1
|
Coutinho ID, Facchinatto WM, Mertz-Henning LM, Viana AC, Marin SR, Santagneli SH, Nepomuceno AL, Colnago LA. NMR Fingerprinting of Conventional and Genetically Modified Soybean Plants with AtAREB1 Transcription Factors. ACS OMEGA 2024; 9:32651-32661. [PMID: 39100338 PMCID: PMC11292650 DOI: 10.1021/acsomega.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024]
Abstract
Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used 1H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.
Collapse
Affiliation(s)
- Isabel Duarte Coutinho
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - William Marcondes Facchinatto
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| | - Liliane Marcia Mertz-Henning
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Américo
José Carvalho Viana
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvana Regina
Rockenbach Marin
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Silvia Helena Santagneli
- Institute
of Chemistry, São Paulo State University
(UNESP), Avenue Francisco Degni 55, CEP 14800-060 Araraquara, São Paulo, Brazil
| | - Alexandre Lima Nepomuceno
- Embrapa
Soybean, Brazilian Agricultural Research
Corporation, HWY Carlos João Strass, Warta District, P.O.
Box 4006, 86085-981 Londrina, Paraná, Brazil
| | - Luiz Alberto Colnago
- Embrapa
Instrumentation, Brazilian Agricultural
Research Corporation, St. XV de Novembro 1452, P.O. Box 741, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang B, Zhang H, Lu D, Cheng L, Li J. Effects of biofertilizers on the growth, leaf physiological indices and chlorophyll fluorescence response of spinach seedlings. PLoS One 2023; 18:e0294349. [PMID: 38096260 PMCID: PMC10721093 DOI: 10.1371/journal.pone.0294349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Chemcial fertilizer as the main strategy for improving the vegetable yields was excessively applied in recent years which led to progressively serious soil problems such as the soil acidification. According the situation, five different biofertilizer treatments [no fertilizer (CK), inoculations of Bacillus subtilis (Bs, T1), combination of Bs and Bacillus mucilaginosus (Bs+Bm, T2), Bs and Bacillus amyloliquefaciens (Bs+Ba, T3), and Bm+Ba (T4)] were conducted to investigate the effect of the growth, leaf physiological indices, and chlorophyll fluorescence of spinach seedlings in the growth chamber. The growth and physiological indices of the spinach seedlings attained a maximum under the T2 treatments. Under the T2 treatment, the ABS/RC (Absorption flux per RC), TR0/RC (Trapping flux per RC), and ET0/RC (Electron transport flux per RC) was significantly increased, while the DI0/RC [Dissipated energy flux per RC (at t = 0)] was decreased. The OJIP curve was improved under of the inoculations of fertilizers, and the increasing range was the largest under the T2 treatment. The leaf light response curve (LC) was also significantly increased under the T2 treatment. The plant growth characteristics [leaf length (LL), leaf weight (LW), plant height (PH)] were positively correlated with the J-I-P test chlorophyll fluorescence parameters [PIABS (Performance index for energy conservation from exciton to the reduction of intersystem electron acceptors), φP0 (Maximum quantum yield of primary photochemistry), φE0 (Quantum yield of electron transport), ψ0 (The probability that a trapped exciton moved an electron in electron transport chain further than QA-), TR0/RC, and ET0/RC] while negatively correlated with φD0 (Quantum yield of energy dissipation) and DI0/RC. The leaf physiological characteristics [SP (soluble protein concentrations), SC (soluble carbohydrate concentrations), Chl a (chlorophyll a), Chl b (chlorophyll b), Chl a+b, Chl a/b, and WP (water potential)] were positively correlated with the J-I-P test chlorophyll fluorescence parameters (PIABS, φP0, φE0, ψ0, ABS/RC, TR0/RC, and ET0/RC) while negatively correlated with φD0 and DI0/RC. These results indicated that the combination of Bs+Bm inoculations promoted the growth of the spinach and improved the adaptability of the vegetable to acid soil while Ba inoculation didn't have any effects to plants.
Collapse
Affiliation(s)
- Beibei Zhang
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulating, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Di Lu
- College of Tourism and Management, Pingdingshan University, Pingdingshan, Henan, China
| | - Liping Cheng
- College of Tourism and Management, Pingdingshan University, Pingdingshan, Henan, China
| | - Jiajia Li
- College of Tourism and Management, Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
3
|
Chai M, Li R, Li B, Wu H, Yu L. Responses of mangrove (Kandelia obovata) growth, photosynthesis, and rhizosphere soil properties to microplastic pollution. MARINE POLLUTION BULLETIN 2023; 189:114827. [PMID: 36931158 DOI: 10.1016/j.marpolbul.2023.114827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we used Kandelia obovata to explore the toxicities of three typical MPs in mangroves: polyethylene, polypropylene, and polyvinylchloride. MPs were mixed into soils at 5 % (w/w) for cultivation in mangrove tide-tank system. Plant growth and soil characteristics were determined after 12 months. The results showed that MPs multiply restricted root growth, leaf ionome, chlorophyll concentration, and photosynthetic efficiency, changed leaf photochemical efficiency and excited energy distribution. Polyethylene and polypropylene MPs with 150 μm sizes significantly reduced leaf and root biomass. As for soil properties, all MPs mainly reduced bulk density but improved porosity, with 600 μm polyethylene resulting in 1.4 g cm-3 bulk density and 55.1 % porosity. This study represent the first paper highlighting that MPs negatively affect mangrove plants by affecting plant growth, leaf ionome, and photosynthesis, which may be related with the changed soil properties, especially reduced bulk density and improved porosity.
Collapse
Affiliation(s)
- Minwei Chai
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, PR China
| | - Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, PR China.
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Hailun Wu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, PR China
| | - Lingyun Yu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, PR China
| |
Collapse
|
4
|
Thiers KLL, da Silva JHM, Vasconcelos DCA, Aziz S, Noceda C, Arnholdt-Schmitt B, Costa JH. Polymorphisms in alternative oxidase genes from ecotypes of Arabidopsis and rice revealed an environment-induced linkage to altitude and rainfall. PHYSIOLOGIA PLANTARUM 2023; 175:e13847. [PMID: 36562612 DOI: 10.1111/ppl.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We investigated SNPs in alternative oxidase (AOX) genes and their connection to ecotype origins (climate, altitude, and rainfall) by using genomic data sets of Arabidopsis and rice populations from 1190 and 90 ecotypes, respectively. Parameters were defined to detect non-synonymous SNPs in the AOX ORF, which revealed amino acid (AA) changes in AOX1c, AOX1d, and AOX2 from Arabidopsis and AOX1c from rice in comparison to AOX references from Columbia-0 and Japonica ecotypes, respectively. Among these AA changes, Arabidopsis AOX1c_A161E&G165R and AOX1c_R242S revealed a link to high rainfall and high altitude, respectively, while all other changes in Arabidopsis and rice AOX was connected to high altitude and rainfall. Comparative 3D modeling showed that all mutant AOX presented structural differences in relation to the respective references. Molecular docking analysis uncovered lower binding affinity values between AOX and the substrate ubiquinol for most of the identified structures compared to their reference, indicating better enzyme-substrate binding affinities. Thus, our in silico data suggest that the majority of the AA changes found in the available ecotypes will confer better enzyme-subtract interactions and thus indicate environment-related, more efficient AOX activity.
Collapse
Affiliation(s)
- Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | | | | | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
- Facultad de Ciencias de la ingeniería, Universidad Estatal de Milagro, Milagro, Ecuador
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
5
|
Yousefvand P, Sohrabi Y, Heidari G, Weisany W, Mastinu A. Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress. Molecules 2022; 27:3083. [PMID: 35630559 PMCID: PMC9145819 DOI: 10.3390/molecules27103083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Nowadays, the use of the growth regulator salicylic acid for improving a plant's resistance to environmental stresses such as drought is increasing. The present study investigated the effect of salicylic acid on the physiological traits, antioxidant enzymes, yield, and quality of Allium hirtifolium (shallots) under drought conditions for three years (2016-2017, 2017-2018, and 2018-2019). The experiment was conducted as a split-plot based on a randomized complete block design with four repeats. Irrigation as the main factor in four levels of 100% (full irrigation), 75% and 50% of the plant water requirements with non-irrigation (dryland), and salicylic acid as the sub-factor in four levels of 0, 0.75, and 1 mmol, were the studied factors in this research. The combined analysis of three-year data showed that drought reduced leaf relative water content (RWC), membrane stability index (MSI), chlorophyll content, onion yield, and increased activity of antioxidant enzymes, proline content, tang, and allicin of shallots. Shallot spraying with salicylic acid improved leaf RWC, MSI, chlorophyll content, and onion yield. The highest yield of onion (1427 gr m-2) belonged to full irrigation and foliar application of 1 mmol salicylic acid. The lowest yield (419.8 gr m-2) belonged to plats with non-irrigation and non-application of salicylic acid. By improving the effective physiological traits in resistance to water deficit, salicylic acid adjusted the effects of water deficit on the yield of shallots. Foliar application of 1 mmol salicylic acid in dryland and irrigation of 50% of the plant water requirement increased onion yield by 15.12% and 29.39%, respectively, compared to the control treatment without salicylic acid.
Collapse
Affiliation(s)
- Peyman Yousefvand
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177, Iran; (P.Y.); (G.H.)
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177, Iran; (P.Y.); (G.H.)
| | - Gholamreza Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177, Iran; (P.Y.); (G.H.)
| | - Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran 14778, Iran;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
6
|
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, Zhang JZ. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. PLANTA 2021; 255:24. [PMID: 34928452 DOI: 10.1007/s00425-021-03801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - En-Qing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Ke Ren
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Kaya C. Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle. PHYSIOLOGIA PLANTARUM 2021; 173:8-19. [PMID: 32613611 DOI: 10.1111/ppl.13159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 05/24/2023]
Abstract
The contribution of hydrogen sulphide (H2 S) to salicylic acid (SA) induced lead (Pb) stress tolerance modulated by the ascorbate-glutathione (AsA-GSH) cycle was examined in pepper (Capsicum annuum L.) plants. One week after germination, pepper seedlings were sprayed with 0.5 mM SA once a day for a week. Thereafter, seedlings were grown under control (no Pb) or Pb stress (Pb-S treatment consisting of 0.1 mM PbCl2 ) for a further 2 weeks. Lead stress reduced plant growth and leaf water status as well as the activities of dehydroascorbate reductase and monodehydroascorbate reductase. However, lead stress elevated leaf Pb, the proline contents, oxidative stress, activities of glutathione reductase and ascorbate peroxidase, as well as the endogenous H2 S content. Supplements of SA resulted in improvements in growth parameters, biomass, leaf water status and AsA-GSH cycle-related enzyme activities, as well as increasing the H2 S content. The positive effect of SA was further enhanced when sodium hydrosulphide was added. However, 0.1 mM hypotaurine (HT) treatment reversed the beneficial effect of SA by reducing the plant H2 S content. Application of NaHS in combination with SA + HT suppressed the adverse effect of HT mainly by restoring the plant H2 S content, suggesting that higher H2 S content, induced by exogenous SA supply, resulted in elevated regulation of the AsA-GSH cycle.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
8
|
Quantitative Trait Locus Mapping for Drought Tolerance in Soybean Recombinant Inbred Line Population. PLANTS 2021; 10:plants10091816. [PMID: 34579348 PMCID: PMC8471639 DOI: 10.3390/plants10091816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Improving drought stress tolerance of soybean could be an effective way to minimize the yield reduction in the drought prevailing regions. Identification of drought tolerance-related quantitative trait loci (QTLs) is useful to facilitate the development of stress-tolerant varieties. This study aimed to identify the QTLs for drought tolerance in soybean using a recombinant inbred line (RIL) population developed from the cross between a drought-tolerant ‘PI416937’ and a susceptible ‘Cheonsang’ cultivar. Phenotyping was done with a weighted drought coefficient derived from the vegetative and reproductive traits. The genetic map was constructed using 2648 polymorphic SNP markers that distributed on 20 chromosomes with a mean genetic distance of 1.36 cM between markers. A total of 10 QTLs with 3.52–4.7 logarithm of odds value accounting for up to 12.9% phenotypic variance were identified on seven chromosomes. Five chromosomes—2, 7, 10, 14, and 20—contained one QTL each, and chromosomes 1 and 19 harbored two and three QTLs, respectively. The chromosomal locations of seven QTLs overlapped or located close to the related QTLs and/or potential candidate genes reported earlier. The QTLs and closely linked markers could be utilized in maker-assisted selection to accelerate the breeding for drought tolerance in soybean.
Collapse
|
9
|
Lobato AKDS, Barbosa MAM, Alsahli AA, Lima EJA, Silva BRSD. Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. PHYSIOLOGIA PLANTARUM 2021; 172:869-884. [PMID: 33421143 DOI: 10.1111/ppl.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/30/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is an interesting messenger in plant metabolism that modulates multiple pathways, including the antioxidant defence pathway, and stimulates anatomical structures essential to carbon dioxide fixation during the photosynthetic process. The aim of this research was to determine whether pre-treatment with exogenous SA can alleviate the deleterious effects induced by water deficit on production components, biomass and gas exchange, measuring reactive oxygen species, antioxidant enzymes, variables connected to photosynthetic machinery, anatomical responses, and agro-morphological traits in tomato plants under water deficit. The experiment used a factorial design with four treatments, including two water conditions (control and water deficit) and two salicylic acid concentrations (0 and 0.1 mM salicylic acid). Water deficit negatively impacted the biomass and fruit number of tomato plants. Pre-treatment using 0.1 mM SA in plants submitted to water restriction induced increments in fruit number, weight, and biomass. These results were related to the protective role triggered by this substance, stimulating superoxide dismutase (27.07%), catalase (17.81%), ascorbate peroxidase (50.52%), and peroxidase (10.81%) as well as reducing the cell damage (malondialdehyde and electrolyte leakage) caused by superoxide and hydrogen peroxide. Simultaneously, application of SA improved the net photosynthetic rate (84.55%) and water-use efficiency (65.00%) of stressed plants in which these factors are connected to anatomical benefits, as verified by stomatal density, palisade and spongy parenchyma, combined with improved performance linked to photosystem II.
Collapse
Affiliation(s)
| | | | | | - Emily Juliane Alvino Lima
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia, Paragominas, Brazil
| | | |
Collapse
|
10
|
Kaya C. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. PHYSIOLOGIA PLANTARUM 2021; 172:351-370. [PMID: 32542778 DOI: 10.1111/ppl.13153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 05/07/2023]
Abstract
A trial was conducted to evaluate whether nitrate reductase (NR) participates in salicylic acid (SA)-improved water stress (WS) tolerance in pepper (Capsicum annuum L.) plants. Before starting WS treatment, 0.5 mM SA was applied to half of the well-watered (WW) plants as well as to WS-plants as a foliar spray once a day for a week. The soil water holding capacity was maintained at 40 and 80% of the full water storing capacity for WS and and well-watered (WW) plants, respectively. Water stress caused substantial decreases in total plant dry weight, Fv /Fm , chlorophyll a and b, relative water content, leaf water potential (ΨI) by 53, 37, 49, 21, 36 and 33%, respectively relative to control, but significant increases in malondialdehyde (MDA), hydrogen peroxide (H2 O2 ), electrolyte leakage (EL), methylglyoxal (MG), proline, key antioxidant enzymes' activities, NO and NR activity. The SA reduced oxidative stress, but improved antioxidant defence system, ascorbate-glutathione (AsA-GSH) cycle enzymes, glyoxalase system-related enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II), plant growth, photosynthetic traits, NO, NR and proline. SA-induced WS tolerance was further improved by supplementation of sodium nitroprusside (SNP), a donor of NO. NR inhibitor, sodium tungstate (ST) was applied in conjunction with SA and SA + SNP to the WW and WS-plants to assess whether NR contributes to SA-improved WS tolerance. ST abolished the beneficial effects of SA by reducing NO and NR activity in WS-pepper, but the application of SNP along with SA + ST reversed negative effects of ST, showing that NO and NR are jointly needed for SA-induced WS tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
11
|
Yan C, Song S, Wang W, Wang C, Li H, Wang F, Li S, Sun X. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC PLANT BIOLOGY 2020; 20:321. [PMID: 32640999 PMCID: PMC7346468 DOI: 10.1186/s12870-020-02519-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Drought is a major limiting factor seriously influencing worldwide soybean production and its impact on yield, morphological and physiological traits depend on the timing it occurs and the intensity of water shortage. Only limited research has however been conducted on identifying the drought-tolerant genotypes at different growth stages (vegetative growth phase, reproductive growth phase and the whole growth phase) as well as evaluate the effectiveness and reliability of multiple phenotypic and yield-related characteristics in soybean. RESULTS Two pot experiments and a 2-year field experiment were conducted to evaluate soybean drought tolerance at different growth stages. The membership function value of drought tolerance (MFVD) was used to identify drought-resistant cultivars during vegetative growth phase and reproductive growth stage; the relative drought index (RDI) of yield was used to assess drought-resistant cultivars during the whole growing period. In this study, regression models built based on MFVD indicated that the variation of drought tolerant coefficient (DC) of R/S, TRL, LAI and RSR could explain 73.70% of the total variation at vegetative growth phase. However, higher heritability only found in LAI and RSR, indicating the two traits could serve as reliable criteria for drought evaluation. Similarly, the DC of SPP, YPP, PH, PB, MSNN and STB could explain 94.30% of the total variation in MFVD according to stepwise multiple linear regression analyses at reproductive growth phase. Thus, these six traits were identified as indicators for screening drought resistance genotypes in soybean. In addition, correlation analysis revealed that the MFVD was significantly positively correlated with the DCRB, DCR/S, DCRSA, DCRSR and DCRBR at vegetative growth phase and DCYPP, DCSPP, DCRB, and DCPB at reproductive growth phase. This indicated that these traits were closely related to the drought resistance of plants. CONCLUSIONS LD24, JD36 and TF31 of vegetative growth phase, and TD37 and LD26 of reproductive growth phase were identified with drought tolerant and highly drought tolerant, respectively. Moreover, 30 accessions with drought tolerance were screened in the field trial and could be applied for the drought resistance of other genotypes by cross-breeding.
Collapse
Affiliation(s)
- Chunjuan Yan
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| | - Shuhong Song
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| | - Wenbin Wang
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| | - Changling Wang
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| | - Haibo Li
- School of Agriculture, Jilin University of Agricultural Science & Technology, Jilin, 132101 China
| | - Feng Wang
- Institute of Agro-environmental Protection, MOA, Tianjin, 300191 China
| | - Shengyou Li
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| | - Xugang Sun
- Crop Institute, Liaoning Academy of Agricultural Science, Shenyang, 110161 Liaoning China
| |
Collapse
|
12
|
Sun Y, Wang C, Chen HYH, Ruan H. Response of Plants to Water Stress: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:978. [PMID: 32676096 PMCID: PMC7333662 DOI: 10.3389/fpls.2020.00978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/16/2020] [Indexed: 05/20/2023]
Abstract
Plants are key to the functionality of many ecosystem processes. The duration and intensity of water stress are anticipated to increase in the future; however, a detailed elucidation of the responses of plants to water stress remains incomplete. For this study, we present a meta-analysis derived from the 1,301 paired observations of 84 studies to evaluate the responses of plants to water stress. The results revealed that although water stress inhibited plant growth and photosynthesis, it increased reactive oxygen species (ROS), plasma membrane permeability, enzymatic antioxidants, and non-enzymatic antioxidants. Importantly, these responses generally increased with the intensity and duration of water stress, with a more pronounced decrease in ROS anticipated over time. Our findings suggested that the overproduction of ROS was the primary mechanism behind the responses of plants to water stress, where plants appeared to acclimatize to water stress, to some extent, over time. Our synthesis provides a framework for better understanding the responses and mechanisms of plants under drought conditions.
Collapse
Affiliation(s)
- Yuan Sun
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Cuiting Wang
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Han Y. H. Chen
- Faculty of Natural Resource Management, Lakehead University, Thunder Bay, ON, Canada
| | - Honghua Ruan
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Maia RA, da Cruz Saraiva KD, Roque ALM, Thiers KLL, Dos Santos CP, da Silva JHM, Feijó DF, Arnholdt-Schmitt B, Costa JH. Differential expression of recently duplicated PTOX genes in Glycine max during plant development and stress conditions. J Bioenerg Biomembr 2019; 51:355-370. [PMID: 31506801 DOI: 10.1007/s10863-019-09810-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Plastid terminal oxidase (PTOX) is a chloroplast enzyme that catalyzes oxidation of plastoquinol (PQH2) and reduction of molecular oxygen to water. Its function has been associated with carotenoid biosynthesis, chlororespiration and environmental stress responses in plants. In the majority of plant species, a single gene encodes the protein and little is known about events of PTOX gene duplication and their implication to plant metabolism. Previously, two putative PTOX (PTOX1 and 2) genes were identified in Glycine max, but the evolutionary origin and the specific function of each gene was not explored. Phylogenetic analyses revealed that this gene duplication occurred apparently during speciation involving the Glycine genus ancestor, an event absent in all other available plant leguminous genomes. Gene expression evaluated by RT-qPCR and RNA-seq data revealed that both PTOX genes are ubiquitously expressed in G. max tissues, but their mRNA levels varied during development and stress conditions. In development, PTOX1 was predominant in young tissues, while PTOX2 was more expressed in aged tissues. Under stress conditions, the PTOX transcripts varied according to stress severity, i.e., PTOX1 mRNA was prevalent under mild or moderate stresses while PTOX2 was predominant in drastic stresses. Despite the high identity between proteins (97%), molecular docking revealed that PTOX1 has higher affinity to substrate plastoquinol than PTOX2. Overall, our results indicate a functional relevance of this gene duplication in G. max metabolism, whereas PTOX1 could be associated with chloroplast effectiveness and PTOX2 to senescence and/or apoptosis.
Collapse
Affiliation(s)
- Rachel Alves Maia
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
- Federal Institute of Education, Science and Technology of Paraíba - IFPB, Campus Princesa Isabel, 58755-000, BR-426, S/N - Rural Zone, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | - Daniel Ferreira Feijó
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
- Functional Cell Reprogramming and Organism Plasticity (FunCrop - virtual network), EU Marie Curie Chair, ICAAM, University of Évora, Apartado 94, 7002-554, Évora, Portugal
- Science and Technology Park Alentejo (PACT), 7005-841, Évora, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
- Functional Cell Reprogramming and Organism Plasticity (FunCrop - virtual network), EU Marie Curie Chair, ICAAM, University of Évora, Apartado 94, 7002-554, Évora, Portugal.
| |
Collapse
|
14
|
Shen X, Li R, Chai M, Cheng S, Niu Z, Qiu GY. Interactive effects of single, binary and trinary trace metals (lead, zinc and copper) on the physiological responses of Kandelia obovata seedlings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:135-148. [PMID: 29987496 DOI: 10.1007/s10653-018-0142-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals are considered important environmental contaminants, and their mixture toxicity on plants has complex mutual interactions. The interactive effects of heavy metals on growth, photosynthetic parameters, lipid peroxidation and compatible osmolytes were studied in Kandelia obovata grown for 5 months in sediment treated with combinations of lead (Pb), zinc (Zn) and copper (Cu). The results showed no significant reduction of biomass under heavy metal stresses, except for decreased root biomass under higher Pb + Cu treatment, indicating high tolerance of K. obovata to heavy metal stress. Only the photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), decreased with increasing concentration of treatments (except for Pb + Cu and Pb + Zn + Cu). Trinary treatment (Pb + Zn + Cu) increased biomass and the photosynthetic parameters when compared to the external addition of binary metals. In the roots, biomass and soluble sugar content were lower under binary than trinary treatments, indicating that the combination of Zn and Cu exhibited improved effects of alleviating toxicity than each of them alone in Pb-containing combined treatments. In the leaves, Zn-containing combined treatments significantly decreased malondialdehyde (MDA), soluble sugar and proline content in low concentration, while Pb + Cu treatments significantly increased these parameters (P < 0.05). The correlation analysis showed that leaf MDA and proline content were negatively correlated with Zn concentration (P < 0.05). Zn could alleviate the effects of combined heavy metal stress, and Pb + Cu treatment showed synergistic effects in leaves. The positive correlations between MDA content and the osmotic parameters showed that osmotic stress and lipid membranes oxidation exist simultaneously under multiple heavy metal stresses. Therefore, biomass, Tr, leaf MDA, leaf proline content and soluble sugar content could indicate metal mixture toxicity to mangrove seedlings.
Collapse
Affiliation(s)
- Xiaoxue Shen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Shanshan Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Zhiyuan Niu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Guo Yu Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
15
|
Shen X, Li R, Chai M, Yu K, Zan Q, Qiu GY. Assessing the effect of extra nitrogen on Kandelia obovata growth under cadmium stress using high-resolution thermal infrared remote sensing and the three-temperature model. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1162-1171. [PMID: 32290977 DOI: 10.1071/fp17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/12/2018] [Indexed: 06/11/2023]
Abstract
Mangrove forests provide many ecological services and are among the most productive intertidal ecosystems on earth. Currently, these forests frequently face significant heavy metal pollution as well as eutrophication. The present study assessed the response of Kandelia obovata Sheue, H.Y. Liu & J. Yong to combined NH4+-N addition and Cd stress based on a three-temperature (3T) model using high-resolution thermal infrared remote sensing. The results show that leaf surface temperature (Tc) and the plant transpiration transfer coefficient (hat) became larger with increasing NH4+-N concentrations in the same Cd treatment, especially under high NH4+-N (50 and 100 mg·L-1) and Cd stress. The thermal bioindicators, growth responses and photosynthetic parameters changed in a consistent fashion, indicating that combined high NH4+-N addition and Cd stress led to stomatal closure, reduced the cooling effect of transpiration, and increased Tc and hat values. Furthermore, appropriate NH4+-N supply reduced stomatal conductance (gs) and the transpiration rate (Tr), which were increased by Cd stress, and then maintained Tc and hat at normal levels. The normalised hat helped to reduce the influence of environmental variation during the diagnosis of mangrove plant health. This indicated that the 3T model with high-resolution thermal infrared remote sensing provides an effective technique for determining the health status of mangrove plants under stress.
Collapse
Affiliation(s)
- Xiaoxue Shen
- School of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China
| | - Minwei Chai
- School of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China
| | - Qijie Zan
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518000, China
| | - Guo Yu Qiu
- School of Environment and Energy, Peking University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Eberl F, Perreca E, Vogel H, Wright LP, Hammerbacher A, Veit D, Gershenzon J, Unsicker SB. Rust Infection of Black Poplar Trees Reduces Photosynthesis but Does Not Affect Isoprene Biosynthesis or Emission. FRONTIERS IN PLANT SCIENCE 2018; 9:1733. [PMID: 30538714 PMCID: PMC6277707 DOI: 10.3389/fpls.2018.01733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Poplar (Populus spp.) trees are widely distributed and play an important role in ecological communities and in forestry. Moreover, by releasing high amounts of isoprene, these trees impact global atmospheric chemistry. One of the most devastating diseases for poplar is leaf rust, caused by fungi of the genus Melampsora. Despite the wide distribution of these biotrophic pathogens, very little is known about their effects on isoprene biosynthesis and emission. We therefore infected black poplar (P. nigra) trees with the rust fungus M. larici-populina and monitored isoprene emission and other physiological parameters over the course of infection to determine the underlying mechanisms. We found an immediate and persistent decrease in photosynthesis during infection, presumably caused by decreased stomatal conductance mediated by increased ABA levels. At the same time, isoprene emission remained stable during the time course of infection, consistent with the stability of its biosynthesis. There was no detectable change in the levels of intermediates or gene transcripts of the methylerythritol 4-phosphate (MEP) pathway in infected compared to control leaves. Rust infection thus does not affect isoprene emission, but may still influence the atmosphere via decreased fixation of CO2.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Louwrance P. Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Zeiselhof Research Farm, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Sybille B. Unsicker,
| |
Collapse
|
17
|
Cheng S, Tam NFY, Li R, Shen X, Niu Z, Chai M, Qiu GY. Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. MARINE POLLUTION BULLETIN 2017; 124:1089-1095. [PMID: 28442201 DOI: 10.1016/j.marpolbul.2017.03.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
A study was conducted to quantify temporal variations in physiological responses of Kandelia obovata under multiple heavy metal stress. The results showed that plant growth was not significantly affected by multiple heavy metal stress during the 120-days experiment. At the start, levels of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) showed effects of "low-promotion, high-inhibition", but Pn and Gs reduced with increasing heavy metal stress at the end. Temporary lipid oxidation was shown by high levels of malondialdehyde (MDA) under high heavy metal stress at the start but was unaffected at the end of the experiment. MDA negatively correlated with biomass and photosynthetic parameters and acted as a sensitive indicator. Proline also shared similar trend and indicated its temporary role in osmotic adjustment. Negative correlations between osmotic adjustment matter and photosynthetic parameters further confirmed the significant role of osmotic adjustment under heavy metal stress.
Collapse
Affiliation(s)
- Shanshan Cheng
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Nora Fung Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Xiaoxue Shen
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Zhiyuan Niu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Minwei Chai
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Guo Yu Qiu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
18
|
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front Microbiol 2017; 8:2104. [PMID: 29163398 PMCID: PMC5671593 DOI: 10.3389/fmicb.2017.02104] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Plants are subjected to various abiotic stresses, such as drought, extreme temperature, salinity, and heavy metals. Abiotic stresses have negative impact on the physiology and morphology of plants through defects in the genetic regulation of cellular pathways. Plants employ several tolerance mechanisms and pathways to avert the effects of stresses that are triggered whenever alterations in metabolism are encountered. Phytohormones are among the most important growth regulators; they are known for having a prominent impact on plant metabolism, and additionally, they play a vital role in the stimulation of plant defense response mechanisms against stresses. Exogenous phytohormone supplementation has been adopted to improve growth and metabolism under stress conditions. Recent investigations have shown that phytohormones produced by root-associated microbes may prove to be important metabolic engineering targets for inducing host tolerance to abiotic stresses. Phytohormone biosynthetic pathways have been identified using several genetic and biochemical methods, and numerous reviews are currently available on this topic. Here, we review current knowledge on the function of phytohormones involved in the improvement of abiotic stress tolerance and defense response in plants exposed to different stressors. We focus on recent successes in identifying the roles of microbial phytohormones that induce stress tolerance, especially in crop plants. In doing so, this review highlights important plant morpho-physiological traits that can be exploited to identify the positive effects of phytohormones on stress tolerance. This review will therefore be helpful to plant physiologists and agricultural microbiologists in designing strategies and tools for the development of broad spectrum microbial inoculants supporting sustainable crop production under hostile environments.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Stephan J. Wirth
- Leibniz Centre for Agricultural Landscape Research, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza, Egypt
| |
Collapse
|
19
|
Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 2017; 163:28-51. [PMID: 28511789 DOI: 10.1016/j.jprot.2017.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Salicylic acid (SA) induced drought tolerance can be a key trait for increasing and stabilizing wheat production. These SA induced traits were studied in two Triticum aestivum L. varieties; drought tolerant, Kundan and drought sensitive, Lok1 under two different water deficit regimes: and rehydration at vegetative and flowering stages. SA alleviated the negative effects of water stress on photosynthesis more in Kundan. SA induced defense responses against drought by increasing antioxidative enzymes and osmolytes (proline and total soluble sugars). Differential proteomics revealed major role of carbon metabolism and signal transduction in enhancing drought tolerance in Kundan which was shifted towards defense, energy production and protection in Lok1. Thioredoxins played important role between SA and redox signaling in activating defense responses. SA showed substantial impact on physiology and carbon assimilation in tolerant variety for better growth under drought. Lok1 exhibited SA induced drought tolerance through enhanced defense system and energy metabolism. Plants after rehydration showed complete recovery of physiological functions under SA treatment. SA mediated constitutive defense against water stress did not compromise yield. These results suggest that exogenously applied SA under drought stress confer growth promoting and stress priming effects on wheat plants thus alleviating yield limitation. BIOLOGICAL SIGNIFICANCE Studies have shown morphological, physiological and biochemical aspects associated with the SA mediated drought tolerance in wheat while understanding of molecular mechanism is limited. Herein, proteomics approach has identified significantly changed proteins and their potential relevance to SA mediated drought stress responses in drought tolerant and sensitive wheat varieties. SA regulates wide range of processes such as photosynthesis, carbon assimilation, protein metabolism, amino acid and energy metabolism, redox homeostasis and signal transduction under drought. Proteome response to SA during vegetative and reproductive growth gave an insight on mechanism related water stress acclimation for growth and development to attain potential yield under drought. The knowledge gained can be potentially applied to provide fundamental basis for new strategies aiming towards improved crop drought tolerance and productivity.
Collapse
Affiliation(s)
- Marisha Sharma
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Sunil K Gupta
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Baisakhi Majumder
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Maurya
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Farah Deeba
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Vivek Pandey
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| |
Collapse
|