA nitration resulted from altered peroxynitrite generation are elements of the indirect mode of action of canavanine and meta-tyrosine in plants Environmental conditions and stresses, including supplementation with toxic compounds, are known to impair reactive oxygen (ROS) and reactive nitrogen species (RNS) homeostasis, leading to modification in production of oxidized and nitrated derivatives. The role of nitrated and/or oxidized biotargets differs depending on the stress factors and developmental stage of plants. Canavanine (CAN) and meta-tyrosine (m-Tyr) are non-proteinogenic amino acids (NPAAs). CAN, the structural analog of arginine, is found mostly in seeds of Fabaceae species, as a storage form of nitrogen. In mammalian cells, CAN is used as an anticancer agent due to its inhibitory action on nitric oxide synthesis. m-Tyr is a structural analogue of phenylalanine and an allelochemical found in root exudates of fescues. In animals, m-Tyr is recognized as a marker of oxidative stress. Supplementation of plants with CAN or m-Tyr modify ROS and RNS metabolism. Over the last few years of our research, we have collected the complex data on ROS and RNS metabolism in tomato (Solanum lycopersicum L.) plants exposed to CAN or m-Tyr. In addition, we have shown the level of nitrated RNA (8-Nitro-guanine) in roots of seedlings, stressed by the tested NPAAs. In this review, we describe the model of CAN and m-Tyr mode of action in plants based on modifications of signaling pathways induced by ROS/RNS with a special focus on peroxynitrite induced RNA and protein modifications.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Staszek P, Krasuska U, Otulak-Kozieł K, Fettke J, Gniazdowska A. Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:1077. [PMID: 31616445 PMCID: PMC6763595 DOI: 10.3389/fpls.2019.01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 05/09/2023]
Abstract
Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 µM) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-µM CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-µM CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-µM CAN, while 10-µM CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.
Collapse
Affiliation(s)
- Pawel Staszek
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
- *Correspondence: Pawel Staszek, ;
| | - Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | | | - Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| |
Collapse
|
10
|
Mitić N, Stanišić M, Savić J, Ćosić T, Stanisavljević N, Miljuš-Đukić J, Marin M, Radović S, Ninković S. Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate. PROTOPLASMA 2018; 255:1683-1692. [PMID: 29748859 DOI: 10.1007/s00709-018-1250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Chenopodium murale L. is an invasive weed species significantly interfering with wheat crop. However, the complete nature of its allelopathic influence on crops is not yet fully understood. In the present study, the focus is made on establishing the relation between plant morphophysiological changes and oxidative stress, induced by allelopathic extract. Phytotoxic medium of C. murale hairy root clone R5 reduced the germination rate (24% less than control value) of wheat cv. Nataša seeds, as well as seedling growth, diminishing shoot and root length significantly, decreased total chlorophyll content, and induced abnormal root gravitropism. The R5 treatment caused cellular structural abnormalities, reflecting on the root and leaf cell shape and organization. These abnormalities mostly included the increased number of mitochondria and reorganization of the vacuolar compartment, changes in nucleus shape, and chloroplast organization and distribution. The most significant structural changes were observed in cell wall in the form of amoeboid protrusions and folds leading to its irregular shape. These structural alterations were accompanied by an oxidative stress in tissues of treated wheat seedlings, reflected as increased level of H2O2 and other ROS molecules, an increase of radical scavenging capacity and total phenolic content. Accordingly, the retardation of wheat seedling growth by C. murale allelochemicals may represent a consequence of complex activity involving both cell structure alteration and physiological processes.
Collapse
Affiliation(s)
- Nevena Mitić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Boulevard 142, Belgrade, 11060, Serbia
| | - Mariana Stanišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Boulevard 142, Belgrade, 11060, Serbia
| | - Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Boulevard 142, Belgrade, 11060, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Boulevard 142, Belgrade, 11060, Serbia
| | - Nemanja Stanisavljević
- Institute of Molecular Genetics and Genetic Engeenering, University of Belgrade, Vojvode Stepe 444a, Belgrade, 11000, Serbia
| | - Jovanka Miljuš-Đukić
- Institute of Molecular Genetics and Genetic Engeenering, University of Belgrade, Vojvode Stepe 444a, Belgrade, 11000, Serbia
| | - Marija Marin
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Svetlana Radović
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Slavica Ninković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Boulevard 142, Belgrade, 11060, Serbia.
| |
Collapse
|
11
|
Tamás L, Demecsová L, Zelinová V. L-NAME decreases the amount of nitric oxide and enhances the toxicity of cadmium via superoxide generation in barley root tip. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:68-74. [PMID: 29604535 DOI: 10.1016/j.jplph.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Exposure of barley roots to mM concentrations of L-NAME for 30 min caused a considerable root growth inhibition in a dose-dependent manner. The inhibition of root growth was higher in seedlings co-treated with Cd and L-NAME, compared with roots treated with Cd alone, despite the fact that L-NAME markedly reduced the uptake of Cd by roots. Treatment of roots with L-NAME evoked a decrease in NO level in both control and Cd-treated root tips only after a relatively long lag period, which overlaps with an increase in superoxide and H2O2 levels and peroxynitrite generation. L-NAME-induced root growth inhibition is alleviated not only by the application of the NO donor SNP but also by the ROS and peroxynitrite scavengers. Our results indicate that L-NAME, a NOS inhibitor in the animal kingdom, indeed evokes NO depletion also in the plant tissues; however, it does not occur due to the action of L-NAME as an inhibitor of NOS or NOS-like activity, but as a consequence of L-NAME-induced enhanced superoxide generation, leading to increased peroxynitrite level in the root tips due to the reaction between superoxide and NO.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic.
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| |
Collapse
|
12
|
Samborska IA, Kalaji HM, Sieczko L, Goltsev V, Borucki W, Jajoo A. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:668-679. [PMID: 32290968 DOI: 10.1071/fp17241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Magnesium (Mg) is one of the significant macronutrients which is involved in the structural stabilisation of plant tissues and many enzymes such as PSII. The latter efficiency and performance were analysed, using chlorophyll (Chl) a fluorescence induction kinetics and microscopic images, to detect the changes in structure and function of photosynthetic apparatus of radish plants grown under Mg deficiency (Mgdef). Plants grown under Mgdef showed less PSII connectivity and fewer active primary electron acceptors (QA) oxidizing reaction centres than control plants. Confocal and electron microscopy analyses showed an increased amount of starch in chloroplasts, and 3,3'-diaminobenzidine (DAB)-uptake method revealed higher H2O2 accumulation under Mgdef. Prominent changes in the Chl a fluorescence parameters such as dissipated energy flux per reaction centre (DIo/RC), relative variable fluorescence at 150μs (Vl), and the sum of the partial driving forces for the events involved in OJIP fluorescence rise (DFabs) were observed under Mg deficiency. The latter also significantly affected some other parameters such as dissipated energy fluxes per cross-section (DIo/CSo), performance index for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors (PItotal), and relative variable fluorescence at 300μs (Vk). This work emphasises the use of chlorophyll fluorescence in combination with microscopic and statistical analyses to diagnose the effects of nutrients deficiency stress on plants at an early stage of its development as demonstrated for the example of Mgdef. Due to the short growth period and simple cultivation conditions of radish plant we recommend it as a new standard (model) plant to study nutrients deficiency and changes in plant photosynthetic efficiency under stress conditions.
Collapse
Affiliation(s)
- Izabela A Samborska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Hazem M Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Leszek Sieczko
- Department of Experimental Statistics and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kl. Ohridski University of Sofia, 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria
| | - Wojciech Borucki
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452017, India
| |
Collapse
|
13
|
Andrzejczak O, Krasuska U, Olechowicz J, Staszek P, Ciacka K, Bogatek R, Hebelstrup K, Gniazdowska A. Destabilization of ROS metabolism in tomato roots as a phytotoxic effect of meta-tyrosine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:369-377. [PMID: 29304482 DOI: 10.1016/j.plaphy.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 05/09/2023]
Abstract
meta-Tyrosine (m-Tyr) is a non-protein amino acid produced in both plants and animals. Primary mode of action of this phenylalanine analog is its incorporation into protein structure leading to formation of aberrant molecules. An increased level of m-Tyr in animal cells is detected under oxidative stress and during age-related processes characterized by overproduction of reactive oxygen species (ROS). The aim of this study was to link m-Tyr physiological action to disturbances in ROS metabolism in tomato (Solanum lycopersicum L.) seedlings roots. Treatment of tomato seedlings with m-Tyr (50 or 250 μM) for 24-72 h led to inhibition of root growth without a lethal effect. Toxicity of m-Tyr after 72 h was connected with an increase in hydrogen peroxide concentration in roots and ROS leakage into the surrounding medium. On the contrary, membrane permeability and lipid peroxidation in roots were the same as for the control. This was accompanied by a decrease in total antioxidant activity and an increased accumulation of phenolic compounds. Catalase (CAT) activity declined in roots exposed to 50 μM m-Tyr after 24 h while after 72 h activity of this enzyme was inhibited in both treated and non-treated samples. Activities of different superoxide dismutase (SOD) isoforms were similar in m-Tyr stressed roots and in the control. Prolonged culture resulted in decrease of transcript level of genes coding CAT and SOD with the exception of FeSOD. Moreover, m-Tyr increased the level of protein carbonyl groups indicating induction of oxidative stress as a non-direct mode of action.
Collapse
Affiliation(s)
- Olga Andrzejczak
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Olechowicz
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Paweł Staszek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Katarzyna Ciacka
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Kim Hebelstrup
- Department of Molecular Biology and Genetics - Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
14
|
Zhang F, Cheng M, Sun Z, Wang L, Zhou Q, Huang X. Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:524-532. [PMID: 28841504 DOI: 10.1016/j.envpol.2017.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La3+), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La3+ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La3+ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La3+ on crops depended on the combination levels of acid rain intensity and La3+ concentration. Acid rain increases the bioavailability of La3+, and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengzhu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Zhaoguo Sun
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
15
|
Araniti F, Bruno L, Sunseri F, Pacenza M, Forgione I, Bitonti MB, Abenavoli MR. The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:14-20. [PMID: 29078092 DOI: 10.1016/j.plaphy.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 05/22/2023]
Abstract
Farnesene is a sesquiterpene with semiochemical activity involved in interspecies communication. This molecule, known for its phytotoxic potential and its effects on root morphology and anatomy, caused anisotropic growth, bold roots and a "left-handedness" phenotype. These clues suggested an alteration of auxin distribution, and for this reason, the aim of the present study was to evaluate its effects on: i) PIN-FORMED proteins (PIN) distribution, involved in polar auxin transport; ii) PIN genes expression iii) apical meristem anatomy of primary root, in 7 days old Arabidopsis thaliana seedlings treated with farnesene 250 μM. The following GFP constructs: pSCR::SCR-GFP, pDR5::GFP,pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::PIN3-GFP, pPIN4::PIN4-GFP and pPIN7::PIN7-GFP were used to evaluate auxin distribution. Farnesene caused a reduction in meristematic zone size, an advancement in transition zone, suggesting a premature exit of cells from the meristematic zone, a reduction in cell division and an impairment between epidermal and cortex cells. The auxin-responsive reporter pDR5::GFP highlighted that auxin distribution was impaired in farnesene-treated roots, where auxin distribution appeared maximum in the quiescent center and columella initial cells, without extending to mature columella cells. This finding was further confirmed by the analysis on PIN transport proteins distribution, assessed on individual constructs, which showed an extreme alteration mainly dependent on the PIN 3, 4 and 7, involved in pattern specification during root development and auxin redistribution. Finally, farnesene treatment caused a down-regulation of all the auxin transport genes studied. We propose that farnesene affected auxin transport and distribution causing the alteration of root meristem, and consequently the left-handedness phenotype.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito, I-89124 Reggio Calabria, Italy.
| | - Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, 87040 Arcavacata di Rende, CS, Italy.
| | - Francesco Sunseri
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito, I-89124 Reggio Calabria, Italy
| | - Marianna Pacenza
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, 87040 Arcavacata di Rende, CS, Italy
| | - Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, 87040 Arcavacata di Rende, CS, Italy
| | - Maria Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, 87040 Arcavacata di Rende, CS, Italy
| | - Maria Rosa Abenavoli
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito, I-89124 Reggio Calabria, Italy
| |
Collapse
|
16
|
meta-Tyrosine induces modification of reactive nitrogen species level, protein nitration and nitrosoglutathione reductase in tomato roots. Nitric Oxide 2016; 68:56-67. [PMID: 27810375 DOI: 10.1016/j.niox.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 12/12/2022]
Abstract
A non-protein amino acid (NPAA) - meta-Tyrosine (m-Tyr), is a harmful compound produced by fescue roots. Young (3-4 days old) tomato (Solanum lycopersicum L.) seedlings were supplemented for 24-72 h with m-Tyr (50 or 250 μM) inhibiting root growth by 50 or 100%, without lethal effect. Fluorescence of DAF-FM and APF derivatives was determined to show reactive nitrogen species (RNS) localization and level in roots of tomato plants. m-Tyr-induced restriction of root elongation growth was related to formation of nitrated proteins described as content of 3-nitrotyrosine. Supplementation with m-Tyr enhanced superoxide radicals generation in extracts of tomato roots and stimulated protein nitration. It correlated well to increase of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives corresponding respectively to NO and ONOO- formation. Alterations in RNS formation induced by m-Tyr were linked to metabolism of nitrosoglutathione (GSNO). Activity of nitrosoglutatione reductase (GSNOR), catalyzing degradation of GSNO was enhanced by long term plant supplementation with m-Tyr, similarly as protein abundance, while transcripts level were only slightly altered by tested NPAA. We conclude, that although in animal cells m-Tyr is considered as a marker of oxidative stress, its secondary mode of action in tomato plants involves perturbation in RNS formation, alteration in GSNO metabolism and modification of protein nitration level.
Collapse
|
17
|
Krasuska U, Andrzejczak O, Staszek P, Bogatek R, Gniazdowska A. Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:840. [PMID: 27379131 PMCID: PMC4905978 DOI: 10.3389/fpls.2016.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/27/2016] [Indexed: 05/09/2023]
Abstract
Canavanine (CAN), a structural analog of arginine (Arg), is used as a selective inhibitor of inducible NOS in mammals. CAN is incorporated into proteins' structure in the place of Arg, leading to the formation of aberrant compounds. This non-protein amino acid is found in legumes, e.g., Canavalia ensiformis (L.) DC. or Sutherlandia frutescens (L.) R.Br. and acts as a strong toxin against herbivores or plants. Tomato (Solanum lycopersicum L.) seedlings were treated for 24-72 h with CAN (10 or 50 μM) inhibiting root growth by 50 or 100%, without lethal effect. We determined ROS level/production in root extracts, fluorescence of DAF-FM and APF derivatives corresponding to RNS level in roots of tomato seedlings and linked CAN-induced restriction of root growth to the post-translational modifications (PTMs) of proteins: carbonylation and nitration. Both PTMs are stable markers of nitro-oxidative stress, regarded as the plant's secondary response to phytotoxins. CAN enhanced H2O2 content and superoxide radicals generation in extracts of tomato roots and stimulated formation of protein carbonyl groups. An elevated level of carbonylated proteins was characteristic for the plants after 72 h of the culture, mainly for the roots exposed to 10 μM CAN. The proteolytic activity was stimulated by tested non-protein amino acid. CAN treatment led to decline of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives. Short-term exposure of tomato seedlings to CAN lowered the protein nitration level. Activity of peroxidase, polyamine oxidase and NADPH oxidase, enzymes acting as modulators of H2O2 concentration and governing root architecture and growth were determined. Activities of all enzymes were stimulated by CAN, but no strict CAN concentration dependence was observed. We conclude, that although CAN treatment led to a decline in the nitric oxide level, PTMs observed in roots of plants exposed to CAN are linked rather to the formation of carbonyl groups than to nitration, and are detected particularly after 24 h. Thus, oxidative stress and oxidative modifications of proteins seems to be of significant importance in the rapid response of plants to CAN.
Collapse
|